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FIG. 1. Graphical depiction of the two-step protocol for the work distribution. At t < 0 a system is in contact with a bath
until thermal equilibrium is reached [panel (a)]. At t = 0+, system and bath are detached, while the energy of the system is
measured. Let the outcome of such measurement be E0

n, which projects the state of the system onto the energy eigenstates��E0
n

↵
[panel (b)]. The system’s Hamiltonian is then changed following to a given protocol and the system evolves according to

the unitary evolution operator U(⌧, 0) for a time ⌧ [panel (c)], at which time it is measured (over the eigenbasis of the new
Hamiltonian). Outcome E⌧

m is achieved, which gives the new state |E⌧
mi [panel (d)]. By repeating this protocol many times a

distribution of values E⌧
m �E0

n is achieved, which embodies the probability distribution of the work done by/on the system as
a result of the protocol that has been implemented.

linearization of the interaction, where the Hamiltonian
is cast into a quadratic form that is more amenable to
analysis. Here, we eschew this simplification, which is
formally valid when the cavity field is strongly driven [9],
and address the full nonlinear optomechanical Hamilto-
nian. We note at this point that the thermodynami-
cal properties of the equivalent linearized model were re-
cently explored by some us in Ref. [10]. By retaining the
full optomechanical coupling, our work therefore aims to
address the out-of-equilibrium thermodynamical behav-
ior of nonlinearly coupled bosonic modes in the quantum
regime, and thus go beyond the results reported in liter-
ature so far.

The remainder of this work is organized as follows: In
Sec. II we introduce the two-measurement protocol nec-
essary to extract the work distribution, and review the
quantum fluctuation relations. Sec. III contains a de-
tailed analysis of the dynamical features of an optome-
chanical system subject to a sudden quench of the cou-
pling parameter and assesses its thermodynamical behav-
ior, first in the case of linear optomechanical coupling and
then in the quadratically-coupled case. Finally, in Sec. IV
we summarize our findings and discuss new perspectives
opened up by this work.

II. WORK DISTRIBUTION AND QUANTUM
FLUCTUATION THEOREMS

Let us consider a system described by a time-
dependent Hamiltonian Ĥ(Gt), whose dependence on
time is realized via the externally tunable parameter Gt.
This parameter, which we refer to as the driving param-

eter, determines the configuration of the system at any
time. Moreover, let us assume that at t = 0 the system
is in thermal equilibrium with a bath at inverse temper-

ature �, and is hence described by the Gibbs state

%̂�(G0

) =
e�� ˆH(G0)

Z(G
0

)
, (1)

where Z(G
0

) = Tr
n

e�� ˆH(G0)

o

is the canonical parti-

tion function of the system. This system is taken out
of equilibrium by applying a chosen transformation that
modifies Gt in time. Here we are concerned with the
statistics of the work done on or by the system when
applying such a protocol. We thus proceed as follows
(cf. Fig. 1 for a graphical depiction of the the pro-
cess): At time t = 0+ the system is detached from the
reservoir and a projective energy measurement is per-
formed on the system in the energy eigenbasis of Ĥ(G

0

),
yielding an eigenstate which we label

�

�E0

n

↵

. The driv-
ing parameter is changed according to the aforemen-
tioned transformation until a final time ⌧ . During this
period, the state of the system evolves as dictated by
the action of the unitary evolution operator Û⌧,0 on
the post-measurement state. Finally, a second projec-
tive energy measurement is made on the system, this
time in the eigenbasis of Ĥ(G⌧ ) and yielding eigenstate
|E⌧

mi. Given the spectral decompositions of the initial
and final Hamiltonians, Ĥ(G

0

) =
P

n E
0

n

�

�E0

n

↵ ⌦

E0

n

�

� and

Ĥ(G⌧ ) =
P

m E⌧
m |E⌧

mi hE⌧
m|, respectively, the energy

di↵erence between the two outcomes E⌧
m � E0

n may be
interpreted as the work performed by the external driv-
ing in a single realization of the protocol. This particular
value of the work occurs with probability p0np

⌧
m|n, where

p0n = e��E0
n/Z(G

0

) keeps track of the initial thermal
statistics, while p⌧m|n = | hE⌧

m| Û⌧,0

�

�E0

n

↵ |2 embodies the
transition probability arising from the change of basis.
The work performed due to the protocol described above
can be characterized by a stochastic variable W following
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Figure 2. Reconstruction of the state of the system. a, (b), Evo-
lution of the Bloch vector of the forward (backward) spin-1/2 state
⇢F

t (⇢B
⌧�t) during a quench of the transverse magnetic field, obtained

via quantum state tomography. A sampling of 21 intermediate steps
has been used. The initial magnetization (gray arrow) is parallel to
the external driven rf-field, aligned along positive x (y) axis for the
forward (backward) process. The final state is represented as a red
(blue) arrow. c, Polar projection (indicating only the magnetization
direction) of the Bloch sphere with the trajectories of the spin. Green
lines represent the path followed in a quasistatic (⌧! 1) process.

tions of the quantum work W along single realizations. It
holds for any driving protocol, even beyond the linear re-
sponse regime, and is a generalization of the second law to
which it reduces on average, h⌃i = �(hWi � �F) � 0.

We experimentally verify the arrow of time expressed by
Eq. (1) by determining both sides of the equation indepen-
dently. We first evaluate the Kullback-Leibler relative entropy
between forward and backward dynamics by tracking the state
of the spin-1/2 at any time t with the help of quantum state to-
mography [5]. Figure 2 shows reconstructed trajectories fol-
lowed by the Bloch vector, for both forward and backward
processes, for different quench times. As a second step, we
measure the probability distribution P(⌃) of the irreversible
entropy production using the Tasaki-Crooks relation (2). Em-
ploying NMR spectroscopy [5] and the method described in
refs. [23, 27, 28] (see Supporting Information), we determine
the forward and backward work distributions, PF,B(W), from
which we extract �, W and �F, and hence the entropy pro-

Figure 3. Distribution of irreversible entropy production. Black
dots represent the measured negative and positive values of the en-
tropy production ⌃ of the spin-1/2 system after a quench of the trans-
verse magnetic field of duration ⌧ = 100 µs. The mean entropy pro-
duction (red dashed line) is positive in agreement with the second
law.

duced during each process. The measured nonequilibrium en-
tropy distribution is shown in Fig. 3. It is discrete as expected
for a quantum system. We further observe that both positive
and negative values occur owing to the stochastic nature of
the problem. However, the mean entropy production is posi-
tive (red line) in full agreement with the Clausius inequality,
h⌃i � 0, for an isolated system. We have thus directly tested
one of the fundamental expressions of the second law of ther-
modynamics at the level of an isolated quantum system [3].

A comparison of the mean entropy production with the
Kullback-Leibler relative entropy between forward and back-
ward states is displayed in Fig. 4 as a function of the quench
time. We observe good agreement between the two quantities
within experimental errors that are due to inhomogeneities in
the driving rf-field and to non-idealities of the field modula-
tion. These results provide a first experimental confirmation
of Eq. (1) and the direct verification of the thermodynamic
arrow of time in a driven quantum system. They quantify in
a precise manner the intuitive notion that the faster a system
is driven away from thermal equilibrium (i.e. the bigger the
mean entropy production / the shorter the driving time ⌧), the
larger the degree of irreversibility, as measured by the relative
entropy between a process and its time reverse.

In the linear response regime [3], Onsager has derived
generic expressions for the entropy production which form the
backbone of standard nonequilibrium thermodynamics. These
results are, however, limited to systems that are driven close to
thermal equilibrium. By contrast, Eq. (1) holds for any driv-
ing protocol and thus arbitrarily far from equilibrium. In order
to check the general validity of Eq. (1), we use the linear re-
sponse (LR) approximation of the mean work [17], hWLRi =
�F + ��W2/2, where �W2 is the variance of the work, to ob-
tain the mean entropy production h⌃LRi = �2�W2/2. Figure 5
shows the experimental values of h⌃i and h⌃LRi as a function
of the quench duration. We note that the measured irreversible
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Irreversibility is one of the most intriguing concepts
in physics. While microscopic physical laws are per-
fectly reversible, macroscopic average behavior has a
preferred direction of time. According to the second law
of thermodynamics, this arrow of time is associated with a
positive mean entropy production. Using an NMR setup,
we measure the nonequilibrium entropy produced in an
isolated spin-1/2 system following fast quenches of an
external magnetic field and experimentally demonstrate
that it is equal to the entropic distance, expressed by
the Kullback-Leibler divergence, between a microscopic
process and its time-reverse. This result provides a mi-
croscopic foundation of irreversibility beyond the linear
response regime and quantifies the physical origin of the
arrow of time in a quantum setting.

The microscopic laws of classical and quantum mechanics
are time symmetric, and hence reversible. However, paradox-
ically, macroscopic phenomena are not time-reversal invariant
[1, 2]. This fundamental asymmetry defines a preferred direc-
tion of time that is characterized by a mean entropy produc-
tion that, regardless of the details and nature of the evolution
at hand, is bound to be positive by the second law of thermo-
dynamics [3]. Since its introduction by Eddington in 1927 [4],
the thermodynamic arrow of time has not been tested experi-
mentally at the level of a quantum system.

Introduced by Clausius in the form of an uncompensated
heat, the importance of the entropy production in nonequilib-
rium statistical physics has been recognized by Onsager and
further developed by Meixner, de Groot and Prigogine [6].
Defined as ⌃ = �(W � �F), for a system at constant inverse
temperature � = 1/(kBT ), where W is the total work done on
the system and �F the free energy difference (kB is the Boltz-
mann constant), it plays an essential role in the evaluation of
the efficiency of thermal machines, from molecular motors to
car engines [3].

Starting with Boltzmann’s work on the so-called H-
theorem, the quest for a general microscopic expression for
the entropy production, especially far from equilibrium, has
been a challenge for more than a century [1]. In the last years,
formulas for the entropy production and entropy production
rate in terms of the microscopic density operator ⇢ of the sys-
tem have been obtained for relaxation [7], transport [8], and
driven processes in closed and open quantum systems [9, 10].
At the same time, the recent development of fluctuation the-
orems [11, 12] has led to a sharpening of the formulation of
the second law. In small systems, thermal and quantum fluc-
tuations are both significant, and fluctuation theorems quan-
tify the occurrence of negative entropy production events dur-
ing individual processes [13]. In particular, the average en-
tropy production has been related to the Kullback-Leibler rel-
ative entropy between states ⇢F

t and ⇢B
⌧�t along the forward and

backward (i.e. time reversed) dynamics [14–16] (see Fig. 1),

h⌃i = S
⇣
⇢F

t k ⇢B
⌧�t

⌘
= tr
h
⇢F

t

⇣
ln ⇢F

t � ln ⇢B
⌧�t

⌘i
. (1)

The above equation quantifies irreversibility at the micro-
scopic quantum level and for the most general dynamical pro-
cess responsible for the evolution of a driven closed system.

A process is thus reversible, h⌃i = 0, if forward and backward
microscopic dynamics are undistinguishable. Nonequilibrium
entropy production and its fluctuations have been measured
in various classical systems, ranging from biomolecules [17]
and colloidal particles [18] to levitated nanoparticles [19] (see
refs. [20, 21] for a review). Evidence for time asymmetry has
been further observed for a driven classical Brownian particle
and its electrical counterpart [22]. However, quantum experi-
ments have remained elusive so far, owing to the difficulty to
measure thermodynamic quantities in the quantum regime. To
date, Eq. (1) has thus never been tested.

In order to investigate the physical origin of irreversibil-
ity, we consider a nuclear spin-1/2 system (13C in a chloro-
form molecule liquid sample), initially prepared in a thermal
state ⇢eq

0 at inverse temperature �. The system is driven out
of equilibrium to the state ⇢F

⌧ by a fast quench of its Hamilto-
nian (denoted asHF

t in this forward process) lasting a time ⌧.
We experimentally realize this quench by a transverse time-
modulated radio-frequency (rf) field set at the frequency of
the nuclear spin (see Materials and Methods). We study pro-
cesses of maximal duration ⌧ ⇠ 10�4s, which is much shorter
than any relevant decoherence time of the system (a few sec-
onds). The dynamics of the spin is therefore unitary to a very
good degree of accuracy. We implement the backward pro-
cess, shown in Fig. 1, by driving the system with the time-
reversed Hamiltonian,HB

t = HF
⌧�t, from the equilibrium state,

⇢eq
⌧ = exp(��HF

⌧ )/Z⌧, that corresponds to the final Hamil-
tonian HF

⌧ (Zt here denotes the partition function at time t).
Work is performed on the system during forward and back-
ward processes. The corresponding probability distributions,
PF,B(W), are related via the Tasaki-Crooks fluctuation relation
[24–26]

PF (W) /PB (�W) = e�(W��F). (2)

Equation (2) characterizes the positive and negative fluctua-

Figure 1. Evolution along forward and backward processes. A
quantum system (with Hamiltonian HF

0 ) is initially prepared in a
thermal state ⇢eq

0 at inverse temperature �. It is driven by a fast quench
into the nonequilibrium state ⇢F

⌧ along a forward protocol described
by the Hamiltonian HF

t . In the backward process, the system starts
in the equilibrium state ⇢eq

⌧ corresponding to the final Hamiltonian
HF
⌧ and is driven by the time-reversed HamiltonianHB

t = HF
⌧�t to ⇢B

⌧ .
The entropy production h⌃i at time t is given by the Kullback-Leibler
divergence between forward and backward states ⇢F

t and ⇢B
⌧�t, Eq. (1).
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Figure 4. Quantification of the arrow of time. Average en-
tropy production h⌃i (dashed lines) evaluated through the probability
distribution P(⌃), and Kullback-Leibler divergence S

⇣
⇢F

t k ⇢B
⌧�t

⌘
be-

tween forward and backward states ⇢F
t and ⇢B

⌧�t (dots), reconstructed
through the tomographic measurements, as a function of time for
three different quench durations ⌧ = 100 µs (blue), 500 µs (green),
and 700 µs (red). Good agreement (within experimental uncertain-
ties represented respectively by errors bars and shadowed regions)
between the two quantities is observed, quantifying the arrow of time
Eq. (1).

entropy production h⌃i is distinct from its linear response ap-
proximation h⌃LRi, the difference being more pronounced for
fast quenches (small ⌧), as expected. Figure 5 thus clearly
demonstrates that the quenches implemented in the experi-
ment are performed in the nonlinear response regime. We ad-
ditionally mention that we achieve good agreement between
experimental data (dots) and numerical simulations (dashed
lines) (see Supplementary Material).

