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Overview

Lectures 1 & 2
Introduction to Topological Phases of Matter

Some good reviews and lecture notes:

Prange and Girvin, “The Quantum Hall Effect” (Springer, 1990).

Hasan et al., Rev. Mod. Phys. 82, 3045 (2010). \ FOPOLOGICAL
INSULATORS
Xiao et al, RMP, 82, 1959 (2010) AND TOPOLOGICAL

SUPERCONDUCTORS

Qi et al, Rev. Mod. Phys. 83, 1057 (2011).
Chiu, et al., Rev. Mod. Phys. 88, 035005, (2016)

Bernevig with Hughes, “Topological Insulators and Topological
Superconductors” (Princeton University Press (2013)).

Lecture notes on Quantum Hall: Tong, arXiv:1606.06687

Online course on topological physics: https:/topocondmat.org/


https://topocondmat.org/

Topology & Mathematics

In mathematics, topology is used to classify different surfaces

No holes: genus=0 1 hole: genus="

The genus is an example of a “topological invariant”

Key features of topological invariants:
e (Global property
* |nteger-valued

e Robust under smooth deformations




Discovery of the quantum Hall effect:

Cold, quasi-2D ./'/
sample T d -
VH
Vg = Ryl

Very precisely-quantized response that is remarkably robust to disorder

Why?

Because this is a topological phase of matter
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Topology & Phases of Matter

Most phases of matter:

* Classified according to spontaneously broken symmetries, e.qg.:

* translational symmetry for solids P11t

* rotational symmetry for magnets... T

e Characterised by local order parameter

Topological phases of matter: -~ —
* Cannot be understood in terms of spontaneous symmetry breaking J e

e Characterised by global topological integer invariant



Topology & Phases of Matter

Not just electrons in solid-state systems, also J\/\/\/\/\» Phoi:)ll\1/s\/\/w

Cold atoms
= Wi
- 0 «‘:

==

Fits into this summer school as:

« Greater controllability and tuneability
» Explore new topological phases of matter

e Different observables — learn more!

e \ery interdisciplinary area

The Abdus Salam

e Fundamental quantum physics {CTP) International Centre

. . for Theoretical Physics
¢ Quantum simulation

e Future quantum technologies?




Topological band theory

What is “topological” in a topological phase of matter? The wave-function

Figure from:
Aidelsburger et al.,

Topological invariants
(e.g. Chern numbers)

\ We'll focus on how single-particle energy bands

Nat. Phys. 11, 162,
(2015)

k, (/a)

-0.5-0.5

A are characterised by topological invariants

| Vo=

Unac(6) = €T 1 (r)

[:]kun,k — gfn, (k)un,k

Useful for systems well-described by independent particles:

¢ |[nteger quantum Hall effect, topological insulators...

or independent quasi-particles:

e topological superconductors and supertluids

Not useful for systems where strong correlations are important:

e Fractional quantum Hall effect...



Topological equivalence

Two bands are topologically-equivalent it one can be adiabatically-
deformed into the other without closing the energy gap

Topological invariants

gapless system (e.g. Chern numbers)

(topological phase transition)

Energy (a.u.)

0.5 0.5 0-5 0.5 0.5 0.5 . .
-0.5-0.5 -0.5-0.5 -0.5-0.5 -0.5-0.5
k, (/a) K, (m/a) k, (r/a) K, (/a) k, (/a) K, (t/a) k, (/a) K, (m/a)
A
Topological _ Tr —  Hofstadter
invariant (e.g. Ny Topologically trivial Topologically non-trivial model for
Chern number) of 0 | | | | P=n/2
lowest band 4 tuning 2 0
parameter_> Detuning 6 (J) Figure from: Aidelsburger et al.,

Nat. Phys. 11, 162, (2015)

Bulk-boundary correspondence:
must be gapless modes at the boundary between two different topological phases




Symmetry & topological band theory

Symmetry is, as ever, a guiding physical principle!

Energy bands can be classified by different types of topological invariants
depending on the symmetries and dimensionality of the system

Spatial symmetries

Reflection

Rotation...

