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FIG. 1. Graphical depiction of the two-step protocol for the work distribution. At t < 0 a system is in contact with a bath
until thermal equilibrium is reached [panel (a)]. At t = 0+, system and bath are detached, while the energy of the system is
measured. Let the outcome of such measurement be E0

n, which projects the state of the system onto the energy eigenstates��E0
n

↵
[panel (b)]. The system’s Hamiltonian is then changed following to a given protocol and the system evolves according to

the unitary evolution operator U(⌧, 0) for a time ⌧ [panel (c)], at which time it is measured (over the eigenbasis of the new
Hamiltonian). Outcome E⌧

m is achieved, which gives the new state |E⌧
mi [panel (d)]. By repeating this protocol many times a

distribution of values E⌧
m �E0

n is achieved, which embodies the probability distribution of the work done by/on the system as
a result of the protocol that has been implemented.

linearization of the interaction, where the Hamiltonian
is cast into a quadratic form that is more amenable to
analysis. Here, we eschew this simplification, which is
formally valid when the cavity field is strongly driven [9],
and address the full nonlinear optomechanical Hamilto-
nian. We note at this point that the thermodynami-
cal properties of the equivalent linearized model were re-
cently explored by some us in Ref. [10]. By retaining the
full optomechanical coupling, our work therefore aims to
address the out-of-equilibrium thermodynamical behav-
ior of nonlinearly coupled bosonic modes in the quantum
regime, and thus go beyond the results reported in liter-
ature so far.

The remainder of this work is organized as follows: In
Sec. II we introduce the two-measurement protocol nec-
essary to extract the work distribution, and review the
quantum fluctuation relations. Sec. III contains a de-
tailed analysis of the dynamical features of an optome-
chanical system subject to a sudden quench of the cou-
pling parameter and assesses its thermodynamical behav-
ior, first in the case of linear optomechanical coupling and
then in the quadratically-coupled case. Finally, in Sec. IV
we summarize our findings and discuss new perspectives
opened up by this work.

II. WORK DISTRIBUTION AND QUANTUM
FLUCTUATION THEOREMS

Let us consider a system described by a time-
dependent Hamiltonian Ĥ(Gt), whose dependence on
time is realized via the externally tunable parameter Gt.
This parameter, which we refer to as the driving param-

eter, determines the configuration of the system at any
time. Moreover, let us assume that at t = 0 the system
is in thermal equilibrium with a bath at inverse temper-

ature �, and is hence described by the Gibbs state

%̂�(G0

) =
e�� ˆH(G0)

Z(G
0

)
, (1)

where Z(G
0

) = Tr
n

e�� ˆH(G0)

o

is the canonical parti-

tion function of the system. This system is taken out
of equilibrium by applying a chosen transformation that
modifies Gt in time. Here we are concerned with the
statistics of the work done on or by the system when
applying such a protocol. We thus proceed as follows
(cf. Fig. 1 for a graphical depiction of the the pro-
cess): At time t = 0+ the system is detached from the
reservoir and a projective energy measurement is per-
formed on the system in the energy eigenbasis of Ĥ(G

0

),
yielding an eigenstate which we label

�

�E0

n

↵

. The driv-
ing parameter is changed according to the aforemen-
tioned transformation until a final time ⌧ . During this
period, the state of the system evolves as dictated by
the action of the unitary evolution operator Û⌧,0 on
the post-measurement state. Finally, a second projec-
tive energy measurement is made on the system, this
time in the eigenbasis of Ĥ(G⌧ ) and yielding eigenstate
|E⌧

mi. Given the spectral decompositions of the initial
and final Hamiltonians, Ĥ(G

0

) =
P

n E
0

n

�

�E0

n

↵ ⌦

E0

n

�

� and

Ĥ(G⌧ ) =
P

m E⌧
m |E⌧

mi hE⌧
m|, respectively, the energy

di↵erence between the two outcomes E⌧
m � E0

n may be
interpreted as the work performed by the external driv-
ing in a single realization of the protocol. This particular
value of the work occurs with probability p0np

⌧
m|n, where

p0n = e��E0
n/Z(G

0

) keeps track of the initial thermal
statistics, while p⌧m|n = | hE⌧

m| Û⌧,0

�

�E0

n

↵ |2 embodies the
transition probability arising from the change of basis.
The work performed due to the protocol described above
can be characterized by a stochastic variable W following

Irreversibility & entropy  
production in closed q-systems



Work and quantum

Talkner, Lutz, and Haenggi, Phys. Rev. E 75, 050102 (2007)



Setting the context

P. Talkner, E. Lutz, and P. Haenggi, Phys. Rev. E 75, 050102 (2007)

2

n m

FIG. 1. Graphical depiction of the two-step protocol for the work distribution. At t < 0 a system is in contact with a bath
until thermal equilibrium is reached [panel (a)]. At t = 0+, system and bath are detached, while the energy of the system is
measured. Let the outcome of such measurement be E0

n, which projects the state of the system onto the energy eigenstates��E0
n

↵
[panel (b)]. The system’s Hamiltonian is then changed following to a given protocol and the system evolves according to

the unitary evolution operator U(⌧, 0) for a time ⌧ [panel (c)], at which time it is measured (over the eigenbasis of the new
Hamiltonian). Outcome E⌧

m is achieved, which gives the new state |E⌧
mi [panel (d)]. By repeating this protocol many times a

distribution of values E⌧
m �E0

n is achieved, which embodies the probability distribution of the work done by/on the system as
a result of the protocol that has been implemented.

linearization of the interaction, where the Hamiltonian
is cast into a quadratic form that is more amenable to
analysis. Here, we eschew this simplification, which is
formally valid when the cavity field is strongly driven [9],
and address the full nonlinear optomechanical Hamilto-
nian. We note at this point that the thermodynami-
cal properties of the equivalent linearized model were re-
cently explored by some us in Ref. [10]. By retaining the
full optomechanical coupling, our work therefore aims to
address the out-of-equilibrium thermodynamical behav-
ior of nonlinearly coupled bosonic modes in the quantum
regime, and thus go beyond the results reported in liter-
ature so far.

The remainder of this work is organized as follows: In
Sec. II we introduce the two-measurement protocol nec-
essary to extract the work distribution, and review the
quantum fluctuation relations. Sec. III contains a de-
tailed analysis of the dynamical features of an optome-
chanical system subject to a sudden quench of the cou-
pling parameter and assesses its thermodynamical behav-
ior, first in the case of linear optomechanical coupling and
then in the quadratically-coupled case. Finally, in Sec. IV
we summarize our findings and discuss new perspectives
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nth [mth] eigenvalue-eigenstate pair of the initial [final] Hamil-
tonian. The corresponding work distribution can be written
as [3] P→(W) :=

∑

n,m p0n pτm|nδ
[

W − (E′m − En)
]

. Here, we
have introduced the probability p0n that the system is found in
state |n⟩ at time t = 0 and the conditional probability pτm|n to
find it in |m⟩ at time τ if it was initially in |n⟩ and evolved un-
der the action of the propagator Ûτ. P→(W) encompasses the
statistics of the initial state (given by p0n) and the fluctuations
arising from quantum measurement statistics (given by pτm|n).
For our purposes, it is convenient to define the characteristic
function of P→(W) [17]

χ(u, τ) =
∫

dWeiuWP→(W) = Tr
[

U†τeiuĤ(λτ)Ûτe−iuĤ(λ0)ρthS (λ0)
]

.

(1)
From Eq. (1), the Jarzynski equality [11] is found as χ(iβ, τ) =
⟨e−βW⟩ = e−β∆F . The characteristic function is also crucial for
the Tasaki-Crooks relation ∆F = (1/β) ln[χ′(v, τ)/χ(u, τ)] [3,
16] with χ′(v, τ) the characteristic function of the backward
process obtained taking λτ → λ0 and evolving ρthS (λτ) through
U†τ ). Here ∆F is the net change in the equilibrium free-energy
of S . This demonstrates the central role played by the charac-
teristic function in determining the equilibrium properties of
a system. We shall now illustrate a protocol for the interfer-
ometric determination of χ(u, τ). This would then enable the
convenient evaluation of the figures of merit discussed above.

A SIMPLE ILLUSTRATIVE CASE

To fix the ideas before attacking the general protocol we
consider the Hamiltonian for S ĤS (t) = g(λt)ĥ, with ĥ an op-
eratorial part that remains unchanged irrespective of the pro-
cess responsible for the change of the work parameter and
specified by the function g(λt). Clearly ĤS (t) commutes with
itself and Ûτ = e−iĥ

∫ τ

0 g(λt)dt at all instants of time. That is
[Ĥi, Ĥ f ] = [Ûτ, Ĥi( f )] = 0 with Ĥi ≡ ĤS (0) = g(λ0)ĥ
and Ĥ f ≡ ĤS (τ) = g(λτ)ĥ. The characteristic function thus
simplifies as

χs(u) = Tr
[

ei(Ĥ f−Ĥi)uρthS (λ0)
]

(2)

and is fully determined by the changes induced in ĤS (t) by
the process. This allows us to make a significant progress
in the illustration of our scheme. Indeed, let us introduce an
ancilla qubit A, whose role is to assist in the measurement of
χs(u). Moreover, we consider the S -A evolution Ĝ(u)V̂(u),
where V̂(u) = e−iĤiu ⊗ 1̂1A is a local transformation on S and
Ĝ(u) is the controlled A-S gate

Ĝ(u) = 1̂1S ⊗ |0⟩⟨0|A + e−i(Ĥ f −Ĥi)u ⊗ |1⟩⟨1|A , (3)

which applies e−i(Ĥ f−Ĥi)u to the state of S only when A is in
|1⟩A and leaves it unaffected otherwise. Gates having the form
11S ⊗ |0⟩⟨0|A + ÛS ⊗ |1⟩⟨1|A (with ÛS a unitary for the system),
which are clearly of the form of Eq. (3) can be generated,

(a) (b)

FIG. 1: (Color online) (a) Quantum circuit illustrating the protocol
for the measurement of χs(u). The ancilla A is a qubit initialised
in |0⟩A and undergoing a Hadamard gate Ĥ. System S is prepared
in a thermal state ρthS and is subjected to the local transformation V̂.
See the body of the manuscript for the explicit form of the gates
(whose dependence on u has been omitted here). (b)Quantum circuit
illustrating the scheme for the most general process undergone by
S . In both panels we show the symbol for conditional A-S gates
controlled by the state of the ancilla. In panel (b) we also picture the
symbol for a full inversion gate as given by σ̂x, A

for instance, by S -A Hamiltonians having the structure OS ⊗
|1⟩ ⟨1|A, with OS an appropriate Hamiltonian term.
Inspired by Ramsey-like schemes for parameter estima-

tion [18, 19], our protocol proceeds as follows: We pre-
pare |0⟩A and apply a Hadamard transform ĤA = (σ̂x,A +
σ̂z,A)/

√
2 [25] that changes it into the eigenstate of the x-Pauli

matrix |+⟩A = (|0⟩A + |1⟩A)/
√
2. We then apply Ĝ(u)V̂(u) on

ρthS ⊗ |+⟩ ⟨+|A and subject A to a second Hadamard transform
[cf. Fig. 1 (a)]. Gate Ĝ(u) establishes quantum correlations
between A and S as shown by the fact that information on S
can be retrieved from the ancilla as

ρA = TrS [ĤAĜ(u)V̂(u)(ρthS ⊗ |+⟩ ⟨+|A)V̂
†(u)Ĝ†(u)ĤA]

= (1̂1A + ασ̂z,A + νσ̂y,A)/2
(4)

with α = Reχs and ν = Imχs. This proves the effectiveness of
our protocol for the measurement of χs(u), which is achieved
by measuring the (experimentally straightforward) longitudi-
nal and transverse magnetization ⟨σ̂z,A⟩ and ⟨σ̂y,A⟩ of A.

GENERAL PROTOCOL

We now relax the previous assumption on the form of the
Hamiltonian and consider the general case where [Ĥi, Ĥ f ] !
0 and [Ûτ, Ĥi( f )] ! 0. Correspondingly, the characteristic
function takes the form in Eq. (1) and the interferometric ap-
proach illustrated above still applies, the only difference be-
ing the form of the controlled operation to be applied on the S
state. Explicitly, we should implement

Ĝ(u, τ) = Ûτe−iĤiu ⊗ |0⟩⟨0|A + e−iĤ f uÛτ ⊗ |1⟩⟨1|A , (5)

which can be decomposed into local transformations and
A-controlled gates as Ĝ(u, τ) = (11S ⊗ σ̂x,A)Ĝ2(u, τ)(11S ⊗
σ̂x,A)Ĝ1(u, τ) [cf. Fig. 1 (b)] with

Ĝ1(u, τ) = 1̂1S ⊗ |0⟩⟨0|A + e−iĤ f uÛτ ⊗ |1⟩⟨1|A ,

Ĝ2(u, τ) = 1̂1S ⊗ |0⟩⟨0|A + Ûτe−iĤiu ⊗ |1⟩⟨1|A .
(6)
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measured. Let the outcome of such measurement be E0

n, which projects the state of the system onto the energy eigenstates��E0
n

↵
[panel (b)]. The system’s Hamiltonian is then changed following to a given protocol and the system evolves according to
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distribution of values E⌧
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n is achieved, which embodies the probability distribution of the work done by/on the system as
a result of the protocol that has been implemented.

linearization of the interaction, where the Hamiltonian
is cast into a quadratic form that is more amenable to
analysis. Here, we eschew this simplification, which is
formally valid when the cavity field is strongly driven [9],
and address the full nonlinear optomechanical Hamilto-
nian. We note at this point that the thermodynami-
cal properties of the equivalent linearized model were re-
cently explored by some us in Ref. [10]. By retaining the
full optomechanical coupling, our work therefore aims to
address the out-of-equilibrium thermodynamical behav-
ior of nonlinearly coupled bosonic modes in the quantum
regime, and thus go beyond the results reported in liter-
ature so far.