Let us finally discuss the physical origin of time asym-
metry in a closed quantum system. Using an argument
put forward by Loschmidt in the classical context, its time
evolution should in principle be fully reversible [1]. How
can then a unitary equation, like the Schrödinger equation,
lead to Eq. (1) that contains a strictly nonnegative relative
entropy? The answer to this puzzling question lies in the
observation that the description of physical processes re-
quires both equations of motion and initial conditions [1].
The choice of an initial thermal equilibrium state singles
out a particular value of the entropy, breaks time-reversal
invariance and thus leads to the arrow of time. The dynam-
ics can only be fully reversible for a genuine equilibrium
process for which the entropy production vanishes at all times.

Materials and Methods.
Experimental set-up. We use a liquid-state sample of 50 mg of 99%
13C-labeled CHCl3 (chloroform) diluted in 0.7 ml of 99.9% deutered
Acetone-d6, in a flame sealed Wildmad LabGlass 5 mm tube. The
measurements are carried out in a Varian 500 MHz Spectrometer us-
ing a double-resonance probe-head equipped with a magnetic field
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experimental data (dots) and numerical simulations (dashed
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entropy? The answer to this puzzling question lies in the
observation that the description of physical processes re-
quires both equations of motion and initial conditions [1].
The choice of an initial thermal equilibrium state singles
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Figure 2. Reconstruction of the state of the system. a, (b), Evo-
lution of the Bloch vector of the forward (backward) spin-1/2 state
⇢F

t (⇢B
⌧�t) during a quench of the transverse magnetic field, obtained

via quantum state tomography. A sampling of 21 intermediate steps
has been used. The initial magnetization (gray arrow) is parallel to
the external driven rf-field, aligned along positive x (y) axis for the
forward (backward) process. The final state is represented as a red
(blue) arrow. c, Polar projection (indicating only the magnetization
direction) of the Bloch sphere with the trajectories of the spin. Green
lines represent the path followed in a quasistatic (⌧! 1) process.

tions of the quantum work W along single realizations. It
holds for any driving protocol, even beyond the linear re-
sponse regime, and is a generalization of the second law to
which it reduces on average, h⌃i = �(hWi � �F) � 0.

We experimentally verify the arrow of time expressed by
Eq. (1) by determining both sides of the equation indepen-
dently. We first evaluate the Kullback-Leibler relative entropy
between forward and backward dynamics by tracking the state
of the spin-1/2 at any time t with the help of quantum state to-
mography [5]. Figure 2 shows reconstructed trajectories fol-
lowed by the Bloch vector, for both forward and backward
processes, for different quench times. As a second step, we
measure the probability distribution P(⌃) of the irreversible
entropy production using the Tasaki-Crooks relation (2). Em-
ploying NMR spectroscopy [5] and the method described in
refs. [23, 27, 28] (see Supporting Information), we determine
the forward and backward work distributions, PF,B(W), from
which we extract �, W and �F, and hence the entropy pro-

Figure 3. Distribution of irreversible entropy production. Black
dots represent the measured negative and positive values of the en-
tropy production ⌃ of the spin-1/2 system after a quench of the trans-
verse magnetic field of duration ⌧ = 100 µs. The mean entropy pro-
duction (red dashed line) is positive in agreement with the second
law.

duced during each process. The measured nonequilibrium en-
tropy distribution is shown in Fig. 3. It is discrete as expected
for a quantum system. We further observe that both positive
and negative values occur owing to the stochastic nature of
the problem. However, the mean entropy production is posi-
tive (red line) in full agreement with the Clausius inequality,
h⌃i � 0, for an isolated system. We have thus directly tested
one of the fundamental expressions of the second law of ther-
modynamics at the level of an isolated quantum system [3].

A comparison of the mean entropy production with the
Kullback-Leibler relative entropy between forward and back-
ward states is displayed in Fig. 4 as a function of the quench
time. We observe good agreement between the two quantities
within experimental errors that are due to inhomogeneities in
the driving rf-field and to non-idealities of the field modula-
tion. These results provide a first experimental confirmation
of Eq. (1) and the direct verification of the thermodynamic
arrow of time in a driven quantum system. They quantify in
a precise manner the intuitive notion that the faster a system
is driven away from thermal equilibrium (i.e. the bigger the
mean entropy production / the shorter the driving time ⌧), the
larger the degree of irreversibility, as measured by the relative
entropy between a process and its time reverse.

In the linear response regime [3], Onsager has derived
generic expressions for the entropy production which form the
backbone of standard nonequilibrium thermodynamics. These
results are, however, limited to systems that are driven close to
thermal equilibrium. By contrast, Eq. (1) holds for any driv-
ing protocol and thus arbitrarily far from equilibrium. In order
to check the general validity of Eq. (1), we use the linear re-
sponse (LR) approximation of the mean work [17], hWLRi =
�F + ��W2/2, where �W2 is the variance of the work, to ob-
tain the mean entropy production h⌃LRi = �2�W2/2. Figure 5
shows the experimental values of h⌃i and h⌃LRi as a function
of the quench duration. We note that the measured irreversible
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Figure 1: NMR pulse-sequence for the reconstruction of the work characteristic functions �

F (u) and �

B (u). a,
Sequence for the forward process (↵ = 0). b, Sequence for the backward process (↵ = ⌧). We start from the pseudo-pure state
|0iHh0|⌦ ⇢

eq
↵ . The blue (red) circles represent transverse rf-pulses in the x (y) direction that produce rotations by the displayed

angle. The orange connections represent free evolutions under the scalar interaction, HJ = 2⇡J�H
z �

C
z (with J ⇡ 215.1 Hz),

during the time displayed above each connection. This time-length of the coupling is varied as function of s, which is related
to the conjugate variable u in Eq. (2) as s = 2⇡⌫0u.

one. Controlled-unitary operations are performed using
the natural scalar coupling interaction H

J

= 2⇡J�H
z

�C
z

,
which is proportional to �C

z

, while the initial and final
Hamiltonians HF

0 and HF
⌧

in the forward protocol are
proportional to �C

y

and �C
x

, respectively. This is com-
pensated by the rotations inside the green boxes of fig.
1. Such rotations also account for the fact that the initial
state was prepared in the �C

z

-basis. The same reasoning
is applied in the backward case. The purple boxes in
fig. 1 are a refocus strategy to mitigate the effects of the
transverse relaxation. The quenched dynamics is a conse-
quence of a suitable modulation (amplitude and phase)
of a transverse rf field, which can be described by the
Hamiltonian in Eq. (1) for the forward protocol. The fi-
nal step of the algorithm is the measurement of the free
induced decay (FID) signal of the Hydrogen nuclear spin.
From this signal one can obtain the transverse magneti-
zation, where the characteristic function is encoded as
�F,B (u) = 2

⌦
�H
x

↵
+ 2i

⌦
�H
y

↵
. Application of an inverse

Fourier transform allows us to obtain the work distribu-
tion for the quenched dynamics.

We have measured several experimental configurations,
keeping fixed the initial spin temperature (given by the
weights peq,0(⌧)

n

of the initial Carbon population), and
varying the quench type (forward or backward) and the
quench duration. For each configuration, the interaction
time s of the free evolution under the scalar coupling
in fig. 1 was varied through 360 equally-spaced values;
each realisation corresponds to an independent experi-
ment with an average over a set of identical and inde-
pendent molecules.

A typical output of the characteristic function re-
construction algorithm is shown in fig. 2a, where each

Figure 2: Typical output of the interferometric circuit

shown in fig. 1, for a forward quench of time-length

⌧ = 100µs. a, Blue and red symbols (lines) correspond to the
real and imaginary parts of the characteristic function �

F (u)
(where u = (2⇡⌫0)

�1
s), i.e., the experimentally measured x

and y components of the 1H transverse magnetization dis-
played in arbitrary units (a. u.), as function of the adimen-
sional parameter s. b, Work distribution P

F(W ) obtained
from the inverse Fourier transform of the the characteristic
function. c and d, Same as panels a and b, but after sub-
tracting the noise in the Fourier analyses.

data point corresponds to an independent experiment
for each scalar interaction parameter s. The in-
verse Fourier transform of the transverse magnetiza-
tion (the work distribution PF(W )) is displayed in
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|0iHh0|⌦ ⇢

eq
↵ . The blue (red) circles represent transverse rf-pulses in the x (y) direction that produce rotations by the displayed

angle. The orange connections represent free evolutions under the scalar interaction, HJ = 2⇡J�H
z �

C
z (with J ⇡ 215.1 Hz),

during the time displayed above each connection. This time-length of the coupling is varied as function of s, which is related
to the conjugate variable u in Eq. (2) as s = 2⇡⌫0u.

one. Controlled-unitary operations are performed using
the natural scalar coupling interaction H

J

= 2⇡J�H
z

�C
z

,
which is proportional to �C

z

, while the initial and final
Hamiltonians HF

0 and HF
⌧

in the forward protocol are
proportional to �C

y

and �C
x

, respectively. This is com-
pensated by the rotations inside the green boxes of fig.
1. Such rotations also account for the fact that the initial
state was prepared in the �C

z

-basis. The same reasoning
is applied in the backward case. The purple boxes in
fig. 1 are a refocus strategy to mitigate the effects of the
transverse relaxation. The quenched dynamics is a conse-
quence of a suitable modulation (amplitude and phase)
of a transverse rf field, which can be described by the
Hamiltonian in Eq. (1) for the forward protocol. The fi-
nal step of the algorithm is the measurement of the free
induced decay (FID) signal of the Hydrogen nuclear spin.
From this signal one can obtain the transverse magneti-
zation, where the characteristic function is encoded as
�F,B (u) = 2

⌦
�H
x

↵
+ 2i

⌦
�H
y

↵
. Application of an inverse

Fourier transform allows us to obtain the work distribu-
tion for the quenched dynamics.

We have measured several experimental configurations,
keeping fixed the initial spin temperature (given by the
weights peq,0(⌧)

n

of the initial Carbon population), and
varying the quench type (forward or backward) and the
quench duration. For each configuration, the interaction
time s of the free evolution under the scalar coupling
in fig. 1 was varied through 360 equally-spaced values;
each realisation corresponds to an independent experi-
ment with an average over a set of identical and inde-
pendent molecules.

A typical output of the characteristic function re-
construction algorithm is shown in fig. 2a, where each

Figure 2: Typical output of the interferometric circuit

shown in fig. 1, for a forward quench of time-length

⌧ = 100µs. a, Blue and red symbols (lines) correspond to the
real and imaginary parts of the characteristic function �

F (u)
(where u = (2⇡⌫0)

�1
s), i.e., the experimentally measured x

and y components of the 1H transverse magnetization dis-
played in arbitrary units (a. u.), as function of the adimen-
sional parameter s. b, Work distribution P

F(W ) obtained
from the inverse Fourier transform of the the characteristic
function. c and d, Same as panels a and b, but after sub-
tracting the noise in the Fourier analyses.

data point corresponds to an independent experiment
for each scalar interaction parameter s. The in-
verse Fourier transform of the transverse magnetiza-
tion (the work distribution PF(W )) is displayed in

3

Figure 2. Reconstruction of the state of the system. a, (b), Evo-
lution of the Bloch vector of the forward (backward) spin-1/2 state
⇢F

t (⇢B
⌧�t) during a quench of the transverse magnetic field, obtained

via quantum state tomography. A sampling of 21 intermediate steps
has been used. The initial magnetization (gray arrow) is parallel to
the external driven rf-field, aligned along positive x (y) axis for the
forward (backward) process. The final state is represented as a red
(blue) arrow. c, Polar projection (indicating only the magnetization
direction) of the Bloch sphere with the trajectories of the spin. Green
lines represent the path followed in a quasistatic (⌧! 1) process.

tions of the quantum work W along single realizations. It
holds for any driving protocol, even beyond the linear re-
sponse regime, and is a generalization of the second law to
which it reduces on average, h⌃i = �(hWi � �F) � 0.

We experimentally verify the arrow of time expressed by
Eq. (1) by determining both sides of the equation indepen-
dently. We first evaluate the Kullback-Leibler relative entropy
between forward and backward dynamics by tracking the state
of the spin-1/2 at any time t with the help of quantum state to-
mography [5]. Figure 2 shows reconstructed trajectories fol-
lowed by the Bloch vector, for both forward and backward
processes, for different quench times. As a second step, we
measure the probability distribution P(⌃) of the irreversible
entropy production using the Tasaki-Crooks relation (2). Em-
ploying NMR spectroscopy [5] and the method described in
refs. [23, 27, 28] (see Supporting Information), we determine
the forward and backward work distributions, PF,B(W), from
which we extract �, W and �F, and hence the entropy pro-

Figure 3. Distribution of irreversible entropy production. Black
dots represent the measured negative and positive values of the en-
tropy production ⌃ of the spin-1/2 system after a quench of the trans-
verse magnetic field of duration ⌧ = 100 µs. The mean entropy pro-
duction (red dashed line) is positive in agreement with the second
law.

duced during each process. The measured nonequilibrium en-
tropy distribution is shown in Fig. 3. It is discrete as expected
for a quantum system. We further observe that both positive
and negative values occur owing to the stochastic nature of
the problem. However, the mean entropy production is posi-
tive (red line) in full agreement with the Clausius inequality,
h⌃i � 0, for an isolated system. We have thus directly tested
one of the fundamental expressions of the second law of ther-
modynamics at the level of an isolated quantum system [3].

A comparison of the mean entropy production with the
Kullback-Leibler relative entropy between forward and back-
ward states is displayed in Fig. 4 as a function of the quench
time. We observe good agreement between the two quantities
within experimental errors that are due to inhomogeneities in
the driving rf-field and to non-idealities of the field modula-
tion. These results provide a first experimental confirmation
of Eq. (1) and the direct verification of the thermodynamic
arrow of time in a driven quantum system. They quantify in
a precise manner the intuitive notion that the faster a system
is driven away from thermal equilibrium (i.e. the bigger the
mean entropy production / the shorter the driving time ⌧), the
larger the degree of irreversibility, as measured by the relative
entropy between a process and its time reverse.