Non-spatial symmetries

Time-reversal symmetry

TH(K)T ' = H(—k)

Particle-hole symmetry

PH(k)YP~' = —H(—k)

Chiral symmetry

Kitaev, arXiv:0901.2686
Ryu et al., New J. Phys. 12, 065010 (2010)

Find out more:
ind out mor Chiu, et al,, RMP 88, 035005, (2016)



Symmetry & topological band theory

“Periodic table” of gapped phases of quadratic fermionic Hamiltonians with only non-spatial discrete symmetries

Symmetry Dimensionality d bossible values of
IClaSS rgvi?:al Paﬁgl(: ol 102 3 4 5 6 T 8 topological invariant:
A 0 0 0 o % 0 Z 0 Z 0 Z 0 : always trivial
Al 0 0 1| 2Z 0 Z 0 Z 0 7 0 &3
Al 1 0 0 0O 0 0 Z 0 Zo Zo Z
BDI 1 ' 1 2, 0 0 0 7, 0 Zo 7o
D 0 1 0]z Z 0 0 0z 0 B |8t
DIII| -1 1 1 | Zo Zo 4 O 0 O Z 0
AIL| =1 0 0| 0 Zo Zo Z 0 0 0 7z |Vdekes
ClI| — — 1 Z. 0 Zo Zo Z 0 0 0 |[(ispatial symmetries,
C 0 - 0 0 L 0 Zy Zp Z 0 0 (iii)gapless systems...
CI I, — 1 0O 0 Z 0 Zo Zo Z 0

Result of squaring the
symmetry operator
(O=symmetry is broken)

Kitaev, arXiv:0901.2686
Ryu et al., New J. Phys. 12, 065010 (2010)

Find out more:
ind out mor Chiu, et al,, RMP 88, 035005, (2016)



Symmetry & topological band theory

However, the presence/absence of certain symmetries is not a sufficient condition
for nontrivial topology

N.B. Role of symmetry
is very different to in

0.1,2,3... € Z 0.1 € Z» spontaneous

symmetry-breaking

So we still have to explicitly calculate the invariant to see if a system is nontrivial

Why are symmetries important? Tells us where to look &...

Topological robustness

Within a given symmetry class, topological invariants are typically very robust against
small perturbations...

...but if the perturbation breaks the symmetries, the class changes and topological
properties are no longer necessarily well-protected




These |lectures

In these first two lectures, | will briefly introduce:

Symmetry Dimensionality d
Class rz;:;:al Pa}it)llcele- Chiral 1 2 3 4 . 6 / 3
A 0 0 0 O Z 0 Z 0 Z 0 Z <+—Quantum Hall
AIlll O 0 1 Z 0 Z 0 Z 0 Z 0
Al 1 0 0 o 0 0 Z 0 Zo Zo Z
BDI 1 ” 1 Z 0 0 0 Z 0 Zo Zo <«— SSHModel
D 0 0|\ Zs 4 0 0 0 Z 0 Zs < Topological
DIII| -1 1 1 | Zo Zo Z 0 0 O Z (0  Superconductors
] - <«— lopological
All | —1 0 0 0 Zo Zos 4 0 0 0 Z Insulators
clr| -1 -1 1 Zo 0 Zo Zo Z 0 0 0
C 0 —1 0 0 Z, 0 Zo Zo 7 0 0
CI 1 —1 1 0O 0 Z 0 Zo Zo Z 0




Insulating state

o> (o3 (oo

oy Cop Cop
Cop Cop (o

Quantum Hall state

(200 Qe
B

@ Q Q

e P e R O 0 A

Very robust as band invariants can only change if gap closes

Bulk-boundary correspondence: one-way chiral edge states i

2D Quantum Hall Effect

Conduction band

1Gap

Valence band

Energy

Figure from

C. L. Kane & E. J. Mele,
Science 314, 5806,
1692 (2006)

Bands are topologically-trivial

Momentum

Conduction band

Valence band

1 Gap /dgestates

Bands have non-zero topological

1st Chern numbers v}

Momentum

n€occupied

quantised Hall response

Vn of occupied bands

14
12
~10
G
< 8
I

T 6
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B er ry p h ASE M. V. Bery, Proc. R. Soc. A 392, 45 (1984)

Let's consider a general Hamiltonian with a set of parameters: R = (Rl, Rg..)

H(R) ‘n(R» = F, (R) \n(R)), To keep it simple, we consider normalised

non-degenerate eigenstates

A pure state [n(R(0))) evolves under adiabatic variation of parameters as:

U (t)) = e~ Vn(R(1)))

Plug into the Schrodinger equation: zh%\wn(t» = H(R(1))|Yn (1)),

90(1) 9 3
2 n(R(E)) + ih |n(R(1))) = En(R()In(R(2).