The remainder of this work is organized as follows: In
Sec. II we introduce the two-measurement protocol nec-
essary to extract the work distribution, and review the
quantum fluctuation relations. Sec. III contains a de-
tailed analysis of the dynamical features of an optome-
chanical system subject to a sudden quench of the cou-
pling parameter and assesses its thermodynamical behav-
ior, first in the case of linear optomechanical coupling and
then in the quadratically-coupled case. Finally, in Sec. IV
we summarize our findings and discuss new perspectives
opened up by this work.

II. WORK DISTRIBUTION AND QUANTUM
FLUCTUATION THEOREMS

Let us consider a system described by a time-
dependent Hamiltonian Ĥ(Gt), whose dependence on
time is realized via the externally tunable parameter Gt.
This parameter, which we refer to as the driving param-

eter, determines the configuration of the system at any
time. Moreover, let us assume that at t = 0 the system
is in thermal equilibrium with a bath at inverse temper-

ature �, and is hence described by the Gibbs state

%̂�(G0

) =
e�� ˆH(G0)

Z(G
0

)
, (1)

where Z(G
0

) = Tr
n

e�� ˆH(G0)

o

is the canonical parti-

tion function of the system. This system is taken out
of equilibrium by applying a chosen transformation that
modifies Gt in time. Here we are concerned with the
statistics of the work done on or by the system when
applying such a protocol. We thus proceed as follows
(cf. Fig. 1 for a graphical depiction of the the pro-
cess): At time t = 0+ the system is detached from the
reservoir and a projective energy measurement is per-
formed on the system in the energy eigenbasis of Ĥ(G

0

),
yielding an eigenstate which we label

�

�E0

n

↵

. The driv-
ing parameter is changed according to the aforemen-
tioned transformation until a final time ⌧ . During this
period, the state of the system evolves as dictated by
the action of the unitary evolution operator Û⌧,0 on
the post-measurement state. Finally, a second projec-
tive energy measurement is made on the system, this
time in the eigenbasis of Ĥ(G⌧ ) and yielding eigenstate
|E⌧

mi. Given the spectral decompositions of the initial
and final Hamiltonians, Ĥ(G

0

) =
P

n E
0

n

�

�E0

n

↵ ⌦

E0

n

�

� and

Ĥ(G⌧ ) =
P

m E⌧
m |E⌧

mi hE⌧
m|, respectively, the energy

di↵erence between the two outcomes E⌧
m � E0

n may be
interpreted as the work performed by the external driv-
ing in a single realization of the protocol. This particular
value of the work occurs with probability p0np

⌧
m|n, where

p0n = e��E0
n/Z(G

0

) keeps track of the initial thermal
statistics, while p⌧m|n = | hE⌧

m| Û⌧,0

�

�E0

n

↵ |2 embodies the
transition probability arising from the change of basis.
The work performed due to the protocol described above
can be characterized by a stochastic variable W following

2

nth [mth] eigenvalue-eigenstate pair of the initial [final] Hamil-
tonian. The corresponding work distribution can be written
as [3] P→(W) :=

∑

n,m p0n pτm|nδ
[

W − (E′m − En)
]

. Here, we
have introduced the probability p0n that the system is found in
state |n⟩ at time t = 0 and the conditional probability pτm|n to
find it in |m⟩ at time τ if it was initially in |n⟩ and evolved un-
der the action of the propagator Ûτ. P→(W) encompasses the
statistics of the initial state (given by p0n) and the fluctuations
arising from quantum measurement statistics (given by pτm|n).
For our purposes, it is convenient to define the characteristic
function of P→(W) [17]

χ(u, τ) =
∫

dWeiuWP→(W) = Tr
[

U†τeiuĤ(λτ)Ûτe−iuĤ(λ0)ρthS (λ0)
]

.

(1)
From Eq. (1), the Jarzynski equality [11] is found as χ(iβ, τ) =
⟨e−βW⟩ = e−β∆F . The characteristic function is also crucial for
the Tasaki-Crooks relation ∆F = (1/β) ln[χ′(v, τ)/χ(u, τ)] [3,
16] with χ′(v, τ) the characteristic function of the backward
process obtained taking λτ → λ0 and evolving ρthS (λτ) through
U†τ ). Here ∆F is the net change in the equilibrium free-energy
of S . This demonstrates the central role played by the charac-
teristic function in determining the equilibrium properties of
a system. We shall now illustrate a protocol for the interfer-
ometric determination of χ(u, τ). This would then enable the
convenient evaluation of the figures of merit discussed above.

A SIMPLE ILLUSTRATIVE CASE

To fix the ideas before attacking the general protocol we
consider the Hamiltonian for S ĤS (t) = g(λt)ĥ, with ĥ an op-
eratorial part that remains unchanged irrespective of the pro-
cess responsible for the change of the work parameter and
specified by the function g(λt). Clearly ĤS (t) commutes with
itself and Ûτ = e−iĥ

∫ τ

0 g(λt)dt at all instants of time. That is
[Ĥi, Ĥ f ] = [Ûτ, Ĥi( f )] = 0 with Ĥi ≡ ĤS (0) = g(λ0)ĥ
and Ĥ f ≡ ĤS (τ) = g(λτ)ĥ. The characteristic function thus
simplifies as

χs(u) = Tr
[

ei(Ĥ f−Ĥi)uρthS (λ0)
]

(2)

and is fully determined by the changes induced in ĤS (t) by
the process. This allows us to make a significant progress
in the illustration of our scheme. Indeed, let us introduce an
ancilla qubit A, whose role is to assist in the measurement of
χs(u). Moreover, we consider the S -A evolution Ĝ(u)V̂(u),
where V̂(u) = e−iĤiu ⊗ 1̂1A is a local transformation on S and
Ĝ(u) is the controlled A-S gate

Ĝ(u) = 1̂1S ⊗ |0⟩⟨0|A + e−i(Ĥ f −Ĥi)u ⊗ |1⟩⟨1|A , (3)

which applies e−i(Ĥ f−Ĥi)u to the state of S only when A is in
|1⟩A and leaves it unaffected otherwise. Gates having the form
11S ⊗ |0⟩⟨0|A + ÛS ⊗ |1⟩⟨1|A (with ÛS a unitary for the system),
which are clearly of the form of Eq. (3) can be generated,

(a) (b)

FIG. 1: (Color online) (a) Quantum circuit illustrating the protocol
for the measurement of χs(u). The ancilla A is a qubit initialised
in |0⟩A and undergoing a Hadamard gate Ĥ. System S is prepared
in a thermal state ρthS and is subjected to the local transformation V̂.
See the body of the manuscript for the explicit form of the gates
(whose dependence on u has been omitted here). (b)Quantum circuit
illustrating the scheme for the most general process undergone by
S . In both panels we show the symbol for conditional A-S gates
controlled by the state of the ancilla. In panel (b) we also picture the
symbol for a full inversion gate as given by σ̂x, A

for instance, by S -A Hamiltonians having the structure OS ⊗
|1⟩ ⟨1|A, with OS an appropriate Hamiltonian term.
Inspired by Ramsey-like schemes for parameter estima-

tion [18, 19], our protocol proceeds as follows: We pre-
pare |0⟩A and apply a Hadamard transform ĤA = (σ̂x,A +
σ̂z,A)/

√
2 [25] that changes it into the eigenstate of the x-Pauli

matrix |+⟩A = (|0⟩A + |1⟩A)/
√
2. We then apply Ĝ(u)V̂(u) on

ρthS ⊗ |+⟩ ⟨+|A and subject A to a second Hadamard transform
[cf. Fig. 1 (a)]. Gate Ĝ(u) establishes quantum correlations
between A and S as shown by the fact that information on S
can be retrieved from the ancilla as

ρA = TrS [ĤAĜ(u)V̂(u)(ρthS ⊗ |+⟩ ⟨+|A)V̂
†(u)Ĝ†(u)ĤA]

= (1̂1A + ασ̂z,A + νσ̂y,A)/2
(4)

with α = Reχs and ν = Imχs. This proves the effectiveness of
our protocol for the measurement of χs(u), which is achieved
by measuring the (experimentally straightforward) longitudi-
nal and transverse magnetization ⟨σ̂z,A⟩ and ⟨σ̂y,A⟩ of A.

GENERAL PROTOCOL

We now relax the previous assumption on the form of the
Hamiltonian and consider the general case where [Ĥi, Ĥ f ] !
0 and [Ûτ, Ĥi( f )] ! 0. Correspondingly, the characteristic
function takes the form in Eq. (1) and the interferometric ap-
proach illustrated above still applies, the only difference be-
ing the form of the controlled operation to be applied on the S
state. Explicitly, we should implement

Ĝ(u, τ) = Ûτe−iĤiu ⊗ |0⟩⟨0|A + e−iĤ f uÛτ ⊗ |1⟩⟨1|A , (5)

which can be decomposed into local transformations and
A-controlled gates as Ĝ(u, τ) = (11S ⊗ σ̂x,A)Ĝ2(u, τ)(11S ⊗
σ̂x,A)Ĝ1(u, τ) [cf. Fig. 1 (b)] with

Ĝ1(u, τ) = 1̂1S ⊗ |0⟩⟨0|A + e−iĤ f uÛτ ⊗ |1⟩⟨1|A ,

Ĝ2(u, τ) = 1̂1S ⊗ |0⟩⟨0|A + Ûτe−iĤiu ⊗ |1⟩⟨1|A .
(6)

In quantum contexts: work is not an observable
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2. Measure the motional state
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frequency
4. Measure the motional state

An ion trap proposal
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Jarzynski equality, Eq. (1). The probability distribution of
the random work W is given by [10]

 P!W" #
X
m;n
!$W % !E"m % E0

n"&P"m;nP0
n; (2)

where P0
n # !1=Z0" exp!%E0

n=kT" is the initial (thermal)
occupation probability and P"m;n are the transition proba-
bilities between initial and final states n and m,

 P"m;n #
!!!!!!!!
Z
dx0

Z
dx#"'

m !x"U!x; x0; ""#0
n!x0"

!!!!!!!!
2
: (3)

Here U!x; x0; "" is the propagator of the quantum system.
The physical meaning of Eq. (2) is clear: the total work
done during a given transformation of the Hamiltonian is
obtained from the energy difference between final and
initial eigenstates, E"m % E0

n, averaged over all possible
initial and final states. Equation (2) shows in addition
that the randomness of the work stems from the initial
thermal distribution P0

n, and from the quantum nature of
transitions between states, as described by P"m;n. The origin
of work fluctuations is therefore of both thermodynamical
and quantum-mechanical nature. The free energy differ-
ence can be evaluated for an arbitrary transformation of the
Hamiltonian with the help of the Jarzynski relation, once
the work probability density P!W" has been determined.
We next describe a method to realize a quantum nonequi-
librium situation for a single ion in a linear Paul trap and
how to measure its corresponding work distribution.

Harmonic ion trap.—Linear Paul traps are characterized
by a strong dynamical confinement in the radial direction
(yz plane) and electrostatically bound in the axial direction
(x axis). With a radial confinement much stronger than the
axial, we will restrict ourselves to the axial external degree
of freedom. Near the center of the axial potential, the
confinement is harmonic and the axial frequency ! can
be varied in time by changing the control voltages [18].
The quantum state of motion along the axial direction can
be described by the Hamiltonian

 H!t" # p2

2M
(M

2
!2!t"x2; (4)

where M is the mass of the ion. For this simple potential,
the nonequilibrium work distribution (2) can be studied
analytically [19]. Besides the external, motional degree of
freedom, the ion provides an internal, electronic level
scheme. In our case, we consider a ! system comprising
the ground state S1=2 and two excited states P1=2 and D5=2.
The P1=2 state rapidly decays into the S1=2, thus providing a
high spontaneous photon scatter rate used for fluorescence
detection. Laser-induced transitions from the ground to the
metastable D5=2 state are induced on the narrow quadru-
pole transition [linewidth "D ) !!t"], if the spectral band-
width of the S1=2 %D5=2 exciting light field is small
compared to the sideband structure. Coherent laser pulses
on this narrow band optical transition allow us to exploit

and to store the motional quantum state information in the
internal quantum states.

The experimental measurement protocol of the work
distribution consists of four consecutive steps.