In the linear response regime [3], Onsager has derived
generic expressions for the entropy production which form the
backbone of standard nonequilibrium thermodynamics. These
results are, however, limited to systems that are driven close to
thermal equilibrium. By contrast, Eq. (1) holds for any driv-
ing protocol and thus arbitrarily far from equilibrium. In order
to check the general validity of Eq. (1), we use the linear re-
sponse (LR) approximation of the mean work [17], hWLRi =
�F + ��W2/2, where �W2 is the variance of the work, to ob-
tain the mean entropy production h⌃LRi = �2�W2/2. Figure 5
shows the experimental values of h⌃i and h⌃LRi as a function
of the quench duration. We note that the measured irreversible
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Figure 4. Quantification of the arrow of time. Average en-
tropy production h⌃i (dashed lines) evaluated through the probability
distribution P(⌃), and Kullback-Leibler divergence S

⇣
⇢F

t k ⇢B
⌧�t

⌘
be-

tween forward and backward states ⇢F
t and ⇢B

⌧�t (dots), reconstructed
through the tomographic measurements, as a function of time for
three different quench durations ⌧ = 100 µs (blue), 500 µs (green),
and 700 µs (red). Good agreement (within experimental uncertain-
ties represented respectively by errors bars and shadowed regions)
between the two quantities is observed, quantifying the arrow of time
Eq. (1).

entropy production h⌃i is distinct from its linear response ap-
proximation h⌃LRi, the difference being more pronounced for
fast quenches (small ⌧), as expected. Figure 5 thus clearly
demonstrates that the quenches implemented in the experi-
ment are performed in the nonlinear response regime. We ad-
ditionally mention that we achieve good agreement between
experimental data (dots) and numerical simulations (dashed
lines) (see Supplementary Material).

Let us finally discuss the physical origin of time asym-
metry in a closed quantum system. Using an argument
put forward by Loschmidt in the classical context, its time
evolution should in principle be fully reversible [1]. How
can then a unitary equation, like the Schrödinger equation,
lead to Eq. (1) that contains a strictly nonnegative relative
entropy? The answer to this puzzling question lies in the
observation that the description of physical processes re-
quires both equations of motion and initial conditions [1].
The choice of an initial thermal equilibrium state singles
out a particular value of the entropy, breaks time-reversal
invariance and thus leads to the arrow of time. The dynam-
ics can only be fully reversible for a genuine equilibrium
process for which the entropy production vanishes at all times.

Materials and Methods.
Experimental set-up. We use a liquid-state sample of 50 mg of 99%
13C-labeled CHCl3 (chloroform) diluted in 0.7 ml of 99.9% deutered
Acetone-d6, in a flame sealed Wildmad LabGlass 5 mm tube. The
measurements are carried out in a Varian 500 MHz Spectrometer us-
ing a double-resonance probe-head equipped with a magnetic field
gradient coil. We encode two qubits in the nuclear spins of 1H and

Figure 5. Nonlinear response regime. Mean entropy production
h⌃i (blue dots) and its linear response approximation h⌃LRi (green
dots) as a function of the quench time. The difference between the
two values, especially for fast quenches (small ⌧), demonstrates that
the experiment has been performed in the nonlinear response regime.
The dashed lines represent the results of numerical simulations.

13C in our molecular sample [5, 29, 30]. The 1H qubit is used as an
ancillary system for the reconstruction of the work and entropy pro-
duction statistics of the 13C quenched dynamics, applying the meth-
ods described in the Supporting Information. The chloroform sam-
ple can be regarded as a collection of identically prepared spin-1/2
systems [29]. The sample is placed in the presence of a longitudinal
static magnetic field (whose direction is taken to be along the positive
z axes) with strong intensity, B0 ⇡ 11.75 T. The 1H and 13C nuclear
spins precess around B0 with Larmor frequencies !H/2⇡ ⇡ 500 MHz
and !C/2⇡ ⇡ 125 MHz, respectively. We control the system mag-
netization through rf-field pulses in the transverse (x and y) direc-
tion [30]. The initial thermal state of the 13C nuclear spin is prepared
by suitable sequences of transversal rf-field and longitudinal field-
gradient pulses. We use the value kBT/h = 1.56± 0.07 kHz through-
out the experiment for the initial 13C nuclear spin thermal states.

The spin-lattice relaxation times, measured by inversion recovery
pulse sequence, are (T H

1 ,T C
1 ) ⇡ (7.36, 10.55) s. The transverse relax-

ation, obtained by CPMG pulse sequence, have characteristic times
(T H

2 ,T C
2 ) ⇡ (4.76, 0.33) s. The total data acquisition time involves

an interferometric strategy (described in the Supplementary Informa-
tion), which vary from 0.1 ms to about 126 ms, being smaller than
T H,C

1 . This enables us to disregard any energy exchange with the sys-
tem surround environment during the quench dynamics. The effects
of the Carbon transverse relaxation (T C

2 ) can be partially overcome
by a refocus strategy in the reconstruction procedure. It only limits
the resolution of the inverse Fourier transform employed to obtain
the distribution of entropy production shown in Fig. 3 (see Supple-
mentary Information).
Driving Hamiltonian. In a rotating frame at the spin Larmor fre-
quency, the Hamiltonian regulating the forward process (on the Car-
bon nuclear spin) is

HF
t = 2⇡~⌫ (t)

⇣
�C

x cos �(t) + �C
y sin �(t)

⌘
, (3)

with �C
x,y,z the Pauli spin operators, �(t) = ⇡t/(2⌧), and

⌫(t) = ⌫0 (1 � t/⌧) + ⌫⌧t/⌧ the (linear) modulation of the rf-field
frequency over time ⌧, from value ⌫0 = 1.0 kHz to ⌫⌧ = 1.8 kHz. The



Entropy production 
in open systems

�S �
Z

�Q

T
Second Law: 

Clausius: “Uncompensated transformation” Entropy production

Rudolf Clausius

�S = ⌃ +

Z
�Q

T

Stationary state ⇧s = ��s

Entropy production rate

Entropy flux rate

⇧(t)

�(t)

dS

dt
= �(t) +⇧(t)

2

c d

ba

a b

(a) (b)

(c) (d)

FIG. 1. Schematic diagrams of the entropy production pro-
cess and the configuration of the system: (a) The driven-
dissipative system, consisting of the coupled subsystems a
and b, reaches a NESS with an associated entropy production
rate ⇧s and an entropy flux �s from the system to the en-
vironment. (b) Both systems can be modelled as two quan-
tum harmonic oscillators at frequencies !a and !b, linearly
coupled with a strength gab. Each oscillator is coupled to
independent local baths at temperature Ta and Tb, respec-
tively. The corresponding coupling rates are a and �b. The
oscillators can be pumped by an external field (purple and
orange arrows in the figure). (c) Optomechanical setup: a
micro-mechanical oscillator (�q̂b) is coupled to the field mode
of an optical Fabry-Perot cavity (�q̂a). For this setup only
the cavity is pumped. (d) Cavity-BEC setup: the external
degree of freedom of a BEC (�q̂b) is coupled to the field mode
of a cavity (�q̂a). For this setup only the atoms are pumped.
Red and blue wiggly lines indicate heating or cooling of the
subsystems via coupling to the baths. In both setups, Ta = 0.

optomechanical device and a BEC with cavity-mediated
long-range interactions [11–13]. The required measure-
ments are based on the spectra of the light fields leaking
out of the respective cavities. Remarkably, the entropy
production reflects the specific features of the two ex-
perimental platforms addressed in our study, which are
very di↵erent in nature despite the common description
provided here.

In cavity-optomechanical systems, the cavity photon
number is coupled to the position of the mechanical os-
cillator (see Fig. 1(c)). Our specific implementation uses
a Fabry-Perot cavity. One of its mirrors is a doubly
clamped, highly reflective, mechanical cantilever. Ra-
diation pressure couples the intra-cavity photon number
to the position of the cantilever. The mechanical support
of the cantilever provides a local heat bath at room tem-
perature. The optical cavity is driven by a laser that is
red-detuned by the mechanical frequency from the opti-
cal cavity resonance. For a driving laser without classi-
cal noise, the cavity mode is coupled to a zero-excitation
heat bath. We observe sideband cooling of the mechan-
ical motion [14–17] and, for large drive powers, strong
optomechanical coupling [18, 19]. To analyse the entropy
production rate of the cavity-optomechanical system, we
measure the light reflected o↵ the cavity via homodyne

detection.
Also in the second implementation, the two coupled

harmonic oscillators correspond to a light field mode cou-
pled to a mechanical degree of freedom (see Fig 1(d)).
We load a BEC into a high-finesse optical cavity and
illuminate the atoms with a standing-wave transverse
laser field. Far-o↵ resonant scattering of photons from
the laser field into a near-detuned, initially empty cavity
field mode, couples the zero-momentum mode of the BEC
to an excited momentum mode. The scattering process
mediates e↵ective atom-atom interactions, which are of
long-range, since the photons are delocalized in the cav-
ity mode [13]. This interaction is tunable in strength via
the power of the transverse laser beam. The long-range
interaction can be brought to competition with the ki-
netic energy of the atoms, resulting in a structural phase
transition. In the spatially homogeneous phase, for in-
creasing interaction, the energy of the excited momentum
mode softens, until at a critical interaction strength the
system breaks a discrete symmetry and the atoms ar-
range in a spatially modulated density distribution. The
equivalence of this system to a Dicke model has been
demonstrated in Ref. [12]. We measure the cavity light
field leaking through the mirrors with a heterodyne de-
tection setup. The spectral analysis of this signal is used
to infer the diverging amount of atomic density fluctua-
tions accompanying the structural phase transition [20].

In both cases, the e↵ective interaction between the os-
cillators is obtained by a harmonic expansion of the field
operators around their mean values, resulting in two lin-
early coupled quantum oscillators (see Fig. 1(b)). We
denote with �q̂

a,b

and �p̂
a,b

the position and momentum
fluctuation operators around the mean-field values of the
two oscillators. In what follows, a and b refer to the opti-
cal and mechanical/atomic oscillators, respectively. In a
frame rotating at the frequency !

p

of the respective pump
fields, the oscillators have frequencies !

a

= !
c

� !
p

and
!

b

(here !
c

is the frequency of the cavity field). Their
interaction is described by the Hamiltonian

Ĥ =
~!

a

2
(�q̂2

a

+ �p̂2

a

)+
~!

b

2
(�q̂2

b

+ �p̂2

b

)+~g
ab

�q̂
a

�q̂
b

, (2)

where g
ab

is the coupling strength between the modes. In
the superradiant phase of the Dicke model, an additional
squeezing term of the atomic mode must be included in
the Hamiltonian [13]. For the derivation of the models
and the values of the parameters in the two setups, we
refer to the Supplementary Information (SI) and to Ta-
ble I. The systems are inherently open: each harmonic
oscillator is independently coupled to a local bath. This
provides both a dissipation channel and extra quantum
fluctuations in addition to those present in the closed
systems. The optical cavity mode is coupled to the sur-
rounding electromagnetic vacuum with a decay rate 

a

.
On the other hand, the nature of the mechanical/atomic
bath is specific to the setup being considered. In the op-
tomechanical system, the coupling of the vibrating mirror
to the background of phonon modes is described in terms

EnvironmentT

⇧,� are not observable. No continuity equation for entropy



Entropy production 
which entropy to use?

2

of systems considered) with the Wigner entropy [20]

S = �
Z

d2↵ W(↵⇤,↵) ln W(↵⇤,↵). (2)

Here W(↵⇤,↵) is the Wigner function and the integral is over
the complex plane (as the state is Gaussian, W > 0 and hence
S is real). This link between S and S 2 allows for a funda-
mental simplification of the problem of characterizing entropy
production, as one can map the open system dynamics into a
Fokker-Planck equation for W and hence employ tools of clas-
sical stochastic processes to obtain simple expressions for ⇧
and �. This idea was already used in Refs. [21, 22] via a
quantum-to-classical correspondence to treat the case of sim-
ple heat baths. Here, instead, we present a full quantum me-
chanical treatment and show how to extend the framework to
treat squeezed and dephasing reservoirs. The generalization
to other types of baths is straightforward.

We shall assume that the system is modeled by a Lindblad
master equation of the form

@t⇢ = �i[H, ⇢] +D(⇢), (3)

where ⇢ is the density matrix of the system, H is its Hamilto-
nian, andD(⇢) describes the process arising from its coupling
to the external reservoir. Let ⇢⇤ denote the target state ofD(⇢)
(for thermal baths ⇢⇤ = ⇢eq = e��H/Z). In Refs. [23–26], it
was shown that the von Neumann entropy production rate can
be defined as

⇧vN = �@tKvN(⇢|⇢⇤), (4)

where KvN(⇢|⇢⇤) = tr[⇢ ln(⇢/⇢⇤)] is the von Neumann relative
entropy. Eq. (4) satisfies several properties expected from an
entropy production. We have ⇧vN � 0 always with the equal-
ity valid only for ⇢ = ⇢⇤. For thermal baths, the correspond-
ing total entropy production, when interpreted as a stochastic
quantity, satisfies an integral fluctuation theorem [26]. More-
over, in this case Eq. (4) may be factored in the form of Eq. (1),
with S (t) being the von Neumann entropy S vN = � tr(⇢ ln ⇢)
and

�vN(t) = � 1
T

tr


HD(⇢)
�

:=
�E

T
, (5)

where �E is the energy flux from the system to the environ-
ment. This is a well known result of classical thermodynam-
ics, relating heat and entropy flux.

Despite their clear physical interpretation, Eqs. (4) and (5)
su↵er from the problem that they diverge in the limit T ! 0.
This is related to the divergence of the relative entropy when
the reference state tends to a pure state [27, 28]. This di-
vergence is clearly an inconsistency of the theory. The limit
T ! 0 is frequently used in quantum optics and the dynamics
is known to be well behaved and to correctly reproduce ex-
perimental results in several situations. In fact, even dS/ dt
remains finite in this limit, and only ⇧ and � diverge. In the
past, several attempts have been made to overcome this prob-
lem [27–32] but a consistent theory is still lacking. To obtain

a framework which does not su↵er from this deficiency is an-
other motivation for this paper. As we will show, using the
Rényi-2/Wigner entropy avoids this problem entirely.

Thermal bath - We begin the construction of our formalism
by considering a single bosonic mode with H = !(a†a + 1/2)
and dissipator

D(⇢) = �(n̄ + 1)
"

a⇢a† � 1
2
{a†a, ⇢}

#

+ �n̄
"

a†⇢a � 1
2
{aa†, ⇢}

#

.

(6)
Here � is the damping rate of the oscillator and n̄ = (e�!�1)�1

is the mean number of excitations in the bath (� = 1/T is its
inverse temperature). The target state of this dissipator is the
Gibbs thermal state ⇢⇤ = ⇢eq = (1 � e��!)e��!a†a.

