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Topological Photonics
Remember that we will be talking about: 

1. Different parts of the EM spectrum —> very different physical systems 

We calculate the edge band structure by using a unit cell that is
periodic in the x direction but finite in the y direction, ending with two
‘zig-zag’ edges (infinite in the x direction). The zig-zag edge is one of
three typical edge terminations of the honeycomb lattice; the other two
are the ‘armchair edge’ and the ‘bearded edge’. Note that the presence
of chiral edge states can be derived using the bulk–edge correspond-
ence principle by calculating the Chern number4,5,17,29. In our sample
(see Fig. 1a), the top and bottom edges are zig-zag edges and the right
and left edges are armchair edges. The band structure of the zig-zag
edge is presented in Fig. 2a for the case where the waveguides are not
helical (R 5 0). There are two sets of states, one per edge. Their disper-
sion curves are flat and completely coincide (that is, they are degenerate
with one another), residing between kx 5 2p/3a and kx 5 4p/3a, occu-
pying one-third of kx space, where a 5 15

ffiffiffi
3
p

mm is the lattice constant.
The Floquet band structure when the lattice is helical with R 5 8mm is
shown in Fig. 2b. Here, the edge states are no longer degenerate, but
now have opposite slopes. Specifically, the transverse group velocity

(i.e., the group velocity in the (x–y) plane) on the top edge is now
directed to the right, and on the bottom edge to the left, corresponding
to clockwise circulations. However, there are no edge states whatsoever
circulating in the anti-clockwise direction. Hence, the edge states pre-
sented in Fig. 2b are the topologically protected edge states of a Floquet
topological insulator. The lack of a counter-propagating edge state on a
given edge directly implies that any edge-defect (or disorder) cannot
backscatter, as there is no backwards-propagating state available into
which to scatter, contrary to the case of R 5 0, where there are multiple
states into which scattering is possible. This is the essence of why topo-
logical protection occurs. The transverse group velocity (for brevity, we
henceforth drop ‘transverse’) of these edge states has a non-trivial
dependence on the helix radius, R. For small R, the group velocity of
the edge states increases, but eventually it reaches a maximum and
decreases again. Before the group velocity crosses zero, the Chern
number is calculated to be 21 (indicating the presence of a clockwise
edge state, as seen in Fig. 2b). However, after the group velocity crosses
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Figure 1 | Geometry and band structure of honeycomb photonic Floquet
topological insulator lattice. a, Microscope image of the input facet of the
photonic lattice, showing honeycomb geometry with ‘zig-zag’ edge
terminations on the top and bottom, and ‘armchair’ terminations on the left
and right sides. Scale bar at top right, 15mm. The yellow ellipse indicates the
position and shape of the input beam to this lattice. b, Sketch of the helical
waveguides. Their rotation axis is in the z direction, with radius R and period

Z. c, Band structure (b versus (kx, ky)) for the case of non-helical waveguides
comprising a honeycomb lattice (R 5 0). Note the band crossings at the Dirac
point. d, Bulk band structure for the photonic topological insulator: helical
waveguides with R 5 8mm arranged in a honeycomb lattice. Note the bandgap
opening up at the Dirac points (labelled with the red, double-ended arrow),
which corresponds to the bandgap in a Floquet topological insulator.
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Figure 2 | Dispersion curves of the edge states, highlighting the unique
dispersion properties of the topologically protected edge states for helical
waveguides in the honeycomb lattice. a, Band structure of the edge states on the
top and bottom of the array when the waveguides are straight (R 5 0). The
dispersion of both top and bottom edge states (red and green curves) is flat,
therefore they have zero group velocity. The bands of the bulk honeycomb lattice

are drawn in black. b, Dispersion curves of the edge states in the Floquet topological
insulator for helical waveguides with R 5 8mm: the band gap is open and the edge
states acquire non-zero group velocity. These edge states reside strictly within the
bulk band gap of the bulk lattice (drawn in black). c, Group velocity (slope of green
and red curves) versus helix radius, R, of the helical waveguides comprising the
honeycomb lattice. The maximum occurs at R 5 10.3mm.
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Remember that we will be talking about: 

2. Mostly about classical effects 

Lectures 1 & 2: Quadratic Hamiltonians Ĥ = �†H�

But more generally, we can talk about topology if a system obeys a linear equation:

(where ω is the normal mode frequency),

H �� = ���

classification of topological properties of this matrix

Properties of waves, not of 
quantum mechanics

Topology in classical photonics, phononics, mechanics…

this disturbance—in the same direction as before—and emerge
undisturbed on the other side. Remarkably, the excitation tra-
verses the defect region without scattering backward or into the
bulk. As before, the resilience of the edge modes suggests these
edge states are topological in character.
To analyze the origin of these effects, we return to an ideal

coupled gyroscope model. For simplicity, we represent the dis-
placement of the tip of the gyroscope from equilibrium as
ψ → δx + iδy. In this form, the linearized version of Eq. 1 is
iðdψ=dtÞ= ðℓ2=IωÞF, where F→Fx + iFy is the complex repre-
sentation of the interaction force and the complex phase, i, arises
from the cross-product. Accordingly, the linearized equation of
motion for each site in the gyroscopic metamaterial is

i
dψp

dt
=Ωgψp +

1
2

X

q∈n.n.ðpÞ

h!
Ω+

ppψp +Ω+
pqψq

"

+ e2iθpq
!
Ω−

ppψp*+Ω−
pqψq*

"i
,

[2]

where p is the site label, q the neighboring sites, θpq is the spring
bond angle, and Ω±

pj =− ℓ2
Iω ð∂Fpk=∂xjk ± ∂Fp⊥=∂xj⊥Þ are determined

from gradients of the force on p, Fp, parallel and perpendicular

to the line connecting the equilibrium positions of the gyroscopes.
In the case of the interactions being provided by springs, Ω±

pq =
kℓ2=Iω=Ωk, where k is the spring constant.
Symmetries often play a fundamental role in characterizing a

system’s topological behavior; in the case of the gyroscopic ma-
terials, broken time-reversal symmetry is a natural starting point.
We note that the linearized equation of motion bears remarkable
similarity to the Schrödinger equation for the wavefunction of an
electron in a tight-binding model. Thus, by analogy, we may
analyze the breaking of temporal symmetry using the “time-
reversal” operation in quantum mechanics: t→ − t, ψ →ψp. For
gyroscopes, conjugating ψ mirrors their displacement in the y
axis; applying the complete time-reversal operation to a single
gyroscope leaves the equation of motion unchanged. Similarly,
for a network of gyroscopes Eq. 2 is invariant under this oper-
ation only if the coefficient e2iθpq is real (up to a global rotation),
and breaks the symmetry otherwise. Thus, crucially, we see that
the breaking of time-reversal symmetry depends on distribution
of bond angles in the lattice, and not simply the response of
individual gyroscopes.
The geometric origin of the time-reversal symmetry breaking

can also be seen in the case of gyroscopes connected by springs,
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Fig. 2. Demonstration of robustness of edge modes in experiment. (A) A picture of the experimental system as viewed from below. (B) The edge of the
experimental lattice from the side, showing the construction of the individual gyroscopes as well as the fixed magnets around the edge that provide the
lateral confinement. (C) The calculated histogram of normal mode frequencies for an array of 54 gyroscopes arranged in a honeycomb lattice (no disorder) is
shown. The frequencies range from 0.7 to 2.5 Hz. (D–F) A comparison of calculated normal modes in an ideal magnetic-gyroscope network (Left) as measured
in an experimental system (Right). For each system a mode is shown in (D) the optical band, (E) the band gap, and (F) the acoustic band. Disorder has a strong
effect on bulk mode profiles. However, the gap mode profiles correspond much more closely to the ideal modes in shape, orientation, and phase of the
gyroscope orbits.

Nash et al. PNAS | November 24, 2015 | vol. 112 | no. 47 | 14497
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e.g. Introduction to topological classical mechanics:  
Huber et al., Nature Physics 12, 621–623 (2016)

REPORTS
◥

PHYSICS

Observation of phononic helical
edge states in a mechanical
topological insulator
Roman Süsstrunk and Sebastian D. Huber*

A topological insulator, as originally proposed for electrons governed by quantum
mechanics, is characterized by a dichotomy between the interior and the edge of a
finite system: The bulk has an energy gap, and the edges sustain excitations traversing
this gap. However, it has remained an open question whether the same physics can be
observed for systems obeying Newton’s equations of motion. We conducted experiments
to characterize the collective behavior of mechanical oscillators exhibiting the
phenomenology of the quantum spin Hall effect. The phononic edge modes are shown
to be helical, and we demonstrate their topological protection via the stability of the
edge states against imperfections. Our results may enable the design of topological
acoustic metamaterials that can capitalize on the stability of the surface phonons as
reliable wave guides.