From the orthogonality and normalisation of eigenstates:
80 (t) %,

o = Ea(R(1) — ih(n(R(1))| 5 [n(R(1)))

h




B er ry p h ASE M. V. Bery, Proc. R. Soc. A 392, 45 (1984)

0(0) = 5 [ BalREDAY i [ (R |5 In(R(E))P.
Va \

Dynamical phase and this?

Removing the explicit time- dependence

%zz'/@< A(R())] S n(R (1 >>>Wd’f’:@/c< A(R)| 2 In(R))dR.

geometrical phase!

But what if we gauge-transform our wave-function? ‘H(R» = X(R) ]n(R)}
*

smooth, single-valued function

V= / (n(R)] - n(R))IR. - / dR:”yn—[x(Rf(T))—x(R(O))],

Looks like we can choose the
gauge-transformation so that

Yn =0




B er ry p h ASE M. V. Bery, Proc. R. Soc. A 392, 45 (1984)

But if we consider a closed contour then: n(R)) = eXB)n(R))
Y(R(T)) - X(R(0)) = 27 x 7.

andso Y. =V, — 277

l.e. the geometrical phase is physical and gauge-invariant (up to 2 )
for a closed contour : the Berry phase




Berry p h ASE M VBermy Proc. R Soc. A 392, 45 (1984)
But if we consider a closed contour then: n(R)) = X (R) n(R))
V(R(T)) = (R(0)) = 27 X Z,
and so %’1 = Yp — D/,

l.e. the geometrical phase is physical and gauge-invariant (up to 2 )
for a closed contour : the Berry phase

Analogous to the rotation of a vector under parallel transport around a closed contour

1
(a) b) N
On a surface, the rotation of
A- f 1f the vector depends on the
f, f Gaussian curvature enclosed
27 7 1
¥ LAl 3 ST
k=0 K = %2 > (

Figure from: P. Bruno, arXiv:cond- mat/0506270



Berry phase, connection & curvature

Inspired by that geometrical analogy, Yy = 7{ dR-A,(R) = / dS-Q,(R)
C S

let’s define some more properties:

Berry phase Berry connection Berry curvature
o 0
o =i ]{ (n(R)|z=nR)IR  An(R) =in(R)[ 5o n(R))  Qu(R) =V x A (R)
C OR OR
"""" (modulo) gauge-invariant - gauge-dependent = gauge-invariant
X(R(T)) = X(R(0) =27 X Z,  A,(R) + A,(R) - X0V V x Vx(R) =0
"~ Analbgousto Analogousto Analogousto
magnetic flux . a magnetic vector potential a magnetic field

D — / iS-B(r) Alr) B =V xA(r)
S



From geometry to topology

Let's go back to that geometrical analogy again

In fact, geometry and topology are connected, e.q. :

-~

v) =

=0

/ kdS = 4w (1 — g)
Stot

Gauss-Bonnet theorem g

Analogously, we can relate the geometry and topology of eigenstates over a closed
parameter space, €.9.:

topological U, = i dS-Q,(R)

1st Chern number DT S

Stot

closed two-dimensional surface

For much more about this, see “Geometry, Topology and Physics" by M. Nakahara, |OP Publishing, (2003)



1st Chern Number

But wait a minute....

v, = i ds - Qn(R) X 1 %dR . An(R) — (o Sothisisalways
C

9 T zero”?
Stot

Actually, Stokes’ theorem assumes the Berry connection has no singularities
inside the contour. If this is true, then yes the 1st Chern number is zero.

If not, we can get rid of singularities by defining different gauges over different patches

vn:% dR - A, = dS-Q,(R),
“ o C1 = —C;

vzzyf dR-Ang iS - O, (R),
CQ 82

/ As Berry phase is
But Yn = —7, T 2TV, gauge-dependent
modulo 27

/dS-Qn(R) /dS-Qn(R):% = 9,
51 82




1st Chern numbers & Bloch bands

So far we have considered a general parameter space [come back to in Lecture 3],
but let’'s now return to topological band theory

Figure from:
Aidelsburger et al.,
Nat. Phys. 11, 162,
(2015)