We define the Wigner function of the system as

W(↵⇤,↵) =
1
⇡2

Z

d2� e��↵
⇤+�⇤↵ tr

n

⇢ e�a
†��⇤ao , (7)

where � and ↵ are phase space variables. Using standard
operator correspondences, Eq. (3) can be translated into the
Fokker-Planck equation

@tW = �i!


@↵⇤ (↵⇤W) � @↵(↵W)
�

+D(W), (8)

where the dissipative part is written as a divergence in the
complex plane:

D(W) = @↵J(W) + @↵⇤ J⇤(W), (9)

with

J(W) =
�

2



↵W + (n + 1/2)@↵⇤W
�

. (10)

Eq. (8) is a continuity equation in the complex plane. Hence,
J(W) can be interpreted as the irreversible component of the
probability current. This picture is further corroborated by
the fact that J(W) will be zero only in the thermal state
Weq =

1
⇡(n̄+1/2) exp[� |↵|2

n̄+1/2 ]; i.e., J(Weq) = 0. This statement
is stronger than D(Weq) = 0 as it implies that the thermal
equilibrium state is not only a fixed point of the dissipative dy-
namics, but also the state where all probability currents vanish
identically.

Having defined the Wigner entropy as in Eq. (2), we now
define the Wigner entropy production rate as

⇧ = �@tK(W(t)||Weq), (11)

where K(W ||Weq) =
R

d2↵ W ln W/Weq is the Wigner relative
entropy. For a bipartite Gaussian state, this coincides (up to a
constant) with the Rényi-2 mutual information. Inserting the
Fokker-Planck Eq. (8) in Eq. (11) and integrating by parts we
get

⇧ = �
Z

d2↵ D(W) ln(W/Weq). (12)

Next we use Eq. (9) and integrate by parts again to obtain

⇧ =

Z

d2↵
⇢

J
✓@↵W

W
� @↵Weq

Weq

◆

+ ↵! ↵⇤
�

. (13)

⇧vN (t) = �@tSvN (⇢|⇢*t )
H Spohn, J Lebowitz 
S Deffner, E Lutz 
H-P Breuer

For thermal bath: ⇧vN (t) =
dSvN

dt
+ �vN (t)

=
dSvN

dt
� 1

T
Tr[HD(⇢)]

=
dSvN

dt
+

�E(t)

T
Energy flux from system to environment

Rudolf Clausius
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The characterization of irreversibility in general quantum processes is an open problem of increasing techno-
logical relevance. Yet, the tools currently available to this aim are mostly limited to the assessment of dynamics
induced by equilibrium environments, a situation that often does not match the reality of experiments at the
microscopic and mesoscopic scale. We propose a theory of irreversible entropy production that is suited for
quantum systems exposed to general, non-equilibrium reservoirs. We illustrate our framework by addressing a
set of physically relevant situations that clarify both the features and the potential of our proposal.

Introduction - The entropy of an open system, unlike the en-
ergy, does not satisfy a continuity equation: in addition to en-
tropic fluxes exchanged with the environment, some entropy
may also be produced within the system. This contribution is
called the entropy production and, according to the second law
of thermodynamics, it is always non-negative, being zero only
when the system and the environment are in thermal equilib-
rium. It therefore serves as a measure of the irreversibility
of a physical process and may be used to characterize non-
equilibrium systems in a broad range of situations and across
all length scales. In symbols, if S is the entropy of the system,
then its rate of change may always be written as

dS
dt
= ⇧(t) � �(t) (1)

where ⇧ � 0 is the entropy production rate and � is the en-
tropy flux rate, from the system to the environment. The quan-
tities⇧ and� are not direct observables and must therefore be
related to experimentally accessible quantities via a theoreti-
cal framework. Unfortunately, a unified approach for this is
still lacking.

In the past decades, several theories of entropy production
have been developed in di↵erent contexts. The most promi-
nent example is Onsager’s theory of chemical kinetics [1–4],
where the entropy production rate is related to particle and
energy currents. Another widely used framework is that of
Schnakenberg [5, 6], which relates the entropy production rate
with the transition rates of a system governed by a master
equation. The generalization to other classical stochastic pro-
cesses, such as dynamics described by a Fokker-Planck equa-
tion, have also been addressed [7–9].

The extension of these results to mesoscopic systems came
into relevance with the discovery by Gallavotti, Cohen and
collaborators [10, 11] that the total entropy production ⌃ of a
process, when interpreted as a fluctuating quantity of the sys-
tem’s stochastic trajectory, satisfies a fluctuation theorem of
the form he�⌃i = 1, which is valid for processes arbitrarily
far from equilibrium. Similar results were found by Jarzynski
[12] and Crooks [13] for systems undergoing a work proto-
col, where the entropy production is proportional to the irre-
versible work. These developments and, in particular, their

extensions to quantum systems, have shown that in meso and
microscopic systems, quantum fluctuations may play a promi-
nent role in non-equilibrium processes.

Quantum systems also open up the possibility for explor-
ing more general reservoirs, such as dephasing and squeezed
baths [14]. The description of these systems extends beyond
the usual paradigms of equilibrium environments. Despite the
lack of equilibrium at the bath level, one should still be able
to characterize processes by their irreversibility and entropy
production. There is thus a strong need for the identification
of suitable tools that are able to characterize non-equilibrium
processes in a broad class of settings.

The goal of this paper is to derive a theory of entropy
production that is applicable to quantum systems subject to
more general reservoirs. Di↵erently from existing theories,
instead of using the von Neumann entropy, we shall charac-
terize the irreversibility using the Rényi-2 entropy S 2. Both
entropies have similar behavior when used to characterize dis-
order in the state of (generally composite) systems. However,
for a general density matrix ⇢, we have S 2 = � lnP with
P = Tr(⇢2) the purity of the state at hand, which makes the
Rényi-2 entropy much more convenient to manipulate. Al-
though such a convenience appears to be unique of S 2, general
Rényi-↵ entropies S ↵ = (1 � ↵)�1 ln Tr(⇢↵) have been linked
to the thermodynamic properties of quantum systems, from
the formulation of general fluctuation theorems to the deriva-
tion of a family of second laws of thermodynamics [15–17].
It is remarkable that Rényi-↵ entropies tend to the von Neu-
mann one in the asymptotic limit of classical systems. This
strengthens the validity of a reformulation of thermodynamic
irreversibility of microscopic quantum systems in terms of
such entropic quantities. It is in this sense that our investi-
gation on a formulation of entropy production in terms of S 2
should be assessed here. The subtleties implied by the dif-
ferences between the von Neumann and Rényi entropies has
been stressed in Ref. [18].

In this paper, we focus on bosonic systems characterized by
Gaussian states. In this case, P = (det⇥)�1/2 with ⇥ the co-
variance matrix of the Gaussian system [19] and S 2 coincides
(up to an additive constant that only depends on the number

J  Schnakenberger
transition rates of a system
governed by a master equation

Ch. Jarzynski
& Tasaki-Crooks
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which is known as Jarzynski equality [110]. Eq. (4.7) therefore becomes

hW i � �F . (4.9)

The difference between the average work done on the system and the change in
free energy is known as dissipated or irreversible work

W
irr

= hW i � �F (4.10)

and quantifies the amount of work lost on average due to the finite-time nature of
the transformation, since the free energy difference represents the work that could
be extracted by means of a reversible isothermal transformation.

The equalities Eqs. (4.6) and (4.8), referred to as integral fluctuation theorems,
can be “refined” in the form of detailed fluctuation theorems. The latter compare
the system’s dynamics (forward process ‘f’) with its time reversed counterpart
(backward process ‘b’). In particular, the probability of observing a given value
of a quantity like work, heat or entropy in an experiment is compared to the one
that would be observed in the time-reversed dynamics. Both the forward and the
backward process start in an equilibrium state of the initial and final Hamiltonian,
respectively, while at intermediate times the system can be arbitrarily far from
equilibrium. The entropy production satisfies the following detailed fluctuation
theorem [11]

P
f

(+⌃)

P
b

(�⌃)

= e⌃ , (4.11)

which provides a universal constraint in the distribution of the values of the en-
tropy production. We notice that negative values of ⌃ are associated with entropy-
reducing trajectories. Such trajectories are however exponentially suppressed in
the system’s size and hence never observed at the macroscopic scale, in agreement
with the phenomenological statements of thermodynamics [12]. It must be stresses
that Eq. (4.11) does prove the second law of thermodynamics, i.e. does not ex-
plain how irreversibility emerges from microscopically reversible laws of motion,
inasmuch by assuming stochastic Markovian dynamics irreversibility has been put
by hand in the first place.

H Spohn, J Lebowitz 
S Deffner, E Lutz 

h⇧(t)i = �@tS(%t||%eqt )� Tr[%t@t ln %
eq
t ]
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Entropy production 
which entropy to use?

⇧vN (t) = �@tSvN (⇢|⇢*t )

For thermal bath: 

2

of systems considered) with the Wigner entropy [20]

S = �
Z

d2↵ W(↵⇤,↵) ln W(↵⇤,↵). (2)

Here W(↵⇤,↵) is the Wigner function and the integral is over
the complex plane (as the state is Gaussian, W > 0 and hence
S is real). This link between S and S 2 allows for a funda-
mental simplification of the problem of characterizing entropy
production, as one can map the open system dynamics into a
Fokker-Planck equation for W and hence employ tools of clas-
sical stochastic processes to obtain simple expressions for ⇧
and �. This idea was already used in Refs. [21, 22] via a
quantum-to-classical correspondence to treat the case of sim-
ple heat baths. Here, instead, we present a full quantum me-
chanical treatment and show how to extend the framework to
treat squeezed and dephasing reservoirs. The generalization
to other types of baths is straightforward.

We shall assume that the system is modeled by a Lindblad
master equation of the form

@t⇢ = �i[H, ⇢] +D(⇢), (3)

where ⇢ is the density matrix of the system, H is its Hamilto-
nian, andD(⇢) describes the process arising from its coupling
to the external reservoir. Let ⇢⇤ denote the target state ofD(⇢)
(for thermal baths ⇢⇤ = ⇢eq = e��H/Z). In Refs. [23–26], it
was shown that the von Neumann entropy production rate can
be defined as

⇧vN = �@tKvN(⇢|⇢⇤), (4)

where KvN(⇢|⇢⇤) = tr[⇢ ln(⇢/⇢⇤)] is the von Neumann relative
entropy. Eq. (4) satisfies several properties expected from an
entropy production. We have ⇧vN � 0 always with the equal-
ity valid only for ⇢ = ⇢⇤. For thermal baths, the correspond-
ing total entropy production, when interpreted as a stochastic
quantity, satisfies an integral fluctuation theorem [26]. More-
over, in this case Eq. (4) may be factored in the form of Eq. (1),
with S (t) being the von Neumann entropy S vN = � tr(⇢ ln ⇢)
and

�vN(t) = � 1
T

tr


HD(⇢)
�

:=
�E

T
, (5)

where �E is the energy flux from the system to the environ-
ment. This is a well known result of classical thermodynam-
ics, relating heat and entropy flux.

Despite their clear physical interpretation, Eqs. (4) and (5)
su↵er from the problem that they diverge in the limit T ! 0.
This is related to the divergence of the relative entropy when
the reference state tends to a pure state [27, 28]. This di-
vergence is clearly an inconsistency of the theory. The limit
T ! 0 is frequently used in quantum optics and the dynamics
is known to be well behaved and to correctly reproduce ex-
perimental results in several situations. In fact, even dS/ dt
remains finite in this limit, and only ⇧ and � diverge. In the
past, several attempts have been made to overcome this prob-
lem [27–32] but a consistent theory is still lacking. To obtain

a framework which does not su↵er from this deficiency is an-
other motivation for this paper. As we will show, using the
Rényi-2/Wigner entropy avoids this problem entirely.

Thermal bath - We begin the construction of our formalism
by considering a single bosonic mode with H = !(a†a + 1/2)
and dissipator

D(⇢) = �(n̄ + 1)
"

a⇢a† � 1
2
{a†a, ⇢}

#

+ �n̄
"

a†⇢a � 1
2
{aa†, ⇢}

#

.

(6)
Here � is the damping rate of the oscillator and n̄ = (e�!�1)�1

is the mean number of excitations in the bath (� = 1/T is its
inverse temperature). The target state of this dissipator is the
Gibbs thermal state ⇢⇤ = ⇢eq = (1 � e��!)e��!a†a.

We define the Wigner function of the system as

W(↵⇤,↵) =
1
⇡2

Z

d2� e��↵
⇤+�⇤↵ tr

n

⇢ e�a
†��⇤ao , (7)

where � and ↵ are phase space variables. Using standard
operator correspondences, Eq. (3) can be translated into the
Fokker-Planck equation

@tW = �i!


@↵⇤ (↵⇤W) � @↵(↵W)
�

+D(W), (8)

where the dissipative part is written as a divergence in the
complex plane:

D(W) = @↵J(W) + @↵⇤ J⇤(W), (9)

with

J(W) =
�

2



↵W + (n + 1/2)@↵⇤W
�

. (10)

Eq. (8) is a continuity equation in the complex plane. Hence,
J(W) can be interpreted as the irreversible component of the
probability current. This picture is further corroborated by
the fact that J(W) will be zero only in the thermal state
Weq =

1
⇡(n̄+1/2) exp[� |↵|2

n̄+1/2 ]; i.e., J(Weq) = 0. This statement
is stronger than D(Weq) = 0 as it implies that the thermal
equilibrium state is not only a fixed point of the dissipative dy-
namics, but also the state where all probability currents vanish
identically.

Having defined the Wigner entropy as in Eq. (2), we now
define the Wigner entropy production rate as

⇧ = �@tK(W(t)||Weq), (11)

where K(W ||Weq) =
R

d2↵ W ln W/Weq is the Wigner relative
entropy. For a bipartite Gaussian state, this coincides (up to a
constant) with the Rényi-2 mutual information. Inserting the
Fokker-Planck Eq. (8) in Eq. (11) and integrating by parts we
get

⇧ = �
Z

d2↵ D(W) ln(W/Weq). (12)

Next we use Eq. (9) and integrate by parts again to obtain

⇧ =

Z

d2↵
⇢

J
✓@↵W

W
� @↵Weq

Weq

◆

+ ↵! ↵⇤
�

. (13)
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⇧vN (t) =
dSvN

dt
+ �vN (t)

=
dSvN

dt
� 1

T
Tr[HD(⇢)]

=
dSvN

dt
+

�E(t)

T

⇧(t),�(t)  diverge as T ! 0

Idealised large heat reservoirs

Several attempts at fixing it….
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Entropy production 
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2

any entanglement or correlation,

ρ(0) = ρs(0)
∏

r

ρeq
r . (2)

Correlations and/or entanglements do develop in the sub-
sequent time evolution of ρ(t), which obeys Liouville’s
equation for the total Hamiltonian

H(t) = Hs(t) +
∑

r

Hr + V (t). (3)

Note that in addition to the issue of relaxation of a sys-
tem in contact with a reservoir, this scenario includes the
ingredients for the study a driven system, cf. the time-
dependence of the system’s Hamiltonian, as well as that
of a nonequilibrium steady state, which can be realized
in view of the presence of several heat reservoirs. In fact,
the above construct can easily be generalized to include
particle reservoirs described via grand-canonical distri-
butions. This would allow the consideration of particle
flows in addition to heat flows.