(I) The ion is first prepared in a thermal state with mean
phonon number, #n # $exp!@!0=kT" % 1&%1, in the elec-
tronic ground state S level by laser cooling and optical
pumping. We prepare this state deterministically by
resolved-sideband laser cooling [20] into the vibrational
ground state jn # 0i and subsequently allowing the ion to
heat up for a certain time without laser cooling. As the
heating rate of the ion within the trap can be precisely
measured, this procedure is favorable for very low values
of #n. An alternative method, suited for higher values of #n, is
Doppler cooling on the S1=2 to P1=2 transition. Varying the
detuning of the cooling laser from the atomic resonance
results in different thermal states with mean phonon num-
bers down to the Doppler limit.

(II) In the second step, we measure the initial phonon
number n using the filtering scheme described in detail
below. In this way, we determine the initial energy eigen-
state E0

n (from spectroscopy measurements).
(III) In the third step, we transform the trap potential

from an initial value !!0" to a final value !!"". This
changing potential will in general modify the ion’s mo-
tional state into a nonequilibrium state, while its internal
state remains unaffected. For simplicity, we consider a
linear variation of the axial potential !2!t" from !2!0" to
!2!"". Figures 1 and 2 show a numerical evaluation, based
on the results of Ref. [19], of the transition probabilities (3)
and the work distribution (2) for realistic experimental
parameters and different transformation times ".

(IV) In the last step, we measure the new phonon number
m using the filtering scheme and determine the final energy
eigenstate E"m. The distribution of the nonequilibrium
work, W # E"m % E0

n, Eq. (2), is then reconstructed by
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FIG. 1. (a) Scanning electron micrograph of the active
area of the measured sample which shows metallic films fabri-
cated on an oxidized silicon wafer by e-beam lithography and
shadow evaporation technique [18]. Two shifted copies of the
original resist mask pattern lie on the surface: Copper layer
appears brighter compared to oxidized aluminum. Tunnel
junctions are formed in the overlap regions between the two
films. The single-electron box is located on the left, and the
SET electrometer at the top. The tips of two gate electrodes
that are used to control the electrostatics of the box and the
electrometer are visible at the left and right edges. (b) Simpli-
fied circuit diagram of the system. The galvanically isolated
single-electron box is connected capacitively to its environ-
ment via CL and CR, and to the electrometer as illustrated
by the dashed gray line. (c) Full period of the sinusoidal drive
signal (top) applied to the control gate, and one instance of
electrometer response (bottom). The drive frequency is 1 Hz,
and the amplitude is equal to one gate modulation period of
the box. (d) Energy level diagram of the system for the two
lowest-energy charge states. Black parabolas represent the
charging energy of the system in the states n = 0 and n = 1
as a function of the extrnally controlled gate charge ng . Pos-
sible starting and ending configurations are indicated by open
and filled circles, respectively, and the red annotation text in-
dicates the dissipated work W −∆F for each trajcetory type,
illustrating that work separates into dissipated heat Q and
change of internal energy.

directions, respectively. Importantly, the above formula-
tions of the fluctuation theorems can be applied without
detailed knowledge of the internal dynamics of the sys-
tem, thus retaining their universality and usefulness.
Charge tunneling is governed thermally by the excita-

tions of conduction electrons in the box electrodes that
couple to the bath of lattice phonons. Hence, switching
dynamics between the different charge states n is dissi-
pative. The amount of energy deposited into the two

electrodes in a single tunneling event equals the differ-
ence of the chemical potentials of the electrodes at the
time of the tunneling, which is essentially instantaneous
on the other relevant timescales in the problem [9]. The
chemical potential difference is given by the change in
energy U of Eq. (2) in response to a change ∆n = ±1 of
the charge number n. In general, the n-trajectory con-
sists of a random number N of successive back-and-forth
tunneling events, and hence the total heat generated in
such a trajectory is [10]

Q = 2Ec

N
∑

k=1

±
(

ng(τk)−
1

2

)

, (5)

where τk is the stochastic time instant of the kth tun-
neling event, and the sign is the same as for ∆n in the
event. Because of the intrinsic randomness of the tun-
neling events, the heat Q fluctuates from one gate volt-
age ramp to another. In the experiment, the system
was driven with a sinusoidal excitation corresponding to
ng(t) =

1
2
− 1

2
cos (2πft) with frequencies f ranging from

1 to 20 Hz. These frequencies are sufficiently slow so
that the charge state always assumes its minimum energy
value at the turning points of the drive, when n = ng(t) =
0 and 1, respectively. Hence, each half cycle from 0 to 1,
and similarly from 1 to 0, can be considered an indepen-
dent realization of the control protocol.
We perform the heat readout by detecting the electron

tunneling events by a capacitively coupled single-electron
transistor (SET) [11]. Equation (5) yields the heat Q in
terms of Ec for an individual ng(t) sweep. One can thus
utilize the experimental Q distributions in two ways: Us-
ing values of Ec and T determined by independent means,
validity of Eqs. (3) and (4) can be tested. On the other
hand, accepting Eqs. (3) or (4), one can determine the
ratio Ec/kBT , and furthermore find Ec by multiplying
this ratio with the independently measured temperature
of the sample holder.
The preceding discussion is independent of the details

of the charge tunneling rates in the single-electron box.
However, in our case it is possible to analyze the fluc-
tuation relations also from a microscopic point of view.
Charge transport through a Cu/AlOx/Al normal metal–
insulator–superconductor (NIS) tunnel junctions occurs
via thermally activated (TA) 1e events described by the
orthodox theory [9], provided that (i) the tunneling re-
sistance RT of the junction is high compared to the resis-
tance quantum RK ≃ 25.8 kΩ, (ii) quasiparticles in the
electrodes obey an equilibrium thermal distribution, and
(iii) coupling of stray microwaves to the junction has been
prevented by appropriate shielding and filtering in the
construction of the sample stage and signal lines. Real-
ization of these conditions in NIS single-electron devices,
including the back-action from the capacitively coupled
elecctrometer, has been studied in detail in recent years
[13, 14]. Based on these studies, non-thermal charge

single electron box
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transport is expected to be negligible at least above tem-
peratures of 150 mK. In particular, overheating of the
superconducting electrode in the present design is di-
minished by the fact that quasiparticle excitations can
relax to the overlapping normal metal through the ox-
ide barrier. Observed stochastic switching of the sys-
tem between charge states at a fixed value of gate charge
near degeneracy can be directly fitted to the tunneling
rates predicted by the orthodox theory [11]. We extract
values ∆ = 218 ± 3 µeV, Ec/kB = 1.94 ± 0.05 K, and
RT = 100± 13 MΩ for the superconducing gap parame-
ter, charging energy of the box, and tunneling resistance
of the box junction, respectively. For the detector SET,
we obtain RT = 0.63 MΩ and ∆ = 211 µeV from a fit to
the measured I-V characteristics.
The experimentally obtained Q distributions for drive

frequencies 1, 2 and 4 Hz are presented in Fig. 2(a). The
distributions were measured at a bath temperature of
214 mK where the thermally activated tunneling rate at
degeneracy was 70 Hz, which is well within the detector
bandwidth of about 1 kHz. In addition, we have simi-
lar data but in smaller quantities for driving frequencies
from 5 Hz to 20 Hz. At frequencies higher than this, the
observed distributions deviate significantly from the the-
oretical prediction due to systematic errors arising from
finite readout bandwidth and uncertainty in the event
timing. On the other hand, driving frequencies lower
than 1 Hz make the measurement susceptible to 1/f type
charge noise that is ubiquitous in metallic single-electron
devices [15]. In Fig. 2(a), we show also the exact theoret-
ical distributions based on charge kinetics described by
the orthodox theory and sample parameters obtained in
the manner described above. The theoretical and exper-
imental distributions are in excellent agreement.
To assess quantitatively the systematic error due to fi-

nite detector bandwidth, we show in Fig. 2(a) also the
distributions obtained fromMonte Carlo simulations that
incorporate a finite detector rise-time before threshold
detection. Visually, the change in the shape of the dis-
tribution functions appears small. Quantitatively, we
can assess the accuracy of the readout by evaluating
the exponential average

〈

e−Q/kBT
〉

, which equals 1 for
the ideal thermally activated kinetics. From the Monte
Carlo simulations, we obtain 1.006 for the 1 Hz and 2 Hz
cases, and 1.012 for the 4 Hz case. For the experimental
distributions, evaluation of the Jarzynski average yields
1.033± 0.003 (for 1 Hz drive), 1.032± 0.003 (2 Hz) and
1.044 ± 0.004 (4 Hz), when using the independently de-
termined Ec/kBT ratio as described above. The stated
uncertainty is the unbiased estimate for the standard de-
viation of the mean based on the observations, not in-
cluding the uncertainty of the value of Ec/kBT . As the
relative uncertainty of the independent Ec estimate is
3%, the Jarzynski equality is shown to hold within ex-
perimental accuracy, accounting for the 1% bias from fi-
nite detector bandwidth. Conversely, starting from the
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FIG. 2. (a) Measured distribution of the generated heat
at drive frequencies 1 Hz (black squares), 2 Hz (red circles),
and 4 Hz (blue diamonds). The solid lines are exact theo-
retical predictions for the independently determined sample
parameter values. The dashed lines show the results of Monte
Carlo simulations, where the finite bandwidth of the detec-
tor was included in the model. Inset: P (Q)/P (−Q) ratio
for the experimental distributions. Solid line shows the re-
sult from the Crooks fluctuation theorem. (b), (c) First and
second moments, respectively, of the Q distribution at dif-
ferent drive frequencies and bath temperatures. Markers are
experimental data, and solid lines are exact theoretical pre-
dictions as in part (a). For the lowest bath temperatures,
the theoretical curves have been calculated using a slightly
elevated electron temperature to account for non-ideal ther-
malization as discussed in the text. The temperature used
in the calculation is given in brackets if it differs from the
sample stage temperature. In panel (c), dashed lines repre-
sent the distribution width inferred from the FDT formula
〈

(Q− ⟨Q⟩)2
〉

= 2kT ⟨Q⟩ using the theoretical value of the
first moment ⟨Q⟩.

assumption that JE holds for the experimental distribu-
tions, we obtain an estimate Ec/kB = 1.91± 0.03 K.
The possiblity to evaluate numerically the theoretical

Q distribution to a high accuracy enables us to assess the

Q = W ��F

dissipated energy
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nth [mth] eigenvalue-eigenstate pair of the initial [final] Hamil-
tonian. The corresponding work distribution can be written
as [3] P→(W) :=

∑

n,m p0n pτm|nδ
[

W − (E′m − En)
]

. Here, we
have introduced the probability p0n that the system is found in
state |n⟩ at time t = 0 and the conditional probability pτm|n to
find it in |m⟩ at time τ if it was initially in |n⟩ and evolved un-
der the action of the propagator Ûτ. P→(W) encompasses the
statistics of the initial state (given by p0n) and the fluctuations
arising from quantum measurement statistics (given by pτm|n).
For our purposes, it is convenient to define the characteristic
function of P→(W) [17]

χ(u, τ) =
∫

dWeiuWP→(W) = Tr
[

U†τeiuĤ(λτ)Ûτe−iuĤ(λ0)ρthS (λ0)
]

.

(1)
From Eq. (1), the Jarzynski equality [11] is found as χ(iβ, τ) =
⟨e−βW⟩ = e−β∆F . The characteristic function is also crucial for
the Tasaki-Crooks relation ∆F = (1/β) ln[χ′(v, τ)/χ(u, τ)] [3,
16] with χ′(v, τ) the characteristic function of the backward
process obtained taking λτ → λ0 and evolving ρthS (λτ) through
U†τ ). Here ∆F is the net change in the equilibrium free-energy
of S . This demonstrates the central role played by the charac-
teristic function in determining the equilibrium properties of
a system. We shall now illustrate a protocol for the interfer-
ometric determination of χ(u, τ). This would then enable the
convenient evaluation of the figures of merit discussed above.