T
he experimental hallmarks of the quantum
spin Hall effect (QSHE) in semiconductor
quantum wells (1–5) are two counterpro-
pagating edge modes that differ by their
spin degree of freedom. As long as time

reversal symmetry is preserved, these twomodes
are independent and do not scatter into each

other (6, 7). Much of the interest in condensed
matter research involving topological states is
driven by the use of these protected edge modes
for technological applications such as spin-
tronics (8, 9), magnetic devices (10), or quan-
tum information processing (11). The transfer of
the phenomenology of the QSHE from the quan-

tummechanical realm to classicalmechanical sys-
tems is therefore of fundamental interest, and
its accomplishment would offer a gateway to
newdesignprinciples inmechanicalmetamaterials.
Several key problems in the engineering of

acoustic materials can potentially be addressed
by capitalizing on the physics of the QSHE. The
edge channels are robust counterparts to the
well-known whispering gallery modes (12, 13).
Any application that requires energy to be con-
fined to the surfaces of some device—for exam-
ple, vibration insulators—can potentially make
use of such edge states. In contrast to the whis-
pering gallery modes, which are extremely sensi-
tive to the shape of the surface (14), the topological
edge modes are stable under a variety of pertur-
bations.Moreover, because of the stability of these
modes, scattering-free phonon waveguides of al-
most arbitrary shape can be realized. This in turn
enables the engineering of robust acoustic delay
lines (15–17), which are useful for purposes such
as acoustic lensing (18).
Howamechanical systemdescribedbyNewton’s

equations can reproduce the phenomenology of
a quantummechanical model such as the QSHE
has remained an openquestion (19–23).We sought
to derive a mapping of the physics of the QSHE
to a general mechanical system and to provide a
specific experimental verification of our propo-
sal. With a view to potential applications, it is
essential to demonstrate that the physics of the

RESEARCH
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Fig. 1. Setup. (A) Illustration of two one-dimensional pendula, x and
y, making up one effective site of our lattice model. (B) Schematic top
view of the couplings perpendicular to the direction of motion of the
pendula. The top two layers of springs (magenta and brown) im-
plement the cross-coupling between x and y pendula. One lever arm
yields a negative coupling, whereas two lever arms give rise to a
positive coupling. The spring constants are chosen to give rise to the
desired effective coupling strength Im(f). Note that there are three
sites in one unit cell owing to the three different phases on the
transverse couplings. (C) The next two layers of springs (green and
red) implement the x-x and y-y couplings Re(f) in the transverse
direction. (D) The bottom springs (blue) couple x-x or y-y springs with
strength f0 in the longitudinal direction.

Institute for Theoretical Physics, ETH Zürich, 8093 Zürich,
Switzerland.
*Corresponding author. E-mail: sebastian.huber@phys.ethz.ch
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•How can we engineer topology for photons?  
•  Quantum Hall systems 
•  Quantum spin Hall systems 
•  SSH Model & Topological Pumps 
•  Topological superconductors? 

•How can we probe topology with photons? 

•Future perspectives
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Photonic quantum Hall system
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Topological photonics started with seminal theoretical works of Haldane and Raghu:
Haldane and Raghu, PRL 100, 013904 (2008)

Raghu and Haldane, PRA 78, 033834 (2008)

Concept: Try to engineer photonic energy bands with non-trivial Chern number 
• Electrons in a lattice —> photons in a periodic structure  
• Magnetic field —> time-reversal symmetry breaking (magneto-optical materials)

Time-
reversal

Particle-
hole Chiral

How to make this topological?

permittivity permeability



Magneto-optic material

magneto-optic material in 
presence of magnetic field Applications in optical isolators

Figure from: http://www.fiber-optic-components.com/tag/optical-isolatorFigure from: https://en.wikipedia.org/wiki/
Faraday_effect#/media/File:Faraday-effect.svg

Faraday effect

http://www.fiber-optic-components.com/tag/optical-isolator
https://en.wikipedia.org/wiki/Faraday_effect#/media/File:Faraday-effect.svg


Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design
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Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.
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Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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Gyromagnetic 2D 
photonic crystal 

Wang et al., Nature 461, 772–775 (2009).