51&1{)

o,
gAky An(k) — Z<Un k‘@’un,ld
T
k W , Qn(k) =V x A, (k)
K “ - :_:f: , . Up = i d’k - Qn(k) € L
| Nty 21 )y

T N.B. the above can be
generalised to bands with

Crucially, the Brillouin zone defines “a closed surface” degeneracies



2D Quantum Hall Effect

A

. . . _ . E
Semiclassical dynamics of a wavepacket in a lattice " ].CC

“Anomalous velocity”: /
, 10&,(ke)| - analogous to a Lorentz
e = — — k. x Qn(kc) force with roles of position :

h Ok, and momentum swapped - K

hk . = —cE Karplus & Luttinger Phys. Rev. 95, 1154 (1954)...
Chang & Niu, PRL, 75, 1348 (1995)...
Review: Xiao et al, RMP, 82, 1959 (2010)

Now consider a band insulator

j:—(2;)2 N / %k [%agglik) : %Exﬂn(k)}

n€occupied Bz

[Better derivation with Kubo formula]

2
, e b
> . = — Y E d2k ) Qn (k) Thouless et al., Phys. Rev. Lett. 49, 405,1982
h (2m) 4/ BZ

n€occupie

Consequences of the Chern number:

 Quantized Hall conductance (TKNN result) 04y = —% Z Un

n€occupied

e Chiral edge modes (Bulk-Boundary Correspondence) : Nedge = Z Un

n€occupied



Time-reversal symmetry breaking

Under time- 1
reversal Qn(k) = —Q,(=k) so v, = — d’k - Q, (k) =0
symmetry (TRS) 21 JBy

if TRS is present

How to break TRS physically?
» Apply a magnetic field to a charged particle: F = ¢gv x B

 But also many other approaches... Breaking TRS for
cold atoms &
photons in
Seminal theoretical models with broken TRS: | ectures 3 and 4

e Continuum: Landau levels

e Chern insulators [lattice models]: Harper-Hofstadter model & Haldane model

Symmetry d
Time- Particle- - . . _
e 1 2 3 4 5 6 7 8

reversal  hole Chiral

Al o o0 ol o z2 o 727 o 7 0 7



Chern Insulator:
Harper-Hofstadter Model

Charged particle hopping on a tight-binding 2D square lattice in a uniform magnetic field

yj. a:rnJrl W m, m and similarly for y

y H I'Tn,—l—l n
Peierls ;O . e ;
' b substitution Jx — Jz€ ™7, O = — A - dx
r

m,n

m—l—ln

Then hopping aroun | 2
én hopping around a plaquette in the Landau gauge A = (0, Bz, 0)

1 1 1 T T
e )‘ ‘(m Pl Ot = Omn = Ot + O
@ = —%[B(m +1)a® — Bma?]
)
‘ ‘ — 273 = 21a No/ flux quanta per
(m,n) (m+1,n) 0 plaguette

o = —eBa®/h

H = —J Z[a’l’url,nam,n X 6i27ramajwn+1am,n + h.c.]

m,n
Hofstadter, PRB 14, 2239, (1976)



Chern Insulator:

Harper-Hofstadter Model
4.J \\\i

Interplay between lattice and magnetic field gives fractal
energy spectrum : the Hofstadter butterfly

Non-zero Chern numbers and topological edge modes:

3 No/ edge
states
2 i Z vV, = 1
1P
O \ OcCcC.
Z Uy = 2
- 1 - /,\\ occ.
Numerical
_ =1
diagonalisation ; .
on a cylinder

a=1/5 T —7/2 0 /2 7

Figures courtesy of T. Ozawa k‘u



Chern Insulator: Haldane Model

Haldane, PRL, 61, 18, (1988)

Charged particle hopping on a tight-binding 2D honeycomb |attice

HHaldane =1 Z (ai‘l_Rj br + hC)
r,j

2 Z (eiqsai—l—R;- Ay + e_wth/. br
o

,J ’
-+ MZ (aiar — bibr)

Topological phase diagram
1.5

e Complex NNN hoppings break TRS

~ 0.5
g . |
s 0 e First example of a Chern insulator model
= 05 with zero average magnetic flux
-1+ \
15 ‘ ‘ ‘ Topologica! phasg transition
—7 —7/2 0 /2 7 (gapless Dirac points)
¢

Figures courtesy of T. Ozawa



Fractional Quantum Hall Effect

Ultimate goal for why ultracold atoms and photons want to
engineer artificial qguantum Hall states

3 1 _Z
P 7
QH plateaux at non- N _ P 25 8 .
integer filling fractions N¢ q 2
% 15 43
Unlike in the integer quantum ;':, "

Hall effect, strong electron 1k

interactions play a crucial role
(v O.SL- !
Important features include: f )
0
« topological degeneracy MJ\ W L)
10 30
e quasiparticles with fractional charge Magnetic field (T)

e quasiparticles with fractional statistics & maybe even non-abelian statistics...