A SIMPLE ILLUSTRATIVE CASE

To fix the ideas before attacking the general protocol we
consider the Hamiltonian for S ĤS (t) = g(λt)ĥ, with ĥ an op-
eratorial part that remains unchanged irrespective of the pro-
cess responsible for the change of the work parameter and
specified by the function g(λt). Clearly ĤS (t) commutes with
itself and Ûτ = e−iĥ

∫ τ

0 g(λt)dt at all instants of time. That is
[Ĥi, Ĥ f ] = [Ûτ, Ĥi( f )] = 0 with Ĥi ≡ ĤS (0) = g(λ0)ĥ
and Ĥ f ≡ ĤS (τ) = g(λτ)ĥ. The characteristic function thus
simplifies as

χs(u) = Tr
[

ei(Ĥ f−Ĥi)uρthS (λ0)
]

(2)

and is fully determined by the changes induced in ĤS (t) by
the process. This allows us to make a significant progress
in the illustration of our scheme. Indeed, let us introduce an
ancilla qubit A, whose role is to assist in the measurement of
χs(u). Moreover, we consider the S -A evolution Ĝ(u)V̂(u),
where V̂(u) = e−iĤiu ⊗ 1̂1A is a local transformation on S and
Ĝ(u) is the controlled A-S gate

Ĝ(u) = 1̂1S ⊗ |0⟩⟨0|A + e−i(Ĥ f −Ĥi)u ⊗ |1⟩⟨1|A , (3)

which applies e−i(Ĥ f−Ĥi)u to the state of S only when A is in
|1⟩A and leaves it unaffected otherwise. Gates having the form
11S ⊗ |0⟩⟨0|A + ÛS ⊗ |1⟩⟨1|A (with ÛS a unitary for the system),
which are clearly of the form of Eq. (3) can be generated,

(a) (b)

FIG. 1: (Color online) (a) Quantum circuit illustrating the protocol
for the measurement of χs(u). The ancilla A is a qubit initialised
in |0⟩A and undergoing a Hadamard gate Ĥ. System S is prepared
in a thermal state ρthS and is subjected to the local transformation V̂.
See the body of the manuscript for the explicit form of the gates
(whose dependence on u has been omitted here). (b)Quantum circuit
illustrating the scheme for the most general process undergone by
S . In both panels we show the symbol for conditional A-S gates
controlled by the state of the ancilla. In panel (b) we also picture the
symbol for a full inversion gate as given by σ̂x, A

for instance, by S -A Hamiltonians having the structure OS ⊗
|1⟩ ⟨1|A, with OS an appropriate Hamiltonian term.
Inspired by Ramsey-like schemes for parameter estima-

tion [18, 19], our protocol proceeds as follows: We pre-
pare |0⟩A and apply a Hadamard transform ĤA = (σ̂x,A +
σ̂z,A)/

√
2 [25] that changes it into the eigenstate of the x-Pauli

matrix |+⟩A = (|0⟩A + |1⟩A)/
√
2. We then apply Ĝ(u)V̂(u) on

ρthS ⊗ |+⟩ ⟨+|A and subject A to a second Hadamard transform
[cf. Fig. 1 (a)]. Gate Ĝ(u) establishes quantum correlations
between A and S as shown by the fact that information on S
can be retrieved from the ancilla as

ρA = TrS [ĤAĜ(u)V̂(u)(ρthS ⊗ |+⟩ ⟨+|A)V̂
†(u)Ĝ†(u)ĤA]

= (1̂1A + ασ̂z,A + νσ̂y,A)/2
(4)

with α = Reχs and ν = Imχs. This proves the effectiveness of
our protocol for the measurement of χs(u), which is achieved
by measuring the (experimentally straightforward) longitudi-
nal and transverse magnetization ⟨σ̂z,A⟩ and ⟨σ̂y,A⟩ of A.

GENERAL PROTOCOL

We now relax the previous assumption on the form of the
Hamiltonian and consider the general case where [Ĥi, Ĥ f ] !
0 and [Ûτ, Ĥi( f )] ! 0. Correspondingly, the characteristic
function takes the form in Eq. (1) and the interferometric ap-
proach illustrated above still applies, the only difference be-
ing the form of the controlled operation to be applied on the S
state. Explicitly, we should implement

Ĝ(u, τ) = Ûτe−iĤiu ⊗ |0⟩⟨0|A + e−iĤ f uÛτ ⊗ |1⟩⟨1|A , (5)

which can be decomposed into local transformations and
A-controlled gates as Ĝ(u, τ) = (11S ⊗ σ̂x,A)Ĝ2(u, τ)(11S ⊗
σ̂x,A)Ĝ1(u, τ) [cf. Fig. 1 (b)] with

Ĝ1(u, τ) = 1̂1S ⊗ |0⟩⟨0|A + e−iĤ f uÛτ ⊗ |1⟩⟨1|A ,

Ĝ2(u, τ) = 1̂1S ⊗ |0⟩⟨0|A + Ûτe−iĤiu ⊗ |1⟩⟨1|A .
(6)
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Figure 1: Forward and backward processes. Upper panels:
Quench of the rf-field on the 13C nuclear spin of a chloroform
molecule. Lower panels: Sketch of the energy spectrum and possible
transitions during the quenched dynamics. Each left (right) panel is
relative to the forward (backward) process.

the statistics of work on a spin-1/2 system undergoing a quan-
tum non-adiabatic evolution, and thus achieve su�cient infor-
mation on its out-of-equilibrium features to faithfully verify
both the Tasaki-Crooks and Jarzynksi identities with high sta-
tistical significance. To the best of our knowledge, this is the
first experimental assessment of fluctuation relations fully in
the quantum regime.

Our experiment was carried out using liquid-state NMR-
spectroscopy of the 1H and 13C nuclear spins of a chloroform-
molecule sample (cf. Fig. 1). This system can be regarded
as an ensemble of identical, non-interacting, spin-1/2 pairs.
The rest of the molecule, indeed, can be disregarded, pro-
viding mild environmental e↵ects that, within the time-span
of our experiments, are inessential to our results. The main
sources of imperfections are identified later on in this paper
(see Methods for further details).

The 13C nuclear spin plays the role of a driven system,
while the 1H one embodies an ancilla that will be instrumen-
tal to the reconstruction of �↵(u). The process implemented in
our experiment consists of a rapid change in a time-modulated
radio frequency (rf) field at the frequency of the 13C nuclear
spin. Formally, this can be described by the following time-
dependent Hamiltonian (in the rotating frame and for the F
process only)

ĤF(t) = 2⇡~⌫ (t)
✓
�̂C

x sin
⇡t
2⌧
+ �̂C

y cos
⇡t
2⌧

◆
, (2)

where �̂C
x,y,z are the Pauli operators for the 13C spin and ⌫(t) =

⌫1 (1 � t/⌧) + ⌫2t/⌧ is a linear ramp (taking an overall time
⌧ = 0.1 ms) of the rf field frequency, from ⌫1 = 2.5 kHz to
⌫2 = 1.0 kHz, t 2 [0, ⌧]. The chosen value of ⌧ is smaller than
the evolution time of the Hamiltonian in the non-adiabatic
regime. The reverse quench (realising the B process) is de-
scribed by ĤB(t) = �ĤF(⌧ � t). Both processes are sketched
in Fig. 1. In order to reconstruct the work distribution of
both the F and B process, we make use of the proposals put

Figure 2: NMR pulse-sequence for the reconstruction of the work
distribution. Panel a: General quantum algorithm for the interfero-
metric reconstruction of �↵(u) (↵ = F, B) inspired by the proposals in
Refs.15,16. We show both the conditional joint gates given in Eqs. (3)
and the single-spin operations needed to complete the protocol. Here,
⇢S is a generic initial state of a driven system (the 13C nuclear spin
in our experiment), while |0iA is an initial preparation for the ancilla
(the 1H nuclear spin). Panel b (Panel c): The circuit for the F (B)
process. The blue (red) circles represent transverse rf-pulses in the
x (y) direction that produce rotations by the displayed angle. Evo-
lutions under the interaction ĤJ = 2⇡J�̂H

z �̂
C
z (with J ⇡ 215.1 Hz

and for a set amount of time) are represented by two-qubit gates
(in orange). The time-length of the coupling is set by the angle s,
which is related to conjugate variable u in Eq. (1) by s = 2⇡⌫1u.
The pulse sequence identified by L [K] produces the Hadamard gate
(�̂C

x + �̂
C
z )/
p

2 [(�̂C
y + �̂

C
z )/
p

2].

forward in Refs.15,16, which rely on the Ramsey-like interfero-
metric scheme illustrated in Fig. 2a. Through a series of one-
and two-body operations, this protocol maps the characteris-
tic function of the work distribution for a system S (the 13C
nuclear spin in our case) prepared in the (equilibrium) state ⇢S

and undergoing the process Ĥ↵(0) ! Ĥ↵(⌧) onto the trans-
verse magnetisation of an ancillary system A (the 1H nuclear
spin), initialised in |0iA.

In the first step of our experiment, we used spatial aver-
aging methods to prepare the 1H-13C nuclear-spin pair in the
state equivalent to ⇢0

HC = |0i h0|H ⌦ ⇢0
C , with ⇢0

C = e��Ĥ↵(0)/Z0

being a thermal equilibrium state of the 13C nuclear spin at
temperature T . We have introduced the logical states of the 1H
nuclear spin {|0i , |1i}H , the inverse temperature � = (kBT )�1

(kB is the Boltzmann constant), and the partition function
Z0 = Tr[e��Ĥ↵(0)].

The structure of Eq. (1) suggests that one can reconstruct
the characteristic function using simple single-spin operations
and only two joint gates, each controlled by the ancilla state,
and reading

Ĝ1 ⌘ |0i h0|H ⌦ e�iu Ĥ↵(0) + |1i h1|H ⌦ 1̂1C
,

Ĝ2 ⌘ |0i h0|H ⌦ 1̂1C
+ |1i h1|H ⌦ e�iuĤ↵(⌧).

(3)
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Research on the out-of-equilibrium dynamics of quan-
tum systems has so far produced important statements on
the thermodynamics of small systems undergoing quantum
mechanical evolutions [1,2]. Key examples are provided by
the Crooks and Jarzynski relations [3,4]: taking into
account fluctuations in nonequilibrium dynamics, such
relations connect equilibrium properties of thermodynam-
ical relevance with explicit nonequilibrium features.
Although the experimental study of such fundamental
relations in the classical domain has encountered consid-
erable success [5–9], their quantum mechanical versions
[10] require the assessment of the statistics of work
performed by or onto an evolving quantum system, a step
that has so far shown hurdles due to the practical difficulty
to perform reliable projective measurements of instanta-
neous energy states [2,11], which embodies a key exper-
imental challenge.
Albeit a few interesting proposals to overcome such

bottlenecks have been made [11,12], including an ingen-
ious calorimetric one [13], the experimental reconstruction
of the work statistics for a quantum protocol has so far
remained elusive. Recently, an alternative approach to this
problem has been devised, based on well-known interfero-
metric schemes of the estimation of phases in quantum
systems, which bypasses the necessity of direct projective
measurements on the instantaneous state for the system
[14,15] (see Ref. [16] for an interesting development of the
original proposal).
In this Letter we exploit such a scheme to study the out-

of-equilibrium thermodynamics of a spin-1=2 system
undergoing a closed quantum nonadiabatic evolution,
realized in a liquid-state nuclear magnetic resonance

(NMR) setup [17–22], and thus achieve sufficient infor-
mation to assess both the Tasaki-Crooks and Jarzynski
identities. To the best of our knowledge, our Letter reports
the first experimental assessment of fluctuation relations for
quantum dynamics.
Work statistics in the quantum domain.—When address-

ing quantum dynamics, the concept of work done by or on a
system needs to be reformulated [23] so as to include
ab initio both the inherent nondeterministic nature of
quantum evolution and the effects of quantum fluctuations.
In this sense, work acquires a meaning only as a statistical
variable W. In order to introduce the associated probability
distribution, let us consider a quantum system undergoing
a transformation that changes its Hamiltonian as Ĥð0Þ →
ĤðτÞ in a time τ. We refer to this as the forward
protocol, with corresponding distribution PFðWÞ ¼
P

n;mp
0
npτ

mjnδ½W − ðϵ̄m − ϵnÞ% [23]. We have introduced
the probability p0

n to find the system in the nth eigenstate
of Ĥð0Þ (with energy ϵn) at the start of the protocol,
and the transition probability pτ

m∣n to find it in the mth
eigenstate of ĤðτÞ (with energy ϵ̄m) at time τ if it
were in the nth state at initial time. One can then define
a backward protocol that implements the transformation
ĤðτÞ → Ĥð0Þwith an inverted control sequence. It is worth
mentioning that recent years have seen the proposal of
other formulations of quantum work that explicitly
bypass the two-time energy measurements illustrated
above [24].
While the initial state of the system can be arbitrary, in this

Letter wewill be concerned with initial thermal-equilibrium
states at a given temperature. Moreover, it is often conven-
ient to use the Fourier transform of the work distribution, or
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Figure 1: Forward and backward processes. Upper panels:
Quench of the rf-field on the 13C nuclear spin of a chloroform
molecule. Lower panels: Sketch of the energy spectrum and possible
transitions during the quenched dynamics. Each left (right) panel is
relative to the forward (backward) process.

the statistics of work on a spin-1/2 system undergoing a quan-
tum non-adiabatic evolution, and thus achieve su�cient infor-
mation on its out-of-equilibrium features to faithfully verify
both the Tasaki-Crooks and Jarzynksi identities with high sta-
tistical significance. To the best of our knowledge, this is the
first experimental assessment of fluctuation relations fully in
the quantum regime.

Our experiment was carried out using liquid-state NMR-
spectroscopy of the 1H and 13C nuclear spins of a chloroform-
molecule sample (cf. Fig. 1). This system can be regarded
as an ensemble of identical, non-interacting, spin-1/2 pairs.
The rest of the molecule, indeed, can be disregarded, pro-
viding mild environmental e↵ects that, within the time-span
of our experiments, are inessential to our results. The main
sources of imperfections are identified later on in this paper
(see Methods for further details).