We are primarily interested in the occurrence and char-
acterization of irreversible behavior in the system, and
we thus focus our attention on the entropy S(t) of the
system,

S(t) ≡ −Trsρs(t) ln ρs(t) (4)

where ρs(t) is the trace of ρ(t) over the degree of freedom
of all the reservoirs. Contrary to the total von Neumann
entropy, the entropy of the system is in general a func-
tion of time, technically speaking because the dynamics
of ρs(t) is not unitary. More to the point for the ensuing
discussion, we note that from the thermodynamic point
of view we are dealing with an energetically open system.
We now show that it is precisely the time invariance of
the total von Neumann entropy which induces a natural
separation of the entropy change of the system into sep-
arate contributions from an entropy flow and an entropy
production. Using −Trρ(t) ln ρ(t) = −Trρ(0) ln ρ(0) =
−Trsρs(0) ln ρs(0)−

∑

r Trrρeq
r ln ρeq

r , we find for the en-
tropy change of the system

∆S(t) = S(t) − S(0)

= −Trρ(t) ln ρs(t) + Trρ(t) ln ρ(t) −
∑

r

Trrρ
eq
r ln ρeq

r

= −Trρ(t) ln{ρs(t)
∏

r

ρeq
r } + Trρ(t) ln ρ(t)

+
∑

r

Trr[ρr(t) − ρeq
r ] ln ρeq

r . (5)

We conclude that the change in the entropy of the system
can be written in the standard thermodynamic form [13]

∆S(t) = ∆iS(t) + ∆eS(t). (6)

The entropy flow, representing the reversible contribu-
tion to the system entropy change due to heat exchanges,

is identified as the last term in (5). After some manip-
ulation using the explicit form of ρeq

r , it can be written
as

∆eS(t) = −
∑

r

βr(⟨Hr⟩t − ⟨Hr⟩0), (7)

where ⟨•⟩t ≡ Tr[ρ(t)•]. Of particular interest is the re-
sulting expression for the entropy production,

∆iS(t) ≡ D[ρ(t)||ρs(t)
∏

r

ρeq
r ], (8)

which represents the irreversible contribution to the en-
tropy change of the system. Here, D[ρ||ρ′] is the quantum
relative entropy between two density matrices ρ and ρ′,

D[ρ||ρ′] ≡ Trρ ln ρ − Trρ ln ρ′. (9)

It has the following important properties [14, 15]. The
relative entropy is positive, and equal to zero only when
the two matrices are identical. We thus conclude that the
entropy production introduced above is indeed a positive
quantity, ∆iS(t) ≥ 0, and vanishes only when the system
and the reservoirs are totally decorrelated. Furthermore,
the relative entropy is a measure of the “distance” be-
tween two density matrices. Hence, as announced earlier,
the entropy production explicitly expresses how “far” the
actual state ρ(t) of the total system is from the decorre-
lated/disentangled product state ρs(t)

∏

r ρeq
r .

To further clarify the significance of our central result
(6), we make a number of additional comments. First,
starting with Eq. (6) we can rewrite the entropy pro-
duction as ∆iS(t) = ∆S(t) − ∆eS(t). ∆S(t) is the ex-
act entropy change of the system. If one assumes that
the entropy change in each heat reservoir is given by
∆Sr(t) = −βrQr(t), and if one further erroneously sup-
poses that the total entropy is simply the sum of the sys-
tem and reservoir entropy, one concludes that the positive
entropy production ∆iS(t) is the entropy increase in the
total system. This is of course in flagrant contradiction
with the premise that led to the identification of ∆iS(t),
namely, that the entropy of the total system remains un-
changed. The error resides in disregarding a contribution
−∆iS(t) to the total entropy, which is precisely the neg-
ative entropy contribution contained in the correlations
and entanglement between system and reservoir. The
argument may on the surface appear circular, but the
neglect of the negative entropy contribution is actually
quite natural from an operational point of view: while
one has full microscopic access to the system’s proper-
ties, one only controls or measures the energy and no
other properties of the reservoir. In this sense, the above
procedure leading to an apparent total positive entropy
change can be viewed as a coarse graining operation that
retains the full microscopic description of the system but
reduces the reservoirs plus correlations to an idealized

⌃(t) ⇧vN (t) � 0

However: it does not increase monotonically in time (signature 
of recurrence?). Monotonicity only for large environments

Nice physical interpretation:  
how far is the state of the compound  

a factorised system-environment state?
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Phase space

quadrature operators

Quantum
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[x̂, p̂] = i

(�x)(�p) � 1/2
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1

⇡N

Z
· · ·

Z
�(↵1, . . . ,↵N )

⇣
⌦N

j=1D̂
†
j(↵j)

⌘
d2↵1 · · · d2↵N

Tr[D̂(↵)D̂(�)] = ⇡�2(↵� �)

�(↵1, . . . ,↵N ) = Tr[⇢(⌦N
j=1D̂j(↵j)]
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W⇢(⇠1 · · ·⇠N ) = F⌦N
⇠1···⇠N [�(↵1, · · ·,↵N )]

Wigner function
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FIG. 2. Schematic diagram (not to scale) of the energy-level
structure of the pre-quench, ĤI,n, and post-quench, ĤF,n,
Hamiltonians for the n-photon manifold. Quenching the lin-
ear optomechanical interaction results both in an energy shift
and a displacement of the machanical oscillator. Two possible
transitions induced by the quench—having di↵erent values of
�k = k0 � k—are shown as an example.

photon number n [19]. Denoting the quantities refer-
ring to Ĥ

F,n with a prime we find the energy eigen-
states, written in the energy eigenbasis of the initial

Hamiltonian Ĥ
I

, |n0i
c

⌦ D̂†( g n0

!m
) |k0i

m

, with eigenvalues

En0,k0 = ~!
c

n0+~!
m

(k0+ 1

2

)�~ g2

!m
n02. A pictorial view of

pre- and post-quench eigenstates in the subspace at fixed
number n of photons is sketched in Fig. 2. As stated by
Eq. (2), the transitions from a set of eigenstates to an-
other are responsible—at the microscopic level—for the
work performed on or by the system. The probability
distribution of the work is thus given by

P (W ) =
X

n,n0,k,k0

p(c)n p
(m)

k |
m

hk0|D̂[(g/!
m

)n0] |ki
m

|2

⇥ �[W � (En0,k0 � En,k)]�n,n0

=
X

n,k,k0

p(c)n p
(m)

k

k!

k0!
e�(g/!m)

2n2

[(g/!
m

)n]2(k
0�k)

⇥
n

L (k0�k)
k [(g/!

m

)2n2]
o

2

⇥ �{W � ~!
m

[k0 � k � (g/!
m

)2n2]} ,
(16)

where L b
a (x) are the generalized Laguerre polynomials

coming from the evaluation of the overlap between pre-
and post-quench mechanical oscillator eigenstates [20].
A comparison with Eq. (2) enables to unambiguously dis-
criminate the contribution of the first projective measure-
ment (which consist of a sampling from the joint thermal
distribution of the cavity and the mirror) from the quan-
tum transition probability, and explicitly provides an an-
alytical expression for the latter. The probability distri-

FIG. 3. Logarithmic plot of the probability distribution of the
stochastic work variable, W (in units of ~!m) for di↵erent val-
ues of the average number of cavity photons Nc, average num-
ber of mechanical phonons Nm and coupling g. Panel (a) is
for (Nc, Nm, g) = (0.001, 0.1, 0.2!m), (b) is for (Nc, Nm, g) =
(0.1, 1, 0.1!m) while (c) for (Nc, Nm, g) = (0.1, 1, 0.8!m). In
the inset is shown the behavior against the time-like variable
u (multiplied by !m) of the real, Re(�) (solid blue, left), and
imaginary, Im(�) (dashed red, right) parts of the characteris-
tic function.

bution of the work, together with real and imaginary
parts of the characteristic function, is shown in Fig. 3,
for di↵erent values of N

c

, N
m

, and coupling strength.
By di↵erentiating the expression of characteristic func-
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p
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p
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Gaussian states
W⇢(⇠)W⇢(⇠)

Gaussian states:= states with a Gaussian Wigner function

1st and 2nd moments of phase-space variables)

�ij = h{vi, vj}i � 2hviihvji

v = (x1, p1, x2, p2, . . . , xN , pN )

+W⇢(⇠)

⇠
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which has Wigner function

Weq(↵) =
e�

|↵|2
n̄+1/2

⇡(n̄+ 1/2)
. (10)

We may also write the dissipator D(W ) in Eq. (8) as

D(W ) = @↵J(W ) + @↵⇤J⇤(W ) (11)

where

J(W ) =
�

2



↵W + (n+ 1/2)@↵⇤W

�

. (12)

This quantity has an important physical interpretation,
which is made evident when one writes Eq. (7) as a con-
tinuity equation

@tW = @↵F(W ) + @↵⇤F⇤(W ), (13)

where F(W ) = i!↵W + J(W ). We see that F(W ) may
be interpreted as the current of Wigner probability in the
phase space. The term i!↵W represents the reversible
component of the current, associated with the unitary
evolution. Consequently, J(W ) is interpreted as the ir-

reversible probability current. This picture is further cor-
roborated by the fact that for Eq. (10) we have

J(Weq) = 0. (14)

Eq. (14) is stronger than D(Weq) = 0, implying that
the thermal equilibrium state is not only a fixed point
of the dissipative dynamics, but also the state where all
probability currents vanish identically.

A. Wigner entropy production rate

We define the Wigner entropy of the system as

S = �
Z

d2↵ W (↵) lnW (↵). (15)

The entropy will be real as long as W > 0, which there-
fore establishes the limit of validity of the present frame-
work. The Wigner entropy is expected to be similar,
albeit not identical, to the von Neumann entropy. For
instance, for the thermal state of Eq. (9), the von Neu-
mann and Wigner entropies are, respectively

SvN = � tr(⇢ ln ⇢) =
!

T
n̄� ln(1� e�!/T ),

S = 1 + ln⇡ + ln(n̄+ 1/2).
(16)

Fig. 1 shows that the expressions in Eq. (16) are very
similar over all temperature ranges, except for a constant
shift of ln(⇡) of the Wigner entropy.

We define the Wigner relative entropy as

K(W ||Weq) =

Z

d2↵ W lnW/Weq (17)

FIG. 1. The equilibrium von Neumann and Wigner entropies
in Eq. (16) for the quantum harmonic oscillator, against T/!.

As a side note, in Ref. [27] it was shown that for Gaussian
states this definition coincides, up to a constant, with the
Rényi-2 mutual information. In analogy with Eq. (3), we
now propose to define the Wigner entropy production
rate as

⇧ = � d

dt
K(W (t)||Weq) (18)

In order to write this formula in a physically more trans-
parent way, we insert the Fokker-Planck equation in
Eq. (18). In this and all other manipulations, we will
always assume that, when integrating by parts, the cross
terms vanish at infinity. One then finds that there is no
contribution from the unitary part, leaving us with

⇧ = �
Z

d2↵ D(W ) ln(W/Weq). (19)

Next we use Eq. (11) and integrate by parts again to
obtain

⇧ =

Z

d2↵

⇢

J

✓

@↵W

W
� @↵Weq

Weq

◆

+ ↵ ! ↵⇤
�

.

Finally one notes that, from Eq. (12)

@↵W

W
� @↵Weq

Weq
=

2J⇤

�(n̄+ 1/2)

1

W
. (20)

Threfore, we conclude that the entropy production rate
may be written as

⇧ =
4/�

n̄+ 1/2

Z

d2↵
|J(W )|2

W
. (21)

This quantity is non-negative when W > 0, and is zero
only at thermal equilibrium [Eq. (14)]. These are pre-
cisely the properties expected from an entropy produc-
tion rate.

B. Wigner entropy flux rate

Now let us discuss the entropy flux rate. Mauro:
there’s a mess with the equation references here...we re-

Entropy of the Wigner function

- satisfies the strong sub-additivity inequality

- coincides with Rènyi-2 
entropy S2(%) = � lnTr%2

For Gaussian states:

J C Baez, arXiv 1182.2098 (2011)

can be directly related to 
free energy difference

G Adesso, et al., PRL 109, 190502 (2012)

I2(%a:b)
can be used to construct 
correlation measures 
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which has Wigner function

Weq(↵) =
e�

|↵|2
n̄+1/2

⇡(n̄+ 1/2)
. (10)

We may also write the dissipator D(W ) in Eq. (8) as

D(W ) = @↵J(W ) + @↵⇤J⇤(W ) (11)

where

J(W ) =
�

2



↵W + (n+ 1/2)@↵⇤W

�

. (12)

This quantity has an important physical interpretation,
which is made evident when one writes Eq. (7) as a con-
tinuity equation

@tW = @↵F(W ) + @↵⇤F⇤(W ), (13)

where F(W ) = i!↵W + J(W ). We see that F(W ) may
be interpreted as the current of Wigner probability in the
phase space. The term i!↵W represents the reversible
component of the current, associated with the unitary
evolution. Consequently, J(W ) is interpreted as the ir-

reversible probability current. This picture is further cor-
roborated by the fact that for Eq. (10) we have

J(Weq) = 0. (14)

Eq. (14) is stronger than D(Weq) = 0, implying that
the thermal equilibrium state is not only a fixed point
of the dissipative dynamics, but also the state where all
probability currents vanish identically.

A. Wigner entropy production rate

We define the Wigner entropy of the system as

S = �
Z

d2↵ W (↵) lnW (↵). (15)

The entropy will be real as long as W > 0, which there-
fore establishes the limit of validity of the present frame-
work. The Wigner entropy is expected to be similar,
albeit not identical, to the von Neumann entropy. For
instance, for the thermal state of Eq. (9), the von Neu-
mann and Wigner entropies are, respectively

SvN = � tr(⇢ ln ⇢) =
!