Find out more in lecture notes: Tong, arXiv:1606.06687



Anyons & Non-Abelian Anyons

In 2D, exchange statistics of 2 particles can be interesting:

h11b) = €|abatpy)  Abelian anyons 0 =T Fermions
6 = (0 Bosons Xp

1901109) = M|12101) Non-Abelian anyons

l

When different “Braiding” operations to exchange

particles do not commute
(possible when states have some degeneracy)

Anticlockwise Clockwise
logic gates =S

Figures: CCO wikipedia User:maschen

e Braiding =

Non-Abelian anyons
could be used for
topological quantum
computing

C. Nayak et al. Rev. Mod.
Phys., 80,1083, 2008.

Small perturbations do not
disrupt braiding — very
robust!

Qubits

Figure from: http://www.nature.com/
scientificamerican/journal/v294/n4/box/
scientificamerican0406-56_BX3.html



Before we move on,
here are a few more interesting things about
guantum Hall systems

(that are relevant to cold atoms and photonics)



Higher dimensions

Symmetry
Time- Particle- 1
reversal hole  Chiral

d

A 0 0 0 0

in 4D: 2nd Chern Number

1

8T J4DBZ

1

el AL A UARR U SRR R R
4DBYZ

in 6D: 3rd Chern number and so on...

Leads to a nonlinear quantized Hall response

]:U — _E Bzw Z V(2)

/ neEeocc.

weak magnetic
perturbation in z-w
plane

S.-C. Zhang and J. Hu, Science 294, 823 (2001).

Ultracold atoms and photons could be used to explore
higher-dimensional topology (Lectures 3 & 4)




Topological Pumping

Fig adapted from Lohse, M
et al. Nat. Phys. 12,
350-354 (2016).

pumping parameter §
et+T)=p(t)+2n -

can define:

1 o k ou,,  Ou ou,,  Ou
— x s P S)lﬂp,QD _ n ny\ n n
=g [ Qeedkadp ok =i (GG - (G E]

Physical consequences? Adiabatically pump a wavepacket

D. J. Thouless,

Phys. Rev. B 27, 6083 (1983)
anomalous

y — 7kw
velocity — €n = qu Oip

. : _ Quantized __
Then for afilled band insulator: gy e (L) = vn

BUT remember the pump parameter is external (not a dynamical variable)

—> quantised transport only after a full pump cycle



Topological Pumping

How to make a topological pump?

1. Start from a 2D QH system, e.g. HH model
E : 2

H — _J [ain+17nam,n _I_ 67/ Wamaj’n,n—l—lamvn _l_ h°C']
m.n

2. Fourier-transform with respect to one dimension  Qm n = E e' ynam,ky
ky

H=—J Z [aL)kyamH,ky + h.c. +2cos 2mram + k) ajn’kyam,ky} ~ Harper
m,k

model

3. Take a single Fourier component and relabel the momentum as the pumping parameter

Hip = —JZ [ajnamﬂ + h.c. + 2 cos (2mam + @) a;fnam} .

This is just a 1D hopping model with an onsite-potential that depends on position

Pumping corresponds to shifting the on-site potential

[INB Can do similar procedure in 4D]
Kraus et al., Phys. Rev. Lett. 111, 226401 (2013).