The 13C nuclear spin plays the role of a driven system,
while the 1H one embodies an ancilla that will be instrumen-
tal to the reconstruction of �↵(u). The process implemented in
our experiment consists of a rapid change in a time-modulated
radio frequency (rf) field at the frequency of the 13C nuclear
spin. Formally, this can be described by the following time-
dependent Hamiltonian (in the rotating frame and for the F
process only)

ĤF(t) = 2⇡~⌫ (t)
✓
�̂C

x sin
⇡t
2⌧
+ �̂C

y cos
⇡t
2⌧

◆
, (2)

where �̂C
x,y,z are the Pauli operators for the 13C spin and ⌫(t) =

⌫1 (1 � t/⌧) + ⌫2t/⌧ is a linear ramp (taking an overall time
⌧ = 0.1 ms) of the rf field frequency, from ⌫1 = 2.5 kHz to
⌫2 = 1.0 kHz, t 2 [0, ⌧]. The chosen value of ⌧ is smaller than
the evolution time of the Hamiltonian in the non-adiabatic
regime. The reverse quench (realising the B process) is de-
scribed by ĤB(t) = �ĤF(⌧ � t). Both processes are sketched
in Fig. 1. In order to reconstruct the work distribution of
both the F and B process, we make use of the proposals put

Figure 2: NMR pulse-sequence for the reconstruction of the work
distribution. Panel a: General quantum algorithm for the interfero-
metric reconstruction of �↵(u) (↵ = F, B) inspired by the proposals in
Refs.15,16. We show both the conditional joint gates given in Eqs. (3)
and the single-spin operations needed to complete the protocol. Here,
⇢S is a generic initial state of a driven system (the 13C nuclear spin
in our experiment), while |0iA is an initial preparation for the ancilla
(the 1H nuclear spin). Panel b (Panel c): The circuit for the F (B)
process. The blue (red) circles represent transverse rf-pulses in the
x (y) direction that produce rotations by the displayed angle. Evo-
lutions under the interaction ĤJ = 2⇡J�̂H

z �̂
C
z (with J ⇡ 215.1 Hz

and for a set amount of time) are represented by two-qubit gates
(in orange). The time-length of the coupling is set by the angle s,
which is related to conjugate variable u in Eq. (1) by s = 2⇡⌫1u.
The pulse sequence identified by L [K] produces the Hadamard gate
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forward in Refs.15,16, which rely on the Ramsey-like interfero-
metric scheme illustrated in Fig. 2a. Through a series of one-
and two-body operations, this protocol maps the characteris-
tic function of the work distribution for a system S (the 13C
nuclear spin in our case) prepared in the (equilibrium) state ⇢S

and undergoing the process Ĥ↵(0) ! Ĥ↵(⌧) onto the trans-
verse magnetisation of an ancillary system A (the 1H nuclear
spin), initialised in |0iA.

In the first step of our experiment, we used spatial aver-
aging methods to prepare the 1H-13C nuclear-spin pair in the
state equivalent to ⇢0

HC = |0i h0|H ⌦ ⇢0
C , with ⇢0

C = e��Ĥ↵(0)/Z0

being a thermal equilibrium state of the 13C nuclear spin at
temperature T . We have introduced the logical states of the 1H
nuclear spin {|0i , |1i}H , the inverse temperature � = (kBT )�1

(kB is the Boltzmann constant), and the partition function
Z0 = Tr[e��Ĥ↵(0)].

The structure of Eq. (1) suggests that one can reconstruct
the characteristic function using simple single-spin operations
and only two joint gates, each controlled by the ancilla state,
and reading

Ĝ1 ⌘ |0i h0|H ⌦ e�iu Ĥ↵(0) + |1i h1|H ⌦ 1̂1C
,

Ĝ2 ⌘ |0i h0|H ⌦ 1̂1C
+ |1i h1|H ⌦ e�iuĤ↵(⌧).

(3)
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Figure 1: Forward and backward processes. Upper panels:
Quench of the rf-field on the 13C nuclear spin of a chloroform
molecule. Lower panels: Sketch of the energy spectrum and possible
transitions during the quenched dynamics. Each left (right) panel is
relative to the forward (backward) process.

the statistics of work on a spin-1/2 system undergoing a quan-
tum non-adiabatic evolution, and thus achieve su�cient infor-
mation on its out-of-equilibrium features to faithfully verify
both the Tasaki-Crooks and Jarzynksi identities with high sta-
tistical significance. To the best of our knowledge, this is the
first experimental assessment of fluctuation relations fully in
the quantum regime.

Our experiment was carried out using liquid-state NMR-
spectroscopy of the 1H and 13C nuclear spins of a chloroform-
molecule sample (cf. Fig. 1). This system can be regarded
as an ensemble of identical, non-interacting, spin-1/2 pairs.
The rest of the molecule, indeed, can be disregarded, pro-
viding mild environmental e↵ects that, within the time-span
of our experiments, are inessential to our results. The main
sources of imperfections are identified later on in this paper
(see Methods for further details).

The 13C nuclear spin plays the role of a driven system,
while the 1H one embodies an ancilla that will be instrumen-
tal to the reconstruction of �↵(u). The process implemented in
our experiment consists of a rapid change in a time-modulated
radio frequency (rf) field at the frequency of the 13C nuclear
spin. Formally, this can be described by the following time-
dependent Hamiltonian (in the rotating frame and for the F
process only)
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where �̂C
x,y,z are the Pauli operators for the 13C spin and ⌫(t) =

⌫1 (1 � t/⌧) + ⌫2t/⌧ is a linear ramp (taking an overall time
⌧ = 0.1 ms) of the rf field frequency, from ⌫1 = 2.5 kHz to
⌫2 = 1.0 kHz, t 2 [0, ⌧]. The chosen value of ⌧ is smaller than
the evolution time of the Hamiltonian in the non-adiabatic
regime. The reverse quench (realising the B process) is de-
scribed by ĤB(t) = �ĤF(⌧ � t). Both processes are sketched
in Fig. 1. In order to reconstruct the work distribution of
both the F and B process, we make use of the proposals put

Figure 2: NMR pulse-sequence for the reconstruction of the work
distribution. Panel a: General quantum algorithm for the interfero-
metric reconstruction of �↵(u) (↵ = F, B) inspired by the proposals in
Refs.15,16. We show both the conditional joint gates given in Eqs. (3)
and the single-spin operations needed to complete the protocol. Here,
⇢S is a generic initial state of a driven system (the 13C nuclear spin
in our experiment), while |0iA is an initial preparation for the ancilla
(the 1H nuclear spin). Panel b (Panel c): The circuit for the F (B)
process. The blue (red) circles represent transverse rf-pulses in the
x (y) direction that produce rotations by the displayed angle. Evo-
lutions under the interaction ĤJ = 2⇡J�̂H
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and for a set amount of time) are represented by two-qubit gates
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forward in Refs.15,16, which rely on the Ramsey-like interfero-
metric scheme illustrated in Fig. 2a. Through a series of one-
and two-body operations, this protocol maps the characteris-
tic function of the work distribution for a system S (the 13C
nuclear spin in our case) prepared in the (equilibrium) state ⇢S

and undergoing the process Ĥ↵(0) ! Ĥ↵(⌧) onto the trans-
verse magnetisation of an ancillary system A (the 1H nuclear
spin), initialised in |0iA.

In the first step of our experiment, we used spatial aver-
aging methods to prepare the 1H-13C nuclear-spin pair in the
state equivalent to ⇢0

HC = |0i h0|H ⌦ ⇢0
C , with ⇢0

C = e��Ĥ↵(0)/Z0

being a thermal equilibrium state of the 13C nuclear spin at
temperature T . We have introduced the logical states of the 1H
nuclear spin {|0i , |1i}H , the inverse temperature � = (kBT )�1

(kB is the Boltzmann constant), and the partition function
Z0 = Tr[e��Ĥ↵(0)].

The structure of Eq. (1) suggests that one can reconstruct
the characteristic function using simple single-spin operations
and only two joint gates, each controlled by the ancilla state,
and reading

Ĝ1 ⌘ |0i h0|H ⌦ e�iu Ĥ↵(0) + |1i h1|H ⌦ 1̂1C
,

Ĝ2 ⌘ |0i h0|H ⌦ 1̂1C
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Figure 1: Forward and backward processes. Upper panels:
Quench of the rf-field on the 13C nuclear spin of a chloroform
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the statistics of work on a spin-1/2 system undergoing a quan-
tum non-adiabatic evolution, and thus achieve su�cient infor-
mation on its out-of-equilibrium features to faithfully verify
both the Tasaki-Crooks and Jarzynksi identities with high sta-
tistical significance. To the best of our knowledge, this is the
first experimental assessment of fluctuation relations fully in
the quantum regime.

Our experiment was carried out using liquid-state NMR-
spectroscopy of the 1H and 13C nuclear spins of a chloroform-
molecule sample (cf. Fig. 1). This system can be regarded
as an ensemble of identical, non-interacting, spin-1/2 pairs.
The rest of the molecule, indeed, can be disregarded, pro-
viding mild environmental e↵ects that, within the time-span
of our experiments, are inessential to our results. The main
sources of imperfections are identified later on in this paper
(see Methods for further details).

The 13C nuclear spin plays the role of a driven system,
while the 1H one embodies an ancilla that will be instrumen-
tal to the reconstruction of �↵(u). The process implemented in
our experiment consists of a rapid change in a time-modulated
radio frequency (rf) field at the frequency of the 13C nuclear
spin. Formally, this can be described by the following time-
dependent Hamiltonian (in the rotating frame and for the F
process only)
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⌫1 (1 � t/⌧) + ⌫2t/⌧ is a linear ramp (taking an overall time
⌧ = 0.1 ms) of the rf field frequency, from ⌫1 = 2.5 kHz to
⌫2 = 1.0 kHz, t 2 [0, ⌧]. The chosen value of ⌧ is smaller than
the evolution time of the Hamiltonian in the non-adiabatic
regime. The reverse quench (realising the B process) is de-
scribed by ĤB(t) = �ĤF(⌧ � t). Both processes are sketched
in Fig. 1. In order to reconstruct the work distribution of
both the F and B process, we make use of the proposals put

Figure 2: NMR pulse-sequence for the reconstruction of the work
distribution. Panel a: General quantum algorithm for the interfero-
metric reconstruction of �↵(u) (↵ = F, B) inspired by the proposals in
Refs.15,16. We show both the conditional joint gates given in Eqs. (3)
and the single-spin operations needed to complete the protocol. Here,
⇢S is a generic initial state of a driven system (the 13C nuclear spin
in our experiment), while |0iA is an initial preparation for the ancilla
(the 1H nuclear spin). Panel b (Panel c): The circuit for the F (B)
process. The blue (red) circles represent transverse rf-pulses in the
x (y) direction that produce rotations by the displayed angle. Evo-
lutions under the interaction ĤJ = 2⇡J�̂H
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Figure 3: Experimental characteristic function and work distribution for the forward and backward processes. Panels a-d: The blue
circles (red squares) show the normalized experimental data for the x-component (y-component) of the 1H transverse magnetisation at two
di↵erent values of the temperature of the system. We study both the forward and the backward process. The solid lines show Fourier fittings,
which are in excellent agreement with the theoretical simulation of the process. The horizontal axis is the evolution time for the shortest
coupling, s/(2J) in the pulse-sequence implemented for the reconstruction of �F(u). The error bars in the magnetisation measurement are
smaller than the size of the symbols, and are not shown. The uncertainty in the temperature is due to finite precision in the initial state
preparation. See Methods for the definition of ✏, � and B0. Panels e and f: We show the modulus of the inverse Fourier transform of the
transverse magnetisation plotted in panels a-d. The experimental points for the distribution corresponding to the forward (backward) process
are presented as red squares (blue circles). The horizontal axis was inverted for the backward process. The experimental data are well fitted by
a sum of four Lorentzian peaks centred at (±1.5 ± 0.1) kHz and (±3.5 ± 0.1) kHz (solid lines), in agreement with the theoretical expectation
[for both ĤF(B)(0) and ĤF(B)(⌧)] that predict the peaks’ location to be at ±(⌫1 ± ⌫2). The peaks’ amplitudes for the forward process, from the
leftmost to the rightmost in each panel, are proportional to the probabilities p0

1 p⌧0|1, p0
1 p⌧1|1, p0

0 p⌧0|0, p0
0 p⌧1|0 respectively.

The full sequence of operations needed to reconstruct �F(u)
is illustrated in Fig. 2a, and their implementation based on
our NMR device is shown in Fig. 2b and 2c for the F
and B process, respectively. The completion of the proto-
col, which requires the exploitation of the natural coupling
ĤJ = 2⇡J�̂H

z �̂
C
z (with J the coupling rate) between the 1H

and 13C nuclear spins (cf. Fig. 2), encodes the characteristic
function in Eq. (1) in the coherences of the final 1H state as
Re[�(u)] = 2h�̂H

x i and Im[�(u)] = 2h�̂H
y i (cf. Supplemen-

tary Information). This shows that the full form of �(u) can
be obtained from the x and y component of the 1H transverse
magnetisation, a quantity that is straightforwardly accessed in
our NMR setup.

The experiments were performed for states with di↵erent
initial temperatures, sampling the characteristic function at
17.9 kHz rate. The interaction time s in Fig. 2a-c was var-
ied through 360 equally-spaced values for both the F and B
process. Each realisation corresponds to an independent ex-
periment with an average over an ensemble of molecules. The
time-evolution of the measured transverse magnetisation, for
the F and B processes and two di↵erent values of T , is shown
in Fig. 3. The amplitude of the oscillations of Re[�F,B(u)]
(proportional to the the x-component of the magnetisation) is

approximately the same for all temperatures, while a clear de-
crease can be seen in the imaginary part (the y-component of
the magnetisation) as the temperature increases. In the limit
of high temperatures (the maximum-entropy state), this imag-
inary part reduces to almost zero, as expected theoretically.