T
n̄� ln(1� e�!/T ),

S = 1 + ln⇡ + ln(n̄+ 1/2).
(16)

Fig. 1 shows that the expressions in Eq. (16) are very
similar over all temperature ranges, except for a constant
shift of ln(⇡) of the Wigner entropy.

We define the Wigner relative entropy as

K(W ||Weq) =

Z

d2↵ W lnW/Weq (17)

FIG. 1. The equilibrium von Neumann and Wigner entropies
in Eq. (16) for the quantum harmonic oscillator, against T/!.

As a side note, in Ref. [27] it was shown that for Gaussian
states this definition coincides, up to a constant, with the
Rényi-2 mutual information. In analogy with Eq. (3), we
now propose to define the Wigner entropy production
rate as

⇧ = � d

dt
K(W (t)||Weq) (18)

In order to write this formula in a physically more trans-
parent way, we insert the Fokker-Planck equation in
Eq. (18). In this and all other manipulations, we will
always assume that, when integrating by parts, the cross
terms vanish at infinity. One then finds that there is no
contribution from the unitary part, leaving us with

⇧ = �
Z

d2↵ D(W ) ln(W/Weq). (19)

Next we use Eq. (11) and integrate by parts again to
obtain
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Finally one notes that, from Eq. (12)
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Threfore, we conclude that the entropy production rate
may be written as

⇧ =
4/�

n̄+ 1/2

Z

d2↵
|J(W )|2

W
. (21)

This quantity is non-negative when W > 0, and is zero
only at thermal equilibrium [Eq. (14)]. These are pre-
cisely the properties expected from an entropy produc-
tion rate.

B. Wigner entropy flux rate

Now let us discuss the entropy flux rate. Mauro:
there’s a mess with the equation references here...we re-

⇧(t) = �@tS(W (t)|Weq)
⇧vN (t) � 0 (Gaussian states)
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As a side note, in Ref. [27] it was shown that for Gaussian
states this definition coincides, up to a constant, with the
Rényi-2 mutual information. In analogy with Eq. (3), we
now propose to define the Wigner entropy production
rate as

⇧ = � d

dt
K(W (t)||Weq) (18)

In order to write this formula in a physically more trans-
parent way, we insert the Fokker-Planck equation in
Eq. (18). In this and all other manipulations, we will
always assume that, when integrating by parts, the cross
terms vanish at infinity. One then finds that there is no
contribution from the unitary part, leaving us with
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Next we use Eq. (11) and integrate by parts again to
obtain
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Threfore, we conclude that the entropy production rate
may be written as
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This quantity is non-negative when W > 0, and is zero
only at thermal equilibrium [Eq. (14)]. These are pre-
cisely the properties expected from an entropy produc-
tion rate.

B. Wigner entropy flux rate

Now let us discuss the entropy flux rate. Mauro:
there’s a mess with the equation references here...we re-
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fer to an equation that appsars only two pages later. Re-
turning to Eq. (19), we see that the first term is exactly
dS/ dt in Eq. (30). Hence, comparing with Eq. (1) we
conclude that the entropy flux rate must be

� =

Z

d2↵ D(W ) lnWeq. (22)

Substituting Eq. (10) for Weq and integrating by parts,
one finds that this may also be written as

� =
1

n̄+ 1/2

Z

d2↵[↵⇤J(W ) + h.c.]

=
�

n̄+ 1/2

Z

d2↵ |↵|2W � �.

(23)

As
R

d2↵ |↵|2W = ha†ai+ 1/2, we conclude that

� =
�

n̄+ 1/2
(ha†ai � n̄). (24)

This formula is very useful as it relates the entropy flux
rate of the Lindblad dissipator in Eq. (5). On the other
hand, the energy flux rate may be computed from Eq. (2)
as

�E = � dhHi
dt

= �!(ha†ai � n̄), (25)

where the minus sign is placed simply for convenience.
We thus conclude that the entropy flux rate and the en-
ergy flux rate are related by

� =
�E

!(n̄+ 1/2)
. (26)

When T � ! we may approximate !(n̄ + 1/2) ' T , in
which case we recover the traditional formula

� ' �E

T
. (27)

Thus, Eq. (24) recovers the expected result at high tem-
peratures. In addition, it tends to a finite value as T ! 0
(in which case n̄ ! 0).

C. Gaussian states

Eq. (21) has a clear physical meaning. However, unlike
Eq. (24) it is not very practical, as it requires knowledge
of the entire Wigner function. This problem simplifies
considerably in the case of Gaussian states, which are
completely characterized by their vector of first moments
µ = (hai, ha†i) and the covariance matrix ✓ with entries

⇥i,j =
1

2
h{ui, u

†
j}i � huiihu†

ji, (28)

where u = (a, a†). We can express the entropy produc-
tion rate in terms of µ and ⇥, with a little algebra, as

⇧ = �� � + �(n̄+ 1/2)
⇥11

|⇥| . (29)

This relates the entropy production rate directly to the
entries of the covariance matrix.

D. Alternative derivations

The main results for the open quantum harmonic os-
cillator are Eqs. (21) and (24) for the entropy production
rate and the entropy flux rate. It is also possible to de-
rive these formulas in two alternative ways, which may
help put them on a more robust basis. The first way is
to map the Fokker-Planck equation (7) into a stochas-
tic process in the complex plane. In this way, the total
entropy production ⌃ of a process may be defined as a
functional of the stochastic forward and backward tra-
jectories. The entropy production rate is then obtained
by averaging the stochastic entropy over an infinitesimal
time interval, h⌃i = ⇧dt, where h·i stands for the av-
erage over all stochastic paths. The interesting aspect
of this approach is that it can be shown that ⌃ satisfies
an integral fluctuation theorem, which is the fundamen-
tal property expected of the entropy production. This
supports the interpretation of Eq. (21) as a valid entropy
production rate. The details of such a derivation are pre-
sented in Appendix A.
As for the second approach, we will now show how it

is possible to derive Eqs. (21) and (24) without assum-
ing Eq. (18). We start with the rate of change of the
entropy [the first term in Eq. (19)]. Using Eq. (11) and
integrating by parts, we have

dS

dt
=

Z

d2↵

W
[J(W )@W + J⇤(W )@⇤W ] . (30)

We now use Eq. (12) to get

@⇤W =
2/�

n̄+ 1/2
J(W )� ↵W

n̄+ 1/2
. (31)

Substituting this in Eq. (30), we can identify

⇧ =
4/�

n̄+ 1/2

Z

d2↵
|J(W )|2

W
,

� =
1

n̄+ 1/2

Z

d2↵ [↵⇤J(W ) + h.c.] ,

which are precisely Eqs. (21) and (23). This procedure
thus shows how to manually separate the rate of change
of the entropy in two terms, one of which is always non-
negative and null only in thermal equilibrium. Notice
that no mention was made of the bath or the final state
of the system: ⇧ and � are derived directly from the
functional form of the Lindblad dissipator.
This interpretation is, in our view, quite valuable as it

opens avenues for further research. Dissipators may be
used to describe processes which are much more general
than the simple contact with a thermal bath. It should
thus be possible to associate to any dissipator a corre-
sponding entropy production rate and an entropy flux
rate. This would allow us to extend these thermody-
namic ideas to non-thermal open systems, such as more
general quantum baths or quantum computing protocols.
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Thus, Eq. (24) recovers the expected result at high tem-
peratures. In addition, it tends to a finite value as T ! 0
(in which case n̄ ! 0).

C. Gaussian states

Eq. (21) has a clear physical meaning. However, unlike
Eq. (24) it is not very practical, as it requires knowledge
of the entire Wigner function. This problem simplifies
considerably in the case of Gaussian states, which are
completely characterized by their vector of first moments
µ = (hai, ha†i) and the covariance matrix ✓ with entries
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where u = (a, a†). We can express the entropy produc-
tion rate in terms of µ and ⇥, with a little algebra, as
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D. Alternative derivations

The main results for the open quantum harmonic os-
cillator are Eqs. (21) and (24) for the entropy production
rate and the entropy flux rate. It is also possible to de-
rive these formulas in two alternative ways, which may
help put them on a more robust basis. The first way is
to map the Fokker-Planck equation (7) into a stochas-
tic process in the complex plane. In this way, the total
entropy production ⌃ of a process may be defined as a
functional of the stochastic forward and backward tra-
jectories. The entropy production rate is then obtained
by averaging the stochastic entropy over an infinitesimal
time interval, h⌃i = ⇧dt, where h·i stands for the av-
erage over all stochastic paths. The interesting aspect
of this approach is that it can be shown that ⌃ satisfies
an integral fluctuation theorem, which is the fundamen-
tal property expected of the entropy production. This
supports the interpretation of Eq. (21) as a valid entropy
production rate. The details of such a derivation are pre-
sented in Appendix A.
As for the second approach, we will now show how it

is possible to derive Eqs. (21) and (24) without assum-
ing Eq. (18). We start with the rate of change of the
entropy [the first term in Eq. (19)]. Using Eq. (11) and
integrating by parts, we have
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of the entropy in two terms, one of which is always non-
negative and null only in thermal equilibrium. Notice
that no mention was made of the bath or the final state
of the system: ⇧ and � are derived directly from the
functional form of the Lindblad dissipator.
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used to describe processes which are much more general
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peratures. In addition, it tends to a finite value as T ! 0
(in which case n̄ ! 0).
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Eq. (24) it is not very practical, as it requires knowledge
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considerably in the case of Gaussian states, which are
completely characterized by their vector of first moments
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help put them on a more robust basis. The first way is
to map the Fokker-Planck equation (7) into a stochas-
tic process in the complex plane. In this way, the total
entropy production ⌃ of a process may be defined as a
functional of the stochastic forward and backward tra-
jectories. The entropy production rate is then obtained
by averaging the stochastic entropy over an infinitesimal
time interval, h⌃i = ⇧dt, where h·i stands for the av-
erage over all stochastic paths. The interesting aspect
of this approach is that it can be shown that ⌃ satisfies
an integral fluctuation theorem, which is the fundamen-
tal property expected of the entropy production. This
supports the interpretation of Eq. (21) as a valid entropy
production rate. The details of such a derivation are pre-
sented in Appendix A.
As for the second approach, we will now show how it

is possible to derive Eqs. (21) and (24) without assum-
ing Eq. (18). We start with the rate of change of the
entropy [the first term in Eq. (19)]. Using Eq. (11) and
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of the entropy in two terms, one of which is always non-
negative and null only in thermal equilibrium. Notice
that no mention was made of the bath or the final state
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general quantum baths or quantum computing protocols.
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d2↵ [↵⇤J(W ) + h.c.] ,

which are precisely Eqs. (21) and (23). This procedure
thus shows how to manually separate the rate of change
of the entropy in two terms, one of which is always non-
negative and null only in thermal equilibrium. Notice
that no mention was made of the bath or the final state
of the system: ⇧ and � are derived directly from the
functional form of the Lindblad dissipator.
This interpretation is, in our view, quite valuable as it

opens avenues for further research. Dissipators may be
used to describe processes which are much more general
than the simple contact with a thermal bath. It should
thus be possible to associate to any dissipator a corre-
sponding entropy production rate and an entropy flux
rate. This would allow us to extend these thermody-
namic ideas to non-thermal open systems, such as more
general quantum baths or quantum computing protocols.

Rudolf Clausiusbut no divergence at zero-temperature

J. Santos, G. Landi, and M Paternostro, Phys Rev Lett 118, 220601 (2017)
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This result is physically intuitive: the energy flux will be
zero when either  = 0, E = 0 or !0 = 0. Moreover, it is
maximum at resonance (�c = 0).

Next we turn to the entropy flux rate and production
rate. Since we are in the steady-state we will have � = ⇧.
Using Eq. (106), we then find

�

4
=

�2
sc

2 +�2
sc

sinh2(2r)

2
+

|E|2
2 +�2

c

cosh(2r) (119)

�Re

⇢ E2

(� i�c)2
ei(2(!0�!s)t+✓)

�

sinh(2r)

The terms which depend on E represent the entropy pro-
duction/flux due to the external pump. If !0 6= !s the
last term will oscillate in time with zero average and
may therefore be neglected if one considers only a time-
averaged entropy flux rate.

The important part of Eq. (119), however, is in the
first term, which would still be present even if there was
no pump (E = 0). This therefore shows that even in the
absence of a pump the system will still tend to a non-
equilibrium steady-state, which is characterized by the
fact that the bath induces a frequency !s, whereas the
frequency of the system is !c. This can also be seen by
looking at the quadratures hX2i and hY 2i. When E = 0
they will tend to

hX2i = (N +
1

2
) +

2

2 +�2
sc

sinh 2r

2
(120)

hY 2i = (N +
1

2
)� 2

2 +�2
sc

sinh 2r

2
(121)

which in general do not coincide with Eq. (110), unless
�sc = 0.

We therefore reach the conclusion that, by analyzing
the entropy flux rate, we are able to observe the signature
of another non-equilibrium contribution to the steady-
state. Remarkably, this signature is not present in the
energy flux rate (118), but only in the entropy flux rate.
We therefore reach the conclusion that, when E = 0 the
system will tend to a non-equilibrium steady-state, even
though there are no macroscopic currents present, which
is a genuinely quantum mechanical e↵ect and which can
be captured in our formalism.

VI. GENERALIZATIONS

In this section we shall apply our formalism to (A) a
dephasing bath, (B) quantum Brownian motion and (C)
a system described by several bosonic modes.

A. Dephasing bath

The dephasing dissipator for a single harmonic oscilla-
tor reads

Ddeph(⇢) = �



a†a⇢a†a� 1

2
{(a†a)2, ⇢}

�

(122)

This dissipator suppresses quantum coherences without
the exchange of energy in the system [which can be seen
from the fact that tr(HDdeph) = 0]. The corresponding
dissipator in Wigner space will be

Ddeph(W ) = @I(W ) + @⇤I⇤(W ) (123)

where

I(W ) =
�

2
↵



↵⇤@⇤W � ↵@W

�

(124)

The contribution of this current to dS/ dt will be, in
analogy with Eq. (30),

dS

dt

�

�

�

�

deph

=

Z

d2↵

W



I(W )@W + I⇤(W )@⇤W

�

(125)

However, it follows from Eq. (124) that I⇤/↵⇤ = �I/↵ so
that I@W + I⇤@⇤W = (2/�)|I(W )|2/|↵|2. We therefore
see that, for the dephasing noise dS/ dt is expressed as
a single, non-negative, term. Hence this term should be
associated with an entropy production rate:

dS

dt

�

�

�

�

deph

= ⇧deph =
2

�

Z

d2↵

W

|I(W )|2
|↵|2 (126)

We therefore conclude that a dephasing bath produces
no flux of entropy, but only an entropy production. This
is reasonable from a physical standpoint, since the de-
phasing also conserves the energy of the system.
We may also derive this result using the relative

Wigner entropy, as in Sec. II A. To do that note that
any Gibbs thermal state of the form of Eq. (10), for any
temperature T , will be a fixed point of the dephasing dis-
sipator (123). Consequently, if we refer back to Eq. (19)
and use instead the dephasing dissipator, we will find
that the second term vanishes for identically. Eq. (126)
then follows directly.