These |lectures

In these first two lectures, | will briefly introduce:

Symmetry Dimensionality d

Class 0% hole cwra| 1 2 3 4 5 6 T 8

A 0 0 0 0O #Z 0 Z 0 Z 0 7Z <— Quantum Hall
AIILl 0O 0 1 Zz 0 Z 0 Z 0 Z 0

Al 1 0 0 O 0 0 Z 0 Zo Zo Z

BDI| 1 " 1 Z 0 0 0 Z 0 Zo Zo <«— SSHModel
D 0 0| Zs Z 0 0 0 Z 0 Zo «— Topological
DI —1 1 1 Zo Zo Z 0 0 0 7 0 Superconductors
AIL| =1 0 0| 0 Z Zo Z 0 0 0 7z < Topowogical
clr| -1 -1 1 Zo 0 Zo Zo Z 0 0 0

C 0 —1 0 0O Z 0 Zo Zo Z 0 0

CI 1 —1 1 0O 0 Z 0 Zo Zo Z 0




Time-Reversal Symmetry

For spinless particles: 7 = K (charge conjugation) — T2 — /C2 — 1]

For spin-1/2 particles: T = —i0, K — T = (—iay/C)2 = —1

as need TR to also flip the spin:

—1 . . .
TUQCT — —O0 4 and similarly for the other Pauli matrices

bosons (integer spin) have 7~ = +1

In general

2
fermions (half-integer spin) have T =-1




Kramer's Theorem

Let’s consider a Hamiltonian with TRS
Hlp) = E|yY) TRS: 7T 'HT = H
Thenfrom HT|¢y) =TT 'HT|Y) = TH|Y) = TE|Y) = ET|).

.e. T|v) is also an eigenstate at energy E

Is this the same state? if so: 7 |1)) = e*%|4))

some real number
For fermions 72 = —1

. . L contradiction!
—[) = T?) = Te'|y) = e “Tlp) = e~ " ¢h) = [¢),  these must be

different states

Kramer's theorem:
For a TRS fermionic system, all eigenstates are at least two-fold degenerate

(For bosons T2 = +1so eigenstates can be non-degenerate)



Kramer's Theorem

In momentum-space, TRS means

TH(k)T ' = H(—k)
So |9 (k)) &J1p(—k)) have the same energy
.e.£(k) = £(—k)

and the 2D BZ has 4 TRS-invariant points where
fermionic states must be doubly-degenerate

£(k) = £(—k)X

»

Quantum Hall state

Conduction band
Q Q Q g 1 Gap /dgestates
Q Q Q Valence band :

NN N NN NN

Energy

Momentum

0

Figure adapted from
C. L. Kane & E. J. Mele, Science 314, 5806, 1692 (2006)

ky
iy N
0 A
—1Tr () T

Going back to Lecture 1,
chiral edge states are not
possible with TRS



Kramer's Theorem

In momentum-space, TRS means ky
-
TH(K)T ' = H(—k)
So [¥(k)) &y (—k)) have the same energy 0 A &
.e.£(k) = E(—k)
and the 2D BZ has 4 TRS-invariant points where - Ky
—TT () TT

fermionic states must be doubly-degenerate

£(k) = E(-k)/

How about two et . Usually a small perturbation would
counter-propagating Conduction band hybridise and mix the edge states

>

> .
edge states on the = I Gap /
same edge? S : but with TRS, these are a Kramers
Valacs band - pair and so can't be mixed
. —> robust states
| A >
Momentum

Figure adapted from
C. L. Kane & E. J. Mele, Science 314, 5806, 1692 (2006)



/2 lopological invariant in 2D

Figure from: Hasan et al.,

?zea"l(';gf’d' Phys. 82, 3045 El(a) Conduction Band E| (b) Conduction Band
More generally,
there are two Er Er
Valence Band Valence Band
« > < >
0 K — T 0 k— 7
How many Kramers pairs even number odd number
are at the Fermi level? l l
perturbations can mix pairs of Kramers pairs robust edge states
and push them out of the gap v = 1
VT — 0

Here we exploit the bulk-boundary correspondence — VT can also be calculated
from bulk states, but this is generally quite complicated...

Symmetry d
Time- Partide- Ly 2 3 4 5 6 7 8
AIT| =1 0 0 0O Zo Zo Z 0 0 0 Z



2D Topological Insulators

Simplest example is two copies of a Chern insulator, e€.9.:

if have spin-conservation Also, robust to spin-mixing
can calculate the Z» terms preserving TRS
invariant simply as: e.g. Kane-Mele model...
B U1 = V4 mod?2 (but the Zz invariant is
HHaldane (+§b) HHaldane( ¢) Tt harder to calculate)
for spin-up for spin-down