The sample is processed in an environment at room tem-
perature. However, the experimental data acquisition time (for
each initial thermal state), which vary from 0.1ms to 327ms, is
much smaller than the thermal relaxation time, which in NMR
is associated with the spin-lattice relaxation occurring in a
characteristic time T1. In our experiment, we have measured
(T H

1 ,T
C
1 ) ⇡ (7.36, 10.55)s. Transverse relaxation at the char-

acteristic times (T H
2 ,T

C
2 ) ⇡ (4.76, 0.33)s a↵ects, in principle,

the coherences of both the system and the ancilla state. Never-
theless, the characteristic dephasing time on 1H is longer than
the acquisition time. The situation for the 13C spin is some-
what more complicated due to the much shorter value of TC

2 .
However, the diagonal nature of the initial equilibrium state
of 13C, together with the fact that the system-ancilla coupling
commutes with the map responsible for the dephasing of its
nuclear spin state, leads us to claim that, as far as we only
perform measurements on the ancilla, the acquired data is un-
a↵ected by the system’s transverse relaxation. We observe an
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Figure 4: Verification of Tasaki-Crooks relation at the full quan-
tum regime. Panel a: The ratio PF(W)/PB(�W) is plotted in loga-
rithm scale for four di↵erent values of the e↵ective temperature. The
data points are determined by using the values taken by PF(W) and
PB(�W) at the peaks shown in Fig. 3e and f. Panel b: Mean val-
ues and uncertainties for the free energy variation �F and the inverse
temperature � obtained by a linear fit of the data corresponding to
T > 0 used in Panel a to verify the Tasaki-Crooks relation. The full
red line represents the theoretical expectation, �F = 1

� ln
⇣

cosh (�⌫1)
cosh (�⌫2)

⌘

achieved by calculating explicitly the partition functions.

exponential decay during the time evolution of the magneti-
sation in Fig. 3, which is mainly due to transverse relaxation.
This decay only limits how long we can track the characteris-
tic function oscillations, which will ultimate bound the preci-
sion in the Fourier spectrum of the characteristic function.

The work distribution of the experimental process is ob-
tained from the inverse Fourier transform of �(u). For each
value of T we observe well-defined peaks in the correspond-
ing P↵(W) (cf. Fig. 3e-f), associated to one of the four possi-
ble transitions illustrated in the lower panels of Fig. 1. For
the F process, the amplitudes of the two peaks located in
the W/h < 0 semi-axis in Fig. 3e-f are proportional to the
excited-state population in the initial thermal state, which in-
creases with temperature. The peaks placed in the W/h > 0
semi-axis are instead proportional to the ground-state popula-
tion, which decreases with T . For the B process, this analy-
sis holds qualitatively, but the peaks whose amplitudes shrink
or remain unchanged are not the same as for the F process.
This confirms that the conditional probabilities are indepen-
dent of temperature, as it should be. Indeed, the p⌧m|n are fixed
exclusively by the quench. From the experimental data, we
have estimated p⌧1|1 ⇡ 0.71 ± 0.01, p⌧0|0 ⇡ 0.69 ± 0.01, and
p⌧0|1 ⇡ p⌧1|0 ⇡ 0.31 ± 0.01 for both the F and B process. Inter-
estingly, this provides evidence of the validity of the micro-
reversibility hypothesis6. Moreover, the identities p⌧0|0 = p⌧1|1
and p⌧1|0 = p⌧0|1, which are valid for unital processes, can be
experimentally verified from the independence of Re[�(u)] of
T (see Supplementary Information for details).

The experimentally reconstructed work distributions for
forward and backward processes can now be used to verify
important fluctuation relations such as the Jarzynski equality
or the Tasaki-Crooks relation. It should not be overlooked
that the processes that have been implemented in our experi-
ments are indeed genuinely quantum mechanical, being em-
bodied by Hamiltonians consisting of non-commuting terms.
As such, the programme of experimental verifications that we
report here is an important step towards the assessment of out-
of-equilibrium dynamics in quantum systems subjected to a

time dependent process.
We start by computing the ratio PF(W)/PB(�W) and use it

to verify the Tasaki-Crooks relation

ln
 

PF(W)
PB(�W)

!
= �(W � �F), (4)

where �F is the net change in free energy of the system re-
sulting from the process, and which can be determined as18,19

��F = � ln(Z⌧/Z0). We plot the left-hand side of Eq. (4)
using a linear-logarithmic scale in Fig. 4a, for the values of
T that we have probed experimentally. The trend followed
by the data-sets associated with each temperature is in very
good agreement with the expected linear relation, thus con-
firming the predictions of the Crooks theorem. As noticed in
Ref.15, this approach can also be employed to build a high
precision out-of-equilibrium thermometer which is able to
capture tiny temperature variations [' 5 nK in our experi-
ment]. The horizontal error bars in the points shown in Fig. 4a
are associated with the Fourier spectral linewidth, which de-
pends on the number of oscillations resolved during the total
data-acquisition time. The propagated vertical error bars are
smaller than the symbols size (see Supplementary Informa-
tion for details about the error analysis). The point at which
PF (W) = PB (�W) can be used to determine the value of �F
experimentally. In Fig. 4b, we show � and �F obtained from
a linear fitting according to the aforementioned strategy. The
relative error in determining �F arises from the fact that the
actually measured parameter is the product ��F.

We are now in an ideal position for the verification of the
Jarzynski identity at a full quantum regime, which we here
perform using three di↵erent approaches. First, we use the
formulation of the Jarzynski equality1 he��Wi = e���F where,
to fix the ideas, the average is taken over PF(W) and is de-
termined through the relation he��Wi = �(u = i�), obtained
by analytical continuation of the characteristic function, and
making use the experimental data on the transverse magneti-
zation of the ancillary 1H nuclear spin. Second, we use the lin-
ear fit of the Tasaki-Crooks relation, thus combining forward
and backward processes. Finally, we have used the equiva-
lent Jarzynski relation18,19 Z⌧/Z0 = e���F , calculating theo-
retically the ratio between the partition functions before and
after the quench. Table I shows the mutual agreement among
these approaches: quite clearly they provide mutually consis-
tent results within the respective associated uncertainties (the
uncertainties in the theoretical results used in our third ap-
proach arise from the uncertainty in temperature of the ther-
mal state), thus providing a statistically significant verifica-
tion of the Jarzynski equality. It is remarkable that the left
and right-hand side of the equivalent equalities used for the
assessment of the Jarzynski relation have been determined ex-
perimentally in completely independent ways.

We have explored experimentally the statistics of work fol-
lowing a quantum non-adiabatic process in a spin-1/2 sys-
tem using an ancilla-based interferometric approach adapted
to NMR technology. Our original way to reconstruct the work
characteristic function has allowed us to address, for the first
time to our knowledge, fluctuation relations at the full quan-
tum level and thus go significantly beyond the current ex-
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exponential decay during the time evolution of the magneti-
sation in Fig. 3, which is mainly due to transverse relaxation.
This decay only limits how long we can track the characteris-
tic function oscillations, which will ultimate bound the preci-
sion in the Fourier spectrum of the characteristic function.

The work distribution of the experimental process is ob-
tained from the inverse Fourier transform of �(u). For each
value of T we observe well-defined peaks in the correspond-
ing P↵(W) (cf. Fig. 3e-f), associated to one of the four possi-
ble transitions illustrated in the lower panels of Fig. 1. For
the F process, the amplitudes of the two peaks located in
the W/h < 0 semi-axis in Fig. 3e-f are proportional to the
excited-state population in the initial thermal state, which in-
creases with temperature. The peaks placed in the W/h > 0
semi-axis are instead proportional to the ground-state popula-
tion, which decreases with T . For the B process, this analy-
sis holds qualitatively, but the peaks whose amplitudes shrink
or remain unchanged are not the same as for the F process.
This confirms that the conditional probabilities are indepen-
dent of temperature, as it should be. Indeed, the p⌧m|n are fixed
exclusively by the quench. From the experimental data, we
have estimated p⌧1|1 ⇡ 0.71 ± 0.01, p⌧0|0 ⇡ 0.69 ± 0.01, and
p⌧0|1 ⇡ p⌧1|0 ⇡ 0.31 ± 0.01 for both the F and B process. Inter-
estingly, this provides evidence of the validity of the micro-
reversibility hypothesis6. Moreover, the identities p⌧0|0 = p⌧1|1
and p⌧1|0 = p⌧0|1, which are valid for unital processes, can be
experimentally verified from the independence of Re[�(u)] of
T (see Supplementary Information for details).

The experimentally reconstructed work distributions for
forward and backward processes can now be used to verify
important fluctuation relations such as the Jarzynski equality
or the Tasaki-Crooks relation. It should not be overlooked
that the processes that have been implemented in our experi-
ments are indeed genuinely quantum mechanical, being em-
bodied by Hamiltonians consisting of non-commuting terms.
As such, the programme of experimental verifications that we
report here is an important step towards the assessment of out-
of-equilibrium dynamics in quantum systems subjected to a

time dependent process.
We start by computing the ratio PF(W)/PB(�W) and use it

to verify the Tasaki-Crooks relation

ln
 

PF(W)
PB(�W)

!
= �(W � �F), (4)

where �F is the net change in free energy of the system re-
sulting from the process, and which can be determined as18,19

��F = � ln(Z⌧/Z0). We plot the left-hand side of Eq. (4)
using a linear-logarithmic scale in Fig. 4a, for the values of
T that we have probed experimentally. The trend followed
by the data-sets associated with each temperature is in very
good agreement with the expected linear relation, thus con-
firming the predictions of the Crooks theorem. As noticed in
Ref.15, this approach can also be employed to build a high
precision out-of-equilibrium thermometer which is able to
capture tiny temperature variations [' 5 nK in our experi-
ment]. The horizontal error bars in the points shown in Fig. 4a
are associated with the Fourier spectral linewidth, which de-
pends on the number of oscillations resolved during the total
data-acquisition time. The propagated vertical error bars are
smaller than the symbols size (see Supplementary Informa-
tion for details about the error analysis). The point at which
PF (W) = PB (�W) can be used to determine the value of �F
experimentally. In Fig. 4b, we show � and �F obtained from
a linear fitting according to the aforementioned strategy. The
relative error in determining �F arises from the fact that the
actually measured parameter is the product ��F.

We are now in an ideal position for the verification of the
Jarzynski identity at a full quantum regime, which we here
perform using three di↵erent approaches. First, we use the
formulation of the Jarzynski equality1 he��Wi = e���F where,
to fix the ideas, the average is taken over PF(W) and is de-
termined through the relation he��Wi = �(u = i�), obtained
by analytical continuation of the characteristic function, and
making use the experimental data on the transverse magneti-
zation of the ancillary 1H nuclear spin. Second, we use the lin-
ear fit of the Tasaki-Crooks relation, thus combining forward
and backward processes. Finally, we have used the equiva-
lent Jarzynski relation18,19 Z⌧/Z0 = e���F , calculating theo-
retically the ratio between the partition functions before and
after the quench. Table I shows the mutual agreement among
these approaches: quite clearly they provide mutually consis-
tent results within the respective associated uncertainties (the
uncertainties in the theoretical results used in our third ap-
proach arise from the uncertainty in temperature of the ther-
mal state), thus providing a statistically significant verifica-
tion of the Jarzynski equality. It is remarkable that the left
and right-hand side of the equivalent equalities used for the
assessment of the Jarzynski relation have been determined ex-
perimentally in completely independent ways.