B. Quantum Brownian Motion

We will now consider the problem of quantum Brow-
nian motion. We will assume, for simplicity, that the
density of states is Ohmic and the dynamics is there-
fore Markovian. The dissipator of this model, written in
terms of the position q̂ and momentum p̂ of the system
harmonic oscillator, is

D(⇢) = �i
�

2
[q̂, {p̂, ⇢}]� �m!(n̄+ 1/2)[q̂, [q̂, ⇢]] (127)
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where

q̂ =
1p
2m!

(a† + a), p̂ = i

r

m!

2
(a† � a) (128)

This dissipator is similar to the usual Lindblad dissipa-
tor (5), except that it is not in the rotating wave ap-
proximation. We may also write down the Fokker-Planck
equation corresponding to this dissipator. Traditionally
it is written in terms of the original Wigner function
W (q, p), in which case it reads

@W

@t
= � p

m

@W

@q
+m!2q

@W

@p
(129)

+�
@(pW )

@p
+ �m!(n̄+ 1/2)

@2W

@p2
(130)

In this framework it acquires the exact same form as the
classical Fokker-Planck equation for the harmonic oscil-
lator, except for the replacement !(n̄+ 1/2) ! T .

We may also write everything in term of ↵ and ↵⇤, as
was done in Sec. II. In this case the form of the Fokker-
Planck equation will be identical to Eq. (7), but with a
Wigner current

Jqbm(W ) =
�

2



(↵�↵⇤)W +(n̄+1/2)(@⇤�@)W

�

(131)

which is quite similar to Eq. (12), except that it is
not in the rotating wave approximation. Noting that
J⇤
qbm(W ) = �Jqbm(W ) allows us to write Eq. (30) as

dS

dt
=

Z

d2↵
Jqbm(W )

W
(@ � @⇤)W (132)

We now use Eq. (131) to isolate (@�@⇤)W and substitute
it in Eq. (132). As a result we find, similarly to our
previous results, that

⇧ =
2/�

n̄+ 1/2

Z

d2↵
|Jqbm(W )|2

W
(133)

� =
1

n̄+ 1/2

Z

d2↵ Jqbm(W )(↵⇤ � ↵)

=
�

n̄+ 1/2

 hp̂2i
m!

� (n̄+ 1/2)

�

(134)

=
�

n̄+ 1/2



ha†ai � n̄� haa+ a†a†i
2

�

where, in the last line, we used Eq. (132) to simplify the
result. When compared with Eq. (24) we conclude that
the only modification in the formula for the entropy flux
is the replacement of ha†ai with its momentum compo-
nent hp̂2i/m!. In the rotating wave approximation we
neglect the last two terms and recover exactly Eq. (24).

!0

!s

!c

!m

FIG. 6. A Fabry-Perot cavity with a light movable end mirror.
The cavity is driven by a laser of frequency !0 and a squeezed
vacuum field with central frequency !s [40].

VII. RADIATION PRESSURE ON AN
OPTOMECHANICAL CAVITY UNDER A

SQUEEZED PUMP

A. Statement of the problem

In this section we consider the problem of a disper-
sive optomechanical Fabry-Perot cavity with a movable
end mirror pumped by a squeezed source (see Fig. 6).
This is a direct extension of the calculations in Sec. VB
to include a movable mirror. Our goal is to relate the
entropy production rates and entropy flux rates to the
radiation pressure [23] and the squeezing transfer from
the squeezed pump to the mechanical oscillator [38, 39].
We denote the pump, cavity and mirror frequencies by

!0, !c and !m respectively. Moreover, we assume that
the squeezed bath has a central frequency !s. The cav-
ity mode is described by a bosonic operator a and the
optomechanical system by an operator b. In a frame ro-
tating at the pump frequency !0 the system Hamiltonian
reads [40–43]

H = �0a†a+!mb†b� ga†a(b†+ b)+ i(Ea†� E⇤a) (135)

where �0 = !c � !0 is the detuned cavity frequency and
|E| = p

2P/~!0, where P is the pump laser power and 
represents the cavity amplitude decay rate. The strength
of the radiation pressure interaction is quantified by the
coupling rate g [40–43].
The time evolution of the density operator ⇢ of the

total system, in this rotating frame, can be written as

d⇢

dt
= �i[H, ⇢s] +Dc(⇢) +Dm(⇢) (136)

where Dc(⇢) describes the contact of the cavity mode
with the squeezed reservoir through the semi-transparent
mirror. It is given by the squeezed bath dissipator in
Eq. (95), with � ! 2, n̄ = 0, N = sinh2 r and Mt =
M0e

2i�st, where �s = !0 � !s and M0 = ei✓ sinh(2r)/2.
On the other hand, the dissipator Dm(⇢) in Eq. (136)

describes the losses of the mechanical system. It can
be modeled using either quantum Brownian motion,
Eq. (127), or its rotating-wave approximation analog,
Eq. (5). Here we will follow [38] and work in the ro-
tating wave approximation. Hence, Dm will be modeled
using Eq. (5) with parameters �m and n̄m.

�(t)

' �

n+ 1/2

⇥
ha†ai � n

⇤
Observable!!

Why it makes sense

J. Santos, G. Landi, and M Paternostro, Phys Rev Lett 118, 220601 (2017)
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Experimentally testable (and indeed tested!)

3

system to be always stable, in such a way that a unique
non-equilibrium steady state, described by the station-
ary covariance matrix �

s

such that A�
s

+�
s

AT = �D, is
eventually attained.

The open dynamics can be described in terms of
Fokker-Plank equations for the Wigner function of the
joint system and, provided that the symmetry of the
variables under time-reversal is explicitly taken into ac-
count [24–26], san analytical expression for ⇧

s

can be de-
rived starting from Eq. (2). Explicit calculations shown
in Appendix B lead to the following simple expression for
the stationary rate of entropy production

⇧
s

= 2
a

✓ hq̂2

a

i
s

+ hp̂2

a

i
s

2N
a

+ 1
� 1

◆
+2

b

✓ hq̂2

b

i
s

+ hp̂2

b

i
s

2N
b

+ 1
� 1

◆
,

(6)
where h · i

s

specifies that the expectation values are taken
at the stationary state. Since the first (second) term
depends only on quantities labeled by a (b) we dub it
contribution a (b) to the entropy production rate and
call it µ

a

(µ
b

). We thus have

µ
k

= 2
k

✓
N

k,s

+ 1/2

N
k

+ 1/2
� 1

◆
, (k = a, b) (7)

where we set N
a,s

= hâ†âi
s

and N
a

= hâ†âi
eq

, and simi-
larly for µ

b

. The main feature of Eq. (7) is that it links
the irreversibility generated by the stationary process to
the change in the amount of excitations carried by each
oscillator with respect to the equilibrium value, thus ex-
pressing production of entropy in very simple terms.

If the system is noninteracting, each oscillator equili-
brates with its own bath and from Eq. (7) we see that ⇧

s

identically vanishes. Second, as ⇧
s

= µ
a

+ µ
b

� 0, from
Eq. (7) we conclude that no process leading at the same
time to N

a,s

< N
a

and N
b,s

< N
b

can occur: the ther-
modynamic arrow of time is translated in a constraint on
the final occupations of the two oscillators. An instance
of forbidden process is sketched in Fig. 1 (a). However,
nothing prevents a local reduction of entropy, e.g. µ

b

< 0
as shown in panel (b), as long as it is (over)compensated
by an increase of the other contribution µ

a

> �µ
b

. Such
condition entails N

b,s

< N
b

and thus corresponds to the
cooling one oscillator assisted by the interaction. This
also implies that, singularly taken, neither µ

a

nor µ
b

can
be interpreted as an entropy production.

Looking at Eq. (6) we notice that there is no explicit
dependence of ⇧

s

on the o↵-diagonal elements of the co-
variance matrix. Correlations between the two modes
are hidden in the full expression of the expectation val-
ues. It would be desirable to have an alternative form for
µ

a,b

, where the role of the correlations established at the
steady state is made explicit. Such an expression can ac-
tually be derived (calculations are reported in Appendix
C) and is given by

µ
a

=
G

N
a

+ 1/2
hp̂

a

q̂
b

i
s

, µ
b

=
G

N
b

+ 1/2
hq̂

a

p̂
b

i
s

, (8)

(a) (b)

N
a,s

N
a

N
b,s

N
b

N
a,s

N
a

N
b,s

N
b

â
b̂

â

b̂G

G

FIG. 1. The oscillators corresponding to modes â (blue) and
b̂ (yellow) are initially in thermal equilibrium with a num-
ber of excitations Na and Nb, respectively (dashed circles).
By switching on the coupling G they reach a stationary state
characterized by occupations Na,s and Nb,s (full circles). (a):
Example of a forbidden stationary process where both occu-
pations decrease with respect their equilibrium values, thus
leading to ⇧

s

< 0. (b): Entropy can still locally decrease
(µb < 0) as a consequence of a reduction in the excitations
Nb,s < Nb, but this necessitates excitations to be accumulated
in mode â (darker blue circle).

where the we have hp̂
a

q̂
b

i
s

= [�
s

]
23

and hq̂
a

p̂
b

i
s

= [�
s

]
14

.
From Eq. (8), we explicitly see that ⇧

s

vanishes for
uncoupled systems, since each oscillator independently
equilibrates with its own bath. Eq. (8) links in a quanti-
tative way the irreversibility of the transformation with
some correlation function of the dynamical variables.
The link between the entropy production and the corre-
lations shared by the oscillators will be further explored
in Sec. III, where the amount of total and quantum cor-
relations is quantified.

II. ANALYSIS OF THE STATIONARY
ENTROPY PRODUCTION RATE

In this Section we give a full account of the behavior of
the stationary entropy production. For the sake of con-
venience, all the frequencies have been rescaled by !

b

, so
that we deal with dimensionless quantities. However, in
order to avoid redundancies, the rescaling will be omit-
ted and the same notation kept, except from the figures
and the related captions, where the relevant quantities
are explicitly shown in units of !

b

.
In Fig. 2 we show the stationary entropy production

rate ⇧
s

, together with its components µ
a,b

, against the
rescaled frequency !

a

. In panels (a)-(c) the reservoirs
are in the ground state (N

a

= N
b

= 0) and we see that
µ

a

and µ
b

are both positive and very similar (although
not equal). This is because the steady-state occupations
can only increase with respect to their initial value and,
by looking at Eq. (7), so must the entropy. If we then
consider some initial thermal occupation in one oscilla-
tor, as shown in Fig. 2 (d)-(f) for the case N

b

> 0, we
see that ⇧

s

⇡ µ
a

, featuring a distinctive peak at !
a

= 1.
Correspondingly, µ

b

displays a negative dip. The signifi-

M Brunelli and MP, arXiv:1610.01172 (2016)

For a single harmonic oscillator  
in a thermal bath:
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INTRODUCTION

The physical system is a BEC of N atoms inside an
ultrahigh-finesse optical cavity. The atoms are pumped
transversally with a far-detuned standing-wave laser
field. Image in Fig. 1 is from Ref. [1]. A transverse pump
field (red) couples an excited momentum mode of a BEC
(blue) to a cavity mode via collective light scattering at
rate �. Photons escape the cavity through a loss chan-
nel at rate . Density fluctuations are inferred from the
detected cavity output field.

FIG. 1: Experimental scheme.

It has been shown in Ref. [2] that the Hamiltonian of
this system, for the closed case, maps to the Dicke model,
which will be described in the following sections.

DICKE MODEL WITH ONLY CAVITY
DISSIPATION

The Dicke Hamiltonian describes the coupling between
an ensemble of N two-level atoms and a single cavity
mode. Let’s start with the Hamiltonian of the Dicke
model in the form

Ĥ = !
0

Ĵ
z

+ !â†â +
2�p
N

�
â + â†� (Ĵ

x

+ ⇣) (1)

where we have taken into account the possibility to have
an explicit symmetry breaking field ⇣ 2 R. As usual we
have defined collective atomic angular momentum oper-
ators Ĵ

↵

(↵ = x, y, z) and bosonic field mode operators
â and â†. We can define the mean fields

hâi = ↵, hĴ�i = �, hĴ
z

i = w (2)

and write the semiclassical equations of motion including
a cavity decay at rate 

↵̇ = �( + i!)↵ � i
�p
N

(� + �⇤ + 2⇣)

�̇ = �i!
0

� + 2i
�p
N

(↵ + ↵⇤) w

ẇ = i
�p
N

(↵ + ↵⇤)(� � �⇤).

(3)

Using the angular momentum conservation w2 + |�|2 =
N2/4, we get the steady-state equations:

�
ss

=

✓
�

�
cr

◆
2

(�
ss

+ ⇣)

r
1 � 4

�2

ss

N2

↵
ss

=
2�

i � !

(�
ss

+ ⇣)p
N

,

(4)

where the critical coupling strength is �
cr

=
1

2

p
!0
!