Tls found in materials with
strong spin-orbit coupling
e.g. HgCdTe quantum wells

Quantum spin Hall state _
Conduction band

== 1.4
/ Valence band Also 3D Tls! /

2 X s

Momentum

Energy

~

[Quantum spin Hall state is another name
for a 2D Topological Insulator ]



These |lectures

In these first two lectures, | will briefly introduce:

Symmetry Dimensionality d

Class rz;:;:al Pa}it)ilcele- Chiral| 1 2 3 4 . 6 / S

A 0 0 0 0O #Z 0 Z 0 Z 0 7Z <— Quantum Hall
AIILl 0O 0 1 Zz 0 Z 0 Z 0 Z 0

Al 1 0 0 O 0 0 Z 0 Zo Zo Z
BDI 1 " 1 Z 0 0 0 Z 0 Zo Zo <— SSHModel
D 0 0| Zs Z 0 0 0 Z 0 Zo «— Topological
DI —1 1 1 Zo Zo Z 0 0 0 7 0 Superconductors
AIL| =1 0 0| 0 Z Zs Z 0 0 0 7 < '°Po0dcd
clr| -1 -1 1 Zo 0 Zo Zo Z 0 0 0

C 0 —1 0 0O Z 0 Zo Zo Z 0 0

CI 1 —1 1 0O 0 Z 0 Zo Zo Z 0




1D Chiral Topological Phases

Symmetry d

Time- Particle- - . | . -

o hole Chrll 102 3 4 5 6 7 8
BDI| 1 1 11 zZ 0 0 0 Z 0 Zo Zo

Let’s consider a system with chiral symmetry: CHC ! = — H
H ¢> — EW> so the spectrum must be
HC ¢> _ —CH|¢> _ —EC|¢> symmetric around E=0
(]
A
Energy

At E=0, we can have edge states which satisfy |¢) = C|v)
these are topologically-protected as they can'’t be
perturbed away from E=0

Figure from: Hasan et al., Rev. Mod. Phys. 82, 3045 (2010).



Su-Schrieffer-Heeger Model
Probably the simplest model with nontrivial topology

Su, Schrieffer, & Heeger, PRL. 42, 1698 (1979),

riginally proposed as a
Orig y Prop ibid, PRB 22, 2099 (1980).

model for polyacetylene

Bi-partite chain: 2-site unit cell A B
t
i
x | | | >
Topolo/qical Trivial -l % L 2

E=0 bound state E=0 bound state

0 0.5 1 1.5 2
t1/ts

Spectrum for termination with A (B) on

the left (right) edge

Figures courtesy of T. Ozawa

[Chiral symmetry here flips the sign of the wave-
function on one sub lattice]



These |lectures

In these first two lectures, | will briefly introduce:

Symmetry Dimensionality d

Class 0% hole cwra| 1 2 3 4 5 6 T 8

A 0 0 0 0O #Z 0 Z 0 Z 0 7Z <— Quantum Hall
AIILl 0O 0 1 Zz 0 Z 0 Z 0 Z 0

Al 1 0 0 0O 0 0 Z 0 Zs Zo Z

BDI| 1 " 1 Z 0 0 0 Z 0 Zo Zo <«— SSHModel
D 0 0| Zo Z 0 0 0 Z 0 Zo <« Topological
DI —1 1 1 Zo Zo Z 0 0 0 7 0 Superconductors
AIL| =1 0 0| 0 Z Z2 Z 0 0 0 7 < 'opoodea
cllr| -1 -1 1 Zo 0 Zo Zo Z 0 0 0

C 0 —1 0 0O Z 0 Zo Zo Z 0 0

CI 1 —1 1 0O 0 Z 0 Zo Zo Z 0




Topological Superconductors

In BCS theory, 1 Ck
Bogoliubov de-Gennes Hamiltonian H — uN = 9 Z ( CL C—k )HBdG(k) ( of )
K —k
2y [ Hyk) —p A(k) excitation spectrum has a
BdG — A(k)* —Hy(k) + p superconducting energy gap
/
mean-field pairing
potential where
P=0,K

Particle-hole (PH) symmetry: PHBdG(k)P_l — —HBdG(—k) P2

every eigenstate at energy E has a partner at energy -E

particle-hole redundancy: FTE =1'_g

l.e. creating a quasiparticle
in state +E

+F <o has the same effect as
5 S removing one from state —E




1D Topological Superconductors

Gapped phase of a fermionic quadratic Hamiltonian with PH-symmetry

A
A

0+

-A

\ 4

Symmetry d
e hele Chiral] 1 3 4 5 6 7 8
D | 1 0| Zs 0 0 0 Z 0 Zs
What happens in a 1D topological superconductor? @ »
A Single unpaired state at the
Pair of states at A edge
LI'e the edge:
I, = rg By PHS, state can'’t be
r __rl Perturbations can 0 moved from E=0
—E__ E push the pair out
of the gap Majorana fermion
-A (like half of a usual Dirac fermion)
. M . Non-Abelian anyons :
Not topological Topological topological quantum
vipsc =20 vipsc =1 computing?