We have explored experimentally the statistics of work fol-
lowing a quantum non-adiabatic process in a spin-1/2 sys-
tem using an ancilla-based interferometric approach adapted
to NMR technology. Our original way to reconstruct the work
characteristic function has allowed us to address, for the first
time to our knowledge, fluctuation relations at the full quan-
tum level and thus go significantly beyond the current ex-
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Table I: Verification of Jarzynski identity at the full quantum
regime. We report the experimental values of the left and right-hand
side of the Jarzynski identity, measured in two independent ways for
three choices of temperature, together with the respective uncertain-
ties (see main text for details). The experimental results are com-
pared to the theoretical prediction coming from the ratio ln(Z⌧/Z0).
The agreement among the three values is consistent for the three val-
ues of temperature probed in our experiment.

perimental state-of-the-art, which was so far constrained to
the classical domain. Our results demonstrate the feasibility
of an experimental study on the thermodynamics of out-of-
equilibrium quantum systems and paves the way to its exten-
sion to the quantum many-body context19,20.
Methods. The sample employed in our experiments is made of 50
mg of 99% 13C-labeled CHCl3 diluted in 0.7 ml of 99.9% deutered
Acetone-d6, in a flame sealed Wildmad LabGlass 5 mm tube. The
experiments were performed at T 0 = 25� Celsius using a Varian
500 MHz Spectrometer and a double-resonance probe-head equipped
with a magnetic field gradient coil. The nuclear spins were manip-
ulated through suitably designed sequences of rf-fields. The density
operator of the 1H-13C spin pair can be described, in the high tem-
perature expansion21,22, as ⇢ ⇡ 11/4 + "�⇢, where �⇢ is the deviation
matrix and " = ~�B0

4kBT 0 ⇡ 10�5 is the ratio between magnetic and ther-
mal energies with � the gyromagnetic ratio and B0 ⇡ 11.75 Tesla the
intensity of a strong static magnetic field (whose direction is taken
to be along the positive z one). The 1H and 13C nuclear spins pre-
cess around B0 with Larmor frequencies !H/2⇡ ⇡ 500 MHz and
!C/2⇡ ⇡ 125 MHz, respectively. The deviation matrix �⇢ is the
accessible part of the system state in NMR experiments and all rf-

field manipulations of the system state act only on it. This system
encompasses all features of quantum dynamics, such as coherent
evolutions and interference21,23,24. It also supports general quantum
correlations25,26. As discussed in the main text and in one of the fol-
lowing Subsections, in the present experiment the 1H-13C spin pairs
were initially prepared in a diagonal state of the so-called computa-
tional basis, {|0H0Ci , |0H1Ci , |1H0Ci , |1H1Ci}, with the 13C spin pop-
ulations weighted by the thermal ensemble. This procedure maps the
deviation matrix (�⇢) into a pseudo-equilibrium state at a given tem-
perature T , as far as the 13C spins are involved. In this way we can
simulate thermal state at arbitrary temperatures.
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Figure 1 | Experimental set-up for testing the Jarzynski equality and equilibrium and non-equilibrium work processes. a, Schematic of the ion-trap
apparatus as an ideal harmonic oscillator and the geometry of laser beams that generate an e�ective moving standing wave that pushes the ion. The
counter propagating laser beams drive transitions between states in the 171Yb+ ion. The frequencies of !L, !HF, and !X are shown in b. b, The basic level
structure of the 171Yb+ ion and the relevant laser frequencies. The Raman laser beams introduce a state-dependent force. When their beat-note
frequencies are adjusted to near !HF ±!X , the force pushes the ion along the ±1k direction for the (|"i±|#i)/p2 state of the ion. c, For the perfect
adiabatic process the phonon distributions before and after are unchanged. d, For the non-equilibrium process, the final phonon states are widely
distributed. In the case of both adiabatic and instantaneous shifts of the harmonic oscillator, the Jarzynski equality should be valid, as long as the system is
initially prepared in a thermal equilibrium state.

1F to that obtained using the average work and the fluctuation–
dissipation theorem.

Ion-trap systems have shown a high degree of control
in the quantum regime27. Controls of the harmonic osci-
llator are performed through coupling to the two electronic
levels (qubit) of the 171Yb+ ion in the S1/2 manifold, denoted
by |F =1,mF =0i⌘ |"i and |F = 0, mF = 0i ⌘ |#i, which are
separated by !HF =(2⇡)12.642GHz. As shown in Fig. 1,
the 171Yb+ ion is confined in harmonic potentials with
trap frequencies !X = (2⇡)3.1MHz, !Y = (2⇡)2.7MHz,
!Z =(2⇡)0.6MHz, respectively.

We perform work on the system by applying a laser-
induced force and shifting the centre of the potential in
the X-direction. The force is implemented by the counter-
propagating laser beams shown in Fig. 1a,b, which is equivalent
to generating a so-called qubit-state-dependent force30,31. A pair
of laser beams with frequency di�erences of !± =!HF ± (!X � ⌫)
produce the following Hamiltonian in the rotating frame about
H0 =(1/2)~!HF�̂z +~(!X�⌫)

�
â†â+(1/2)

�
, where â† and â are

the creation and the annihilation operators acting on phonons,
after taking the rotating-wave approximation,

H (t)= P̂2

2Me
+ 1

2
Me⌫

2X̂ 2 + f (t)X̂ �̂x (2)

Here, P̂ = i
q

~Me⌫
2 (â†� â) and X̂ =

q
~

2Me⌫
(â† + â) are momentum

and position operators, Me = (!X/⌫)M is the scaled mass of
the 171Yb+ mass, M , ⌫(⌘!X ±(!HF�!±))=(2⇡)20.0 kHz is the
e�ective trap frequency, f (t)=(1/2)~1k⌦(t) is the e�ective force,
�̂x is the Pauli operator, 1k is the net wavevector of the counter-
propagating laser beams along the X-axis and the Rabi frequency,
⌦ , is proportional to the intensity of the laser beams.

The force shifts the trap centre by �f (t)/Me⌫
2 and reduces

the ground-state energy by f 2(t)/2Me⌫
2. In our experiment, the

maximum force is 4.16 zN (⇥10�21N), produced by the maximum
Rabi frequency ⌦max = (2⇡)378 kHz, which shifts the centre
position by 5.6 nm. When we adiabatically add the force f (t)
to the maximum value, the final state distribution is conserved
in the new basis and still in thermal equilibrium, as shown
Fig. 1c. In contrast, if we increase the force to the same value
instantaneously, the final states are highly excited, which represents

a far-from-equilibrium process and is shown in Fig. 1d. In both
cases, we would measure the same average of the exponentiated
dissipated work

⌦
exp(�Wdiss/kBT )

↵
, which is used to test the

Jarzynski equality.
For the time-dependent quantum system H(t) (2), where the

eigenvalues and the eigenstates are denoted by En(t) and |n(t)i, the
phonon number state, the work done on the system from t = 0 to
t = ⌧ is defined by En̄(⌧ )�En(0). The distribution of the work is
described by the following equation13

P (W )=
X

n,n̄

�[W�(En̄(⌧ )�En(0))]Pn̄ nPth
n (3)

where Pth
n = exp (�En(0)/kBT )/

⇥P
n exp(�En(0)/kBT )

⇤
gives the

initial thermal distribution and Pn̄ n = |hn̄(⌧ )|Û |n(0)i|2 is the
transition probability from the initial state |n(0)i to the final state
|n̄(⌧ )i under the evolution operator Û . In testing the validity of the
Jarzynski equality, it is necessary to observe that the average of the
exponentiated work

⌦
exp(�W/kBT )

↵⌘P
P (W )exp(�W/kBT )

is independent of the work protocol from the quasi-static to the
far-from-equilibrium regime. The essential part of the experimental
test in the quantum regime is to obtain the conditional probability
from the projected energy eigenstate |n(0)i out of the thermal
distribution to the final eigenstate |n̄(⌧ )i after the work is done on
the projected state.

In our experiment, we follow a similar procedure to that
proposed in refs 18–20, which is composed of four stages:
preparation of the thermal state; projection to an energy eigenstate;
application of work on the eigenstate; the measurement of the final
phonon distribution.

We prepare a thermal state of the trapped ion’s harmonic motion
in the X-direction. We first cool the vibrational mode near to the
ground state |n=0i by resolved-sideband cooling32 right after the
Doppler cooling. Then we allow the system to heat up to the desired
temperature. The heating and thermalization of the system have
been extensively studied both experimentally and theoretically33–36.
The process is described well by the model of a harmonic oscillator
coupled to a high-temperature reservoir, which follows a sequence
of thermal equilibrium states33–36. We observe the thermal distri-
bution at each waiting time, where the temperature increases as
shown in Fig. 2a. We characterize the distribution by both the
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Experimental test of the quantum Jarzynski
equality with a trapped-ion system
Shuoming An1, Jing-Ning Zhang1, Mark Um1, Dingshun Lv1, Yao Lu1, Junhua Zhang1, Zhang-Qi Yin1,
H. T. Quan2,3* and Kihwan Kim1*

The Jarzynski equality relates the free-energy di�erence between two equilibrium states to the work done on a system through
far-from-equilibrium processes—amilestone that builds on the pioneering work of Clausius and Kelvin. Although experimental
tests of the equality have been performed in the classical regime, the quantum Jarzynski equality has not yet been fully
verified owing to experimental challenges in measuring work and work distributions in a quantum system. Here, we report
an experimental test of the quantum Jarzynski equality with a single 171Yb+ ion trapped in a harmonic potential. We perform
projective measurements to obtain phonon distributions of the initial thermal state.We then apply a laser-induced force to the
projected energy eigenstate and find transition probabilities to final energy eigenstates after the work is done. By varying the
speed with which we apply the force from the equilibrium to the far-from-equilibrium regime, we verify the quantum Jarzynski
equality in an isolated system.

There is increasing interest in non-equilibrium dynamics
at the microscopic scale, crossing over quantum physics,
thermodynamics and information theory as the experimental

control and technology at such a scale have been developing
rapidly. Most of the principles in non-equilibrium processes are
represented in the form of inequalities, as seen in the example of
the maximum work principle, hW i � 1F � 0, where the average
work hW i is equal to the free-energy di�erence 1F only in the case
of the equilibrium process. In close-to-equilibrium processes, the
fluctuation–dissipation theorem is valid and connects the average
dissipated energy hWdissi ⌘ hW �1Fi and the fluctuation of the
system � 2/2kBT . Here � is the standard deviation of the work
distribution, T is the initial temperature of the system in thermal
equilibrium and kB is the Boltzmann constant. Beyond the near-
equilibrium regime, no exact results were known until Jarzynski
found a remarkable equality1 that relates the free-energy di�erence
to the exponential average of the work done on the system:

ln
⌦
e�Wdiss/kBT

↵=0 (1)

The Jarzynski equality (1) is satisfied irrespective of the protocols
of varying parameters of the system even when the driving
is arbitrarily far from equilibrium. The relation enables us to
experimentally determine1F of a system by repeatedly performing
work at any speed. Experimental tests of the classical Jarzynski
equality and its relation to the Crooks fluctuation theorem2 have
been successfully performed in various systems3–12.

In classical systems, work can be obtained by measuring the
force and the displacement, and then integrating the force over the
displacement during the driving process. In the quantum regime,
however, as a result of Heisenberg’s uncertainty principle, we cannot
determine the position and the momentum simultaneously—thus
invalidating the concepts of force and displacement. Instead of
measuring these classical observables, it is necessary to carry out

projective measurements over the energy eigenstates to determine
the work done in each realization and the work distribution13. With
this understanding of work in quantum mechanics, the Jarzynski
equality has been extended to the quantum regime14–16 with sim-
plicity and elegance for isolated systems, although the meaning of
work and heat in open quantum systems is still not fully settled17.
Although the theoretical derivation of the quantum Jarzynski equal-
ity is unequivocal, similar to its classical counterpart, experimental
verification in a variety of systems under a range of conditions
would put it on a solid experimental foundation. For this reason,
experimental testing of the quantum Jarzynski equality has been
a long-sought goal for many physicists18–24. However, even for an
isolated quantum system, experimental verification has been con-
strained by the technical challenges in controlling quantum systems
precisely and performing projective measurements to obtain the
work distribution18–21. There have been theoretical e�orts to get
around such di�culties by measuring the characteristic function
and then reconstructing the work distribution22–24. An experimental
demonstration has appeared following those proposals21. Neverthe-
less, a standard way20 of verifying the quantum Jarzynski equality by
directmeasurement of the work distribution is still lacking. Here, we
adopt the method of twomeasurements over energy eigenstates and
obtain the work distribution. From the work distribution, we verify
the quantum Jarzynski equality.

In our experiment, we employ a trapped atomic 171Yb+ ion
harmonic oscillator whose Hilbert space has infinite dimensions.
We implement the projective measurement on phonons25 to
determine the initial eigenstate from the thermal distribution and
perform the standard phonon-distribution measurement26–29 after
work is done on the projected eigenstate. Thus, we successfully
measure work and work distributions in a genuine quantum
system. With these experimental techniques, we test the quantum
Jarzynski equality at various initial temperatures and switching
speeds. We compare the performance of the Jazynski estimate of

1Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China. 2School of Physics,
Peking University, Beijing 100871, China. 3Collaborative Innovation Center of Quantum Matter, Beijing 100871, China. *e-mail: htquan@pku.edu.cn;
kimkihwan@mail.tsinghua.edu.cn
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Figure 1: a) Experiment setup: SLM1 generates an input OAM mode, which undergoes a process implemented by SLM2. Its
output is analyzed by a mode sorter. (b) The mode sorter sorts out OAM components along the x-axis of the CCD camera. The
image is then integrated along the y-axis.

In the present proof of principle experiment, we over-
come this problem using a process in SLM2 that re-
sults in superpositions of OAM modes that can be eas-
ily resolved by the mode sorter. Specifically, the pro-
cess in our experiment implements the operation (L+5+

L�5)/
p
2. In this way, the overlap between the two com-

ponents at the output becomes very small. Typical mea-
surement results are shown in Fig. 2(b).

For each measured output, we performed a linear
least squares regression in order to obtain the values
of the orbital angular momenta and their respective
weights (see Appendix for details). The normalized set
of all OAM weights for all outputs is exhibited in the
matrix of Fig. 3(a). This is a density plot where the
index of the input (output) modes are the labels of the
vertical (horizontal) axes. In other words, these are the
transition probabilities for a typical run of the experi-
ment. Fig. 3(b) shows the matrix for the ideal process,
without any noise. In Figs. 3(c) and (d) it is shown the
experimental and theoretical transition probabilities re-
spectively, for the Maxwell’s demon case that will be
discussed in detail later.