(2 + !2) for ⇣ = 0. It is important to notice that
�

ss

is real and �
ss

= O(N), while ↵
ss

is complex and
↵

ss

= O(
p

N). Now we want to rewrite the Hamilto-
nian explicitly in terms of the operators which represent
displacements of atomic and field operators with respect
to the stationary values of the respective mean fields �

ss

and ↵
ss

. It is convenient to apply the Holstein-Primako↵
transformation:

Ĵ
+

= b̂†
q

N � b̂†b̂, Ĵ� =

q
N � b̂†b̂ b̂, Ĵ

z

= b̂†b̂ � N

2
,

(5)
and then introduce the fluctuations operators:

�â = â � e↵, �b̂ = b̂ �
e�p
N

, (6)

where e↵ and e� are the steady state mean fields of the
operators â and b̂ respectively. We recognise e↵ = ↵

ss

and, as we want to consider the thermodynamic limit
N >> 1, we have

e�

s

1 �
e�2

N2

= �
ss

. (7)

With these definitions the leading term for the time evo-
lution of the density matrix of the total system in the
thermodynamical limit is given by:

d⇢̂

dt
= �i

h
Ĥ 0, ⇢̂

i
+ L0(⇢̂) (8)

where the Hamiltonian is

Ĥ 0 = f!
0

�b̂†�b̂ + !�â†�â + e�(�â + �â†)(�b̂ + �b̂†)

� µ
⇣
�b̂ + �b̂†

⌘
2

+ const.
(9)
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I. STATEMENT OF THE PROBLEM

We consider a movable mirror in a Fabry-Perot cavity coupled via radiation pressure to the cavity field and in
contact with a heat bath at a temperature T . The mirror is modeled as a harmonic oscillator with frequency !,
dimensionless quadratures q and p. The Hamiltonian of the system is chosen to be

H =
~!
2

(p2 + q2) + ~(!
c

� gq)a†a + i~E(a†e�i!0t � aei!0t) (1)

where a† and a are the creation and annihilation operators of the cavity mode, with frequency !
c

. The coupling

between the cavity and the mirror is described by the parameter g = !c
L

q
~

m!

, where L is the length of the cavity

and m is the mass of the mirror. Finally, the last term in Eq. (1) describes the pumping process by an external laser
field at frequency !0. We have introduced the coupling rate E =

p
2P/~!0, where P is the laser power and  the

decay rate.
In the Heisenberg picture, we may write a system of coupled non-linear quantum Langevin equations for q, p and

a. By assuming a su�ciently large power P , we may linearise such equations by expanding each operator at first
order around its classical mean value. By focusing on the quadrature operators of the mirror and those of the cavity
�x = (�a† + �a)/

p
2 and �y = i(�a† � �a)/

p
2, we have

u̇(t) = Au + N(t) (2)

where u(t) = (�q, �p, �x, �y),

A =

0

B@

0 ! 0 0
�! �� G 0
0 0 � �
G 0 �� �

1

CA (3)

and

N(t) = (0, ⇠(t),
p

2xin,
p

2yin). (4)

The latter is a vector of noise terms. In these equations � is the damping constant of the mirror, � is the cavity
detuning and G =

p
2Eg/

p
2 + �2. System (2) is linear. Hence, its state will be Gaussian and thus entirely

determined by its first two statistical moments. The operators in u(t) correspond only to the quantum fluctuations
and hence have, by definition, zero mean. As for the second moments, we define the 4 ⇥ 4 covariance matrix � as

�
ij

(t) =
1

2
h{u

i

(t), u
j

(t)}i. (5)

It can be shown directly from Eq. (2) that � satisfies the Lyapunov equation

d�

dt
= A� + �AT + D, (6)

where D = diag(0, �(2n̄ + 1), , ) and n̄ = 1/[e~!/kBT � 1].
At t = 0 the cavity and mirror are uncoupled. The former is in a coherent state and the latter is in thermal

equilibrium with its heat bath. Hence the covariance matrix at t = 0 is

�0 = diag

✓
n̄ +

1

2
, n̄ +

1

2
,
1

2
,
1

2

◆
. (7)

The interaction is then turned on at t = 0, causing the system to evolve toward a non-equilibrium steady-state
(NESS). The covariance matrix �

s

of the NESS is a solution of Eq. (6) with d�
s

/ dt = 0:

A�
s

+ �
s

AT = �D (8)
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field at frequency !0. We have introduced the coupling rate E =

p
2P/~!0, where P is the laser power and  the

decay rate.
In the Heisenberg picture, we may write a system of coupled non-linear quantum Langevin equations for q, p and

a. By assuming a su�ciently large power P , we may linearise such equations by expanding each operator at first
order around its classical mean value. By focusing on the quadrature operators of the mirror and those of the cavity
�x = (�a† + �a)/

p
2 and �y = i(�a† � �a)/

p
2, we have

u̇(t) = Au + N(t) (2)

where u(t) = (�q, �p, �x, �y),
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and

N(t) = (0, ⇠(t),
p

2xin,
p

2yin). (4)

The latter is a vector of noise terms. In these equations � is the damping constant of the mirror, � is the cavity
detuning and G =

p
2Eg/

p
2 + �2. System (2) is linear. Hence, its state will be Gaussian and thus entirely

determined by its first two statistical moments. The operators in u(t) correspond only to the quantum fluctuations
and hence have, by definition, zero mean. As for the second moments, we define the 4 ⇥ 4 covariance matrix � as

�
ij

(t) =
1

2
h{u

i

(t), u
j

(t)}i. (5)

It can be shown directly from Eq. (2) that � satisfies the Lyapunov equation

d�

dt
= A� + �AT + D, (6)

where D = diag(0, �(2n̄ + 1), , ) and n̄ = 1/[e~!/kBT � 1].
At t = 0 the cavity and mirror are uncoupled. The former is in a coherent state and the latter is in thermal

equilibrium with its heat bath. Hence the covariance matrix at t = 0 is

�0 = diag

✓
n̄ +

1

2
, n̄ +

1

2
,
1

2
,
1

2

◆
. (7)

The interaction is then turned on at t = 0, causing the system to evolve toward a non-equilibrium steady-state
(NESS). The covariance matrix �

s

of the NESS is a solution of Eq. (6) with d�
s

/ dt = 0:

A�
s

+ �
s

AT = �D (8)

12

FIG. 10: Steady-state entropy production rate, Eq. (27) vs. � for di↵erent values of !.

For the present set of parameters it is possible to find a simpler formula that describes ⇧
s

for all values of � with
an accuracy of less than 0.1%. The formula is

⇧
s

' ⇧
a

:=
G2

�
�2 + 2

�

2� [! (�2 + 2) � �G2]

1

1 + �r
(31)

where

r =
(�2 + 2 � !2)2 + 42!2

2G2�!
(32)

The last term, 1/(1+�r) is negligible for most values of �. It only becomes important when � ! 0, where it ensures
that ⇧

a

tends to a finite value (as does ⇧
s

). In fact, when � ! 0 Eq. (31) tends to

⇧
a

(� ! 0) =
G42

�(2 + !2)2
(33)

The complete expression ⇧
s

also tends to this limit, provided we take only the term to first order in �/.

VI. DICKE MODEL

We have seen in the previous sections that the formalism outlined is not limited to the optomechanical setup. The
idea can be applied in principle to any physical situation in which the system can be described by linear quantum
Langevin equations for the quadrature operators, with a positive Wigner function. A suitable scenario in which this
happens is for example that of the Dicke model which describes the interaction of a system of N two level atoms
identically coupled to a cavity field mode. We will use the same notation and conventions used in [2], so we start with
the Hamiltonian of the Dicke model in the form

Ĥ = !0Ĵz

+ !â†â +
2�p
N

�
â + â†� (Ĵ

x

+ ⇣) (34)

where we have taken into account the possibility to have an explicit symmetry breaking field ⇣ 2 R. As usual we
have defined collective atomic angular momentum operators Ĵ

↵

(↵ = x, y, z) and bosonic field mode operators â and
â†. We can define the mean fields

hâi = ↵, hĴ�i = �, hĴ
z

i = w (35)
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INTRODUCTION

The physical system is a BEC of N atoms inside an
ultrahigh-finesse optical cavity. The atoms are pumped
transversally with a far-detuned standing-wave laser
field. Image in Fig. 1 is from Ref. [1]. A transverse pump
field (red) couples an excited momentum mode of a BEC
(blue) to a cavity mode via collective light scattering at
rate �. Photons escape the cavity through a loss chan-
nel at rate . Density fluctuations are inferred from the
detected cavity output field.

FIG. 1: Experimental scheme.

It has been shown in Ref. [2] that the Hamiltonian of
this system, for the closed case, maps to the Dicke model,
which will be described in the following sections.

DICKE MODEL WITH ONLY CAVITY
DISSIPATION

The Dicke Hamiltonian describes the coupling between
an ensemble of N two-level atoms and a single cavity
mode. Let’s start with the Hamiltonian of the Dicke
model in the form

Ĥ = !
0

Ĵ
z

+ !â†â +
2�p
N

�
â + â†� (Ĵ

x

+ ⇣) (1)

where we have taken into account the possibility to have
an explicit symmetry breaking field ⇣ 2 R. As usual we
have defined collective atomic angular momentum oper-
ators Ĵ

↵

(↵ = x, y, z) and bosonic field mode operators
â and â†. We can define the mean fields

hâi = ↵, hĴ�i = �, hĴ
z

i = w (2)

and write the semiclassical equations of motion including
a cavity decay at rate 

↵̇ = �( + i!)↵ � i
�p
N

(� + �⇤ + 2⇣)

�̇ = �i!
0

� + 2i
�p
N

(↵ + ↵⇤) w

ẇ = i
�p
N

(↵ + ↵⇤)(� � �⇤).

(3)

Using the angular momentum conservation w2 + |�|2 =
N2/4, we get the steady-state equations:

�
ss

=

✓
�

�
cr

◆
2

(�
ss

+ ⇣)

r
1 � 4

�2

ss

N2

↵
ss

=
2�

i � !

(�
ss

+ ⇣)p
N

,

(4)

where the critical coupling strength is �
cr

=
1

2

p
!0
!

(2 + !2) for ⇣ = 0. It is important to notice that
�

ss

is real and �
ss

= O(N), while ↵
ss

is complex and
↵

ss

= O(
p

N). Now we want to rewrite the Hamilto-
nian explicitly in terms of the operators which represent
displacements of atomic and field operators with respect
to the stationary values of the respective mean fields �

ss

and ↵
ss

. It is convenient to apply the Holstein-Primako↵
transformation:

Ĵ
+

= b̂†
q

N � b̂†b̂, Ĵ� =

q
N � b̂†b̂ b̂, Ĵ

z

= b̂†b̂ � N

2
,

(5)
and then introduce the fluctuations operators:

�â = â � e↵, �b̂ = b̂ �
e�p
N

, (6)

where e↵ and e� are the steady state mean fields of the
operators â and b̂ respectively. We recognise e↵ = ↵

ss

and, as we want to consider the thermodynamic limit
N >> 1, we have

e�

s

1 �
e�2

N2

= �
ss

. (7)

With these definitions the leading term for the time evo-
lution of the density matrix of the total system in the
thermodynamical limit is given by:

d⇢̂

dt
= �i

h
Ĥ 0, ⇢̂

i
+ L0(⇢̂) (8)

where the Hamiltonian is

Ĥ 0 = f!
0

�b̂†�b̂ + !�â†�â + e�(�â + �â†)(�b̂ + �b̂†)

� µ
⇣
�b̂ + �b̂†

⌘
2

+ const.
(9)
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FIG. 3. Experimental assessment of the irreversible entropy production rate ⇧s at the NESS for (a) the optomechanical
system and (b) the cavity BEC system. In the optomechanical system, gab is twice the standard optomechanical coupling
rate [11] (see SI). For the cavity-BEC setup, the control parameter gab is renormalised with respect to the critical parameter
gcrab =

p
(2

a + !2
a)!b/4!a. The insets show the behaviour of µb in each of the settings considered. In both panels, the solid

black lines show the theoretical predictions based on the values given in Table I. The blue and red dots show the experimental
data for the optomechanical and cavity-BEC experiment, respectively. In panel (a), the vertical error bars report statistical
errors extracted from the fit, while the horizontal ones show experimental error on the values of the parameter. In panel
(b), the vertical and horizontal error bars report the statistical errors from the fit and the determination of the critical point,
respectively [20].

varied by increasing the power of the pump. The density
noise spectrum (DNS) of the cavity field quadratures is
recorded [20, 23]. Typical examples of the experimen-
tal DNS, together with the fitting curves used for their
analysis, are shown in Fig. 2. In the optomechanics ex-
periment, the datasets are taken for !

a

= !
b

, which is
the working point where the cooling of the mechanical
resonator is most e↵ective. In the cavity-BEC experi-
ment, on the other hand, the parameters are !

a

� !
b

,
resulting in only a tiny admixture of the optical sub-
system. A further di↵erence between the two platforms
is in the way the two oscillators are populated: in the
optomechanical case, we have n

b

� n
a

for the lowest
coupling values, while they become comparable in size
for the maximum cooling achieved. In the cavity-BEC
setup, the cavity field is considerably less populated than
the atomic mode. Finally, the mechanical bath is at room
temperature, while the temperature of the atomic reser-
voir is below the condensation point and in the nK range
(cf. Table I). This highlights and reinforces the diversity
of the experimental platforms that we have addressed
within a unique framework for the quantification of irre-
versible entropy.

Following the technical approach illustrated in SI, we
have separately reconstructed the two terms µ

a

and µ
b

that determine quantitatively ⇧
s

. Figure 3 displays the
experimental data together with the theoretical model,
demonstrating excellent quantitative agreement. Besides
the influences of the environments, an important contri-
bution to the entropy production rates results from the
interplay between the mutual dynamics of the oscillators.
For the optomechanical system, the contribution to ⇧

s

we observe from the mechanical oscillator is much smaller

than the one coming from the optical field. On the con-
trary, µ

a

' µ
b

in the atomic setup. For each of the two
experiments ⇧

s

is positive, in agreement with the sec-
ond law. In the optomechanics setup, µ

a

is an increasing
function of the coupling: the stronger the pump, the fur-
ther the system operates away from thermal equilibrium
and the more entropy is generated. At the same time,
µ

b

takes negative values, whose magnitude increases for
increasing values of g

ab

. This is fully legitimate as µ
b

is not per se an entropy production rate. The observed
behaviour of µ

b

is a signature of optomechanical cool-
ing: its growth, in absolute value, with g

ab

shows the in-
crease of the entropy flow from the mechanical resonator
to the cavity field, corresponding to lowering of the e↵ec-
tive temperature of the resonator. As for the cavity-BEC
system, the divergent behaviour of the entropy produc-
tion rate at the critical point reflects the occurrence of
the structural phase transition: at gcr

ab

, the known di-
vergence of the populations of the two oscillators at the
steady-state [25] results in the singularity of both µ

a

and
µ

b

separately. The irreversible entropy production rate
thus diverges at criticality.

Our theoretical approach enables the first experimen-
tal assessment of an important indicator of irreversibility,
the entropy production rate, in driven-dissipative quan-
tum systems operating at the steady-state. The two ex-
perimental setups, being prominent instances of meso-
scopic systems undergoing quantum dynamics, allowed
us to link the phenomenology of the entropy production
rate to the rich features of their physics.
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