Figure from: Hasan et al., Rev. Mod. Phys. 82, 3045 (2010).



1D Kltaev Cha|n A. Y. Kitaev. Physics-Uspekhi, 44:131, 2001,

N N—1 -
spinless p-wave
_ T .
Hchain = — 4 § n; — § (tC@' Civ1 + Aciciyr + h.c.), superconductor on a chain
i=1 i=1

. “Splitting” the Dirac fermions into Majorana fermions
Topological

Trivial 1 . 1 .
Ci = 9 (%‘,1 T Z%,2) ; C; = 9 (%‘,1 — 2%,2) ;
Y1,1 Y1,2 YN,1  YN,2
/ /
C1 C9 C3 CN
A p=0, A=
N—1
Henain = =0t Y YioYit1,1:
1=1
3 o 1 0 1 2 3 .\2 @9 @9 --- @9 ¢9 €0
Figure courtesy of T. Ozawa ,LL/t ‘-\ /
Spectrum for N=100 and A =1 Don't appear in the Hamiltonian —> E=0 edge states

The end Majorana fermions define a degenerate 2-state system: a qubit!

An electron in this qubit will be in a non-local superposition of the two edge modes.
Review: Leijnse et al., Semicond. Sci. Technol. 27, 124003 (2012)



2D Topological Superconductors

Symmetry d
Time- Particle- 1 9 3 4 - G -

reversal  hole Ghiral

]
D| 0 1 0lz, Z 0 0 0 Z 0 Z

\/ VoD sc € 7 gives no/ chiral Majorana edge modes
I
0 = + [Reminiscent of Chern number and QH chiral edge states in Class A]

2 -E E
/\ Simple model: spinless superconductor with p, + tp, pairing

Vortices in a topological superconductor can host

7N\ bound Majorana zero-modes
(o)

Figure from: Hasan et al., Rev. Mod. Phys. 82, 3045 (2010).



Hunting for Majorana Fermions

Majorana fermions are not so easy to realise experimentally:

* Quasiparticles in some fractional guantum Hall states”
* Unconventional superconductors, e.g. SroRuO47

* Proximity effect devices (superconductors coupled to Tls, semiconductors or magnetic atoms...)

spin-orbit coupled nanowire with proximity induced s-wave pairing spin-orbit coupling can

E provide a route to
“spinless”
superconductivity

" _x ..... _. f_.u.

Review: Leijnse et  — _kSO 0 kso k
al., Semicond. Sci.

Techn0(|-2§17,2)1 24003 Mounting experimental evidence, see recent review : Lutchyn et al., arXiv:1707.0489

Superconductor \

Vgl VgQ —




And now...

Symmetry Dimensionality d
rgg:al Pa}fgge_ Chirt| 1 2 3 4 5 6 7 8
Clgss| 0 0 0 O %Z 0 Z 0 Z 0 Z <— Quantum Hall
AIILl 0O 0 1 Z 0 Z 0 Z 0 Z 0
Al 1 0 0 O 0 0 Z 0 Zo Zo Z
BDI| 1 ' 1 Z 0 0 0 Z 0 Zo Zo <«— SSHModel
D 0 0| Zs Z 0 0 0 Z 0 Zo «— Topological
DIl —1 1 1 Zo Zo 7 0 0 0 7 0 Superconductors
AIL| =1 0 0| 0 Z Z2 Z 0 0 0 7 < 'opoodea
clr| -1 -1 1 Zo 0 Zo Zo Z 0O 0 O
C 0 —1 0 0O Z 0 Zo Zo Z 0 0
CI 1 —1 1 0O 0 Z 0 Zo Zo Z 0O

Can we realise these topological phases in ultracold atoms and photonics?
Lecture 3 & 4