Let us now discuss the Thermodynamics interpreta-
tion of this physical system. We use the OAM modes
to represent the wavefunctions of the two-dimensional
quantum harmonic oscillator, for which the Hamilto-
nian Hxy = (Nr+Nl+1)~! and the angular momentum
Lz = (Nr � Nl)~ form a Complete Set of Commuting
Observables. Nr(l) is the number operator for right (left)
circular quanta. As all modes considered have p = 0,
either Nr or Nl must have eigenvalue zero for a given
mode. Furthermore, since the processes only change
`, when one projects the final system’s state onto an
eigenstate of the angular momentum with eigenvalue
~`, the energy of the system is ✏ = (|`| + 1)~!. This
justifies our early statement that projections in the OAM
basis is equivalent to projections in the energy eigenba-
sis. Therefore, the work done per run of the experiment,

when the system goes from an initial ` to a final `0, is
W`,`0 = |`0|� |`| (for simplicity, we write from now on all
energies in units of ~!).

The probability distribution of the work is

P (W ) =

X

`,`0

p``0� (W �W``0) , (2)

where p``0 = p`p`0|` is the probability of observing the
transition ` ! `0, with p` being the probability of hav-
ing ` at the input and p`0|` the probability of observ-
ing `0 at the output knowing that the input is `. In
the context of Jarzynski equality, p` is given by the ini-
tial thermal distribution described by the state ⇢� =

e

��H
xy /Z, with the partition function being given by

Z = e

��
coth

⇣
�
2

⌘
� 1. In our experiment we measured

the conditional transition probabilities p`0|` as shown in
Fig. 3. As explained earlier, we truncated the OAM
space and limited the input modes to |`|  7. That is to
say we operate in a regime of low temperatures where
the Boltzmann weights for |`| > 7 can be neglected, i.e.
� & 1.

Fig. 4 shows plots of the quantity
⌦
e

��W
↵

as a func-
tion of the inverse temperature �. The insets display
probability distributions of work computed from the
measurement results for � = 2. The probabilities in
the vertical axis are obtained summing up all values of
p``0 (given in Eq.2) for which the corresponding transi-
tion results in a given value of work W . Regarding the
Jarzynski equality, Eq. 1, the considered process gives
�F = 0 as it does not change the Hamiltonian of the
system. In other words, transitions are induced, but
the energy levels do not change. Therefore, Eq. (1) be-
comes simply

⌦
e

��W
↵

= 1. In the lower part of Fig.
4, the curve named theory represents

⌦
e

��W
↵

computed
for our experimental configuration, but considering an
ideal process. The corresponding ideal transition proba-
bilities are illustrated in Fig. 3(b). The curve named exp
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Non-equilibrium thermodynamics and quantum information theory are interrelated research fields
witnessing an increasing interest, both theoretical and experimental. This is manly due to the broad-
ness of these theories, that found applications in many different fields of science, ranging from biology
to the foundations of physics. Here, by employing the orbital angular momentum of light, we pro-
pose a new platform for studying non-equilibrium properties of high dimensional quantum systems.
Specifically, we use Laguerre-Gaussian beams to emulate the energy eigenstates of a two-dimension
quantum harmonic oscillator having angular momentum. These light beams are subjected to a pro-
cess realized by a spatial light modulator and the corresponding work distribution is experimentally
reconstructed employing a two-point measurement scheme. The Jarzynski fluctuation relation is then
verified. We also demonstrate the operation of the system as a Maxwell’s demon.

PACS numbers:

The orbital angular momentum (OAM) of light is a
property of the topology of the optical modes, and
are characterized by discrete numbers associated to the
amount of orbital angular momentum per photon in the
mode [1]. The natural family of optical modes with
orbital angular momentum are the Laguerre-Gaussian
(LG) modes, a set of solutions of the paraxial wave equa-
tion [2] that are described by their radial number p and
the azimuthal number `. The study and application of
these modes is relatively recent and has increased con-
siderably in the last two decades [1, 3, 4].

Single photons populating modes with OAM are
physical realizations of high-dimensional quantum
states [5–11], leading to the possibility of encoding more
than one bit of information per photon. Such photonic
qudits can be explored in order to improve quantum
communication schemes and quantum information pro-
cessing [12–19]. Moreover, the transverse amplitude
profiles of LG light modes are formally identical to the
energy eigenstates of the two-dimension quantum har-
monic oscillator. Therefore, they stand as a platform for
the emulation of these quantum systems in a variety of
interesting problems. In the present work, we employ
these light modes to experimentally study some ther-
modymical aspects of a high dimensional quantum sys-
tem. Non-equilibrium thermodynamics is fundamen-
tally concerned to the characterization of the response
of a system under external perturbations. Considering
the linear-response regime, the theory was developed in
Refs. [20–22], based on the earlier works as the ones in
Refs. [23–25]. The information about the complete non-

⇤Electronic address: lucas@chibebe.org
†Electronic address: p.h.s.ribeiro@ufsc.br

linear response is contained in the so called fluctuation
theorems, for classical [26–28] and for quantum systems
[29, 30].

Fluctuation relations can be seen as a quantification
of the probability of observing a violation of the second
law of thermodynamics for small systems (when fluctu-
ations come into play) and short time-scales. Consider-
ing the new trend in miniaturization, such fluctuations
and time-scales are becoming more important for the de-
velopment of new technological devices [31]. Therefore,
the theoretical and experimental study of quantum fluc-
tuation relations are of primary interest, both for funda-
mental issues and also for understanding the limitations
for implementing quantum information processing and
communication devices.

The quantum versions of the classical fluctuation the-
orems are possible only due to the two-point measure-
ment approach for defining work. Work performed on
(or by) the system is defined as the difference between
two energy measurements, one before and one after the
considered process takes place. To be specific, let us
consider an externally driven system S , whose time-
dependent Hamiltonian is denoted by HS(t), initially in
the thermal state ⇢� , with � = 1/T (Boltzmann constant
is taken to unity and T is the temperature of the system).
The scenario considered here can be divided into three
steps: i) projective measurement on the initial Hamil-
tonian, HS(0), eigenbasis; ii) unitary (driven) evolution
for a time interval ⌧ ; iii) projective measurement on the
final Hamiltonian, HS(⌧), eigenbasis. Defining the two-
point measurement variable Wm,n = "m � "n, where "m
and "n are the eigenvalues of HS(⌧) and HS(0), respec-
tively, it is not difficult to show that this stochastic vari-
able must obey the general fluctuation relation known
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FIG. 1: The QWM. (a) A quantum circuit for the QWM. S and A are entangled so that the eigenvalue of the observable H
of the system S is coherently recorded by A. Then S is driven by US . Finally, another entangling operation between S and A
creates a record of w on A. In the experiment, A is encoded in the motional degree of freedom of the atoms along the vertical
direction z, which also evolves while freely falling. S is the pseudospin associated with two Zeeman sub-levels of a 87Rb atom.
(b) Physical operations for the QWM on an atom chip: i) The atoms, prepared in state |2i, are released from the trap, and a
RF field generates an initial pseudo-thermal state. ii) Internal and motional degrees of freedom are entangled with a magnetic
gradient pulse. iii) Another RF field drives S. iv) A second magnetic gradient pulse is applied. At this stage, A keeps a record
of the di↵erent work values. v) The positions and optical densities of the atomic clouds are measured. The number of atoms in
each cloud reveals the work probability in a single experimental realisation. (c) Image of the four clouds obtained at the end
of a single run of the QWM. The four possible values of w fix the position of each cloud.

measurement, which enables the number of outcomes to
be larger than D. This can be done by entangling S with
an ancilla A that stores a coherent record of w. Then a
standard measurement on A can reveal w.

Design and operation of the QWM– A pictorial repre-
sentation of the protocol we follow to operate the QWM
is shown in Fig. 1a. The QWM is designed to measure
the work done on a system S whose Hamiltonian changes
from H to H̃ and which is subjected to a driving US in
between. We couple S to a continuous variable system A
and use ẑA to denote its position (the generator of trans-
lations along the momentum p). A coherent record of w
is created by an “entangling interaction” between A and
S that must take place before and after the driving US .
The unitary operators representing these interactions are:
U = e�i� ẑA⌦H/~ and Ũ = ei� ẑA⌦H̃/~, where � is a cou-
pling parameter. Thus, U and Ũ respectively translate

A along p by a displacement proportional to (��H) and
�H̃. Then, as shown in the SM, the final measurement of
p on A yields a random result whose distribution PA(p)
is a smeared version of the true work distribution P (w)
defined in Eq. (3). In fact, outcome p is obtained with a
probability density PA(p) =

R
dwP (w)f(p� �w), where

the window function f(p) = |hp|�i|2 is fixed by |�i, the
initial state of A [thus, by localizing |�i we improve the
accuracy in the estimation of P (w)].

A “universal” QWM is an apparatus which can mea-
sure w and sample P (w) for any possible choice of H and
H̃. To build it, we need enough control to enforce the
entangling operators U and Ũ for any choice of H and
H̃. Remarkably, this is achieved for a 2-level system by
the atom chip implementation we describe below.

Experimental implementation of the QWM. - To de-
scribe our QWM we should identify the physical sys-
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Non-equilibrium quantum thermodynamics is
essential to describe new devices that operate far
from the regime where the usual thermodynami-
cal laws are obeyed. When quantum fluctuations
dominate, defining and measuring work and heat,
two central concepts in classical thermodynamics,
is non-trivial. For driven, but otherwise isolated,
quantum systems, work w is a random variable as-
sociated with the change in the internal energy,
as the first law of thermodynamics indicates. In
this paper we present the design and the experi-
mental implementation of a “quantum work me-
ter” (QWM) operating on an ensemble of cold
atoms, combining the idea presented in Ref. [1]
and the experimental setup used in Ref. [2]. Our
QWM not only directly measures work but also
directly samples its probability distribution P (w)
[i.e. the outcome w is obtained with probability
P (w)]. As the work probability distribution plays
a central role in the fluctuation theorems of non-
equilibrium quantum thermodynamics [3–5], the
QWM is an ideal tool to test their validity. In
particular, we use it to verify the Jarzynski iden-
tity [6–10].

Work measurement and the QWM.– A QWM is an ap-
paratus that measures the work performed on a driven
quantum system whose Hamiltonian varies from an ini-
tial H to a final H̃ with eigenvalues En and Ẽm, respec-
tively. For an isolated system S, with a D-dimensional
space of states, the number of di↵erent values of work is
bounded by D2. Therefore, the pointer of the QWM has
D2 distinct positions (one for each value of w = wnm =
Ẽm�En). The QWM presented here enables us to choose
H and H̃ (fixing the possible values of w) and to vary the
intermediate driving (inducing di↵erent evolution opera-
tors denoted as US). In this way, we vary the probability
P (w), which depends on the intermediate driving US .

By sampling P (w), we use the QWM to verify a fun-
damental result in non-equilibrium quantum thermody-
namics: the Jarzynski identity. This establishes a sur-
prising relation between non-equilibrium and equilibrium
concepts. The identity states that for any initial thermal
state and for any distribution P (w), the linear combi-
nation he��wi =

P
w e��wP (w) is not a non-equilibrium

but an equilibrium property, where � = 1/kBT is the in-

verse temperature of the system. The Jarzynski identity
(see the Supplementary Material, SM) reads

he��wi = e���F , (1)

where �F is the free energy di↵erence between the ther-
mal states associated with the HamiltoniansH and H̃. In
the absence of degeneracies, this implies that the vector
formed by the D2�1 measured probabilities belongs to a
D2�2 dimensional hyperplane: the “Jarzynski manifold”
[as shown in the SM, further constraints restrict this di-
mensionality to (D � 1)2]. With the QWM we measure
P (w) for di↵erent driving fields showing that all prob-
ability vectors belong to the same manifold. By char-
acterizing this manifold, we not only verify the identity
but also independently estimate the free energy di↵erence
�F [6, 11, 12].
The work distribution sampled by the QWM, intro-

duced in [7–10], is:

P (w) =
X

n,m

pnpm|n �[w � (Ẽm � En)]. (2)

Thus, P (w) is the probability density of finding the en-
ergy di↵erence w after a measurement of H followed by
an intermediate driving US and a final measurement of
H̃. This is indeed the case if pn is the probability of ob-
taining En when measuringH and pm|n is the probability

of obtaining Ẽm when measuring H̃ given that En was
detected at the beginning. Equation (3) defines a proba-
bility density that is independent of the initial coherences
in the energy basis. For the discrete D2 values of w we
will use P (w) to denote the probability (not the den-
sity) of each w. Implementing the two-time-measurement
strategy is di�cult [13] because the two projective mea-
surements are unavoidably disruptive (see Ref. [14] for an
ion trap implementation). Alternative methods to eval-
uate P (w) relying on the direct estimation of its Fourier
transform were proposed in Refs. [15, 16] (and imple-
mented in NMR experiments [17]). Our QWM is con-
ceptually di↵erent from previous work-measurement de-
vices. Its main advantage is that the QWM e�ciently
samples P (w), which is a direct observable in the experi-
ment. The concept on which it is based was discussed in
Refs. [1, 18] where it was noticed that the work done on
S, can be detected by performing a generalized quantum
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