Magnetic Photonic Crystals 

Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design

a

b
y x

z

4 cm

Antenna A

Antenna B

CES waveguide

Metal wall

Scatterer of
variable length l

Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.
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Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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Chern bands

Many related 
experiments since… 
see e.g. Lu et al, Nature 
Phys., 12, 626 (2016)

Figure 1
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[NB photonic crystals also 
used for first observation of 

Weyl points!} 

Lu, et al., Science 349, 622 (2015)

Experimental realisation of Haldane-Raghu idea by 
MIT group: 

• Microwaves propagate through a lattice of ferrite 
rods [lattice optimised numerically] 

• TRS broken by strong magnetic field, coupling to 
ferrite rods —> gyromagnetic 



The end of the story?

Magneto-optical effect works well for breaking TRS at microwave frequencies

but (i) this effect is weak at optical frequencies and (ii) having real magnetic fields is 

not good for many applications (e.g. on-chip devices)…. so we need other tricks! 

• Floquet engineering 
• Synthetic dimensions 
• ….

c.f. Lecture 3!



Floquet engineering

U(T ) = T exp

�
�i

� T

0
dtH(t)

�

Very(!) brief intro to Floquet theory: 
System modulated periodically in time T = 2⇡/!

For lots more about Floquet theory, see e.g: 
M. Bukov et al.  Advances in Physics, 64, 139, (2015)  
N. Goldman et al., arXiv:1507.07805  

H = H0 + V (t)

V (t+ T ) = V (t)periodic 
drivingstatic

Concept: Design driving to engineer an artificial magnetic field in the effective Hamiltonian

U(T ) = exp (�iTHe�)

Stroboscopic evolution captured by time-independent effective Hamiltonian:

      and          can be in different topological classesHe↵H0

! �Typically assume high-frequency driving (           all other frequencies) and then calculate 
effective Hamiltonian perturbatively, e.g. at lowest order:
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Shaking: propagating waveguides 
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Rechtsman, et al., Nature 496, 196 (2013)

We calculate the edge band structure by using a unit cell that is
periodic in the x direction but finite in the y direction, ending with two
‘zig-zag’ edges (infinite in the x direction). The zig-zag edge is one of
three typical edge terminations of the honeycomb lattice; the other two
are the ‘armchair edge’ and the ‘bearded edge’. Note that the presence
of chiral edge states can be derived using the bulk–edge correspond-
ence principle by calculating the Chern number4,5,17,29. In our sample
(see Fig. 1a), the top and bottom edges are zig-zag edges and the right
and left edges are armchair edges. The band structure of the zig-zag
edge is presented in Fig. 2a for the case where the waveguides are not
helical (R 5 0). There are two sets of states, one per edge. Their disper-
sion curves are flat and completely coincide (that is, they are degenerate
with one another), residing between kx 5 2p/3a and kx 5 4p/3a, occu-
pying one-third of kx space, where a 5 15

ffiffiffi
3
p

mm is the lattice constant.
The Floquet band structure when the lattice is helical with R 5 8mm is
shown in Fig. 2b. Here, the edge states are no longer degenerate, but
now have opposite slopes. Specifically, the transverse group velocity

(i.e., the group velocity in the (x–y) plane) on the top edge is now
directed to the right, and on the bottom edge to the left, corresponding
to clockwise circulations. However, there are no edge states whatsoever
circulating in the anti-clockwise direction. Hence, the edge states pre-
sented in Fig. 2b are the topologically protected edge states of a Floquet
topological insulator. The lack of a counter-propagating edge state on a
given edge directly implies that any edge-defect (or disorder) cannot
backscatter, as there is no backwards-propagating state available into
which to scatter, contrary to the case of R 5 0, where there are multiple
states into which scattering is possible. This is the essence of why topo-
logical protection occurs. The transverse group velocity (for brevity, we
henceforth drop ‘transverse’) of these edge states has a non-trivial
dependence on the helix radius, R. For small R, the group velocity of
the edge states increases, but eventually it reaches a maximum and
decreases again. Before the group velocity crosses zero, the Chern
number is calculated to be 21 (indicating the presence of a clockwise
edge state, as seen in Fig. 2b). However, after the group velocity crosses
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Figure 1 | Geometry and band structure of honeycomb photonic Floquet
topological insulator lattice. a, Microscope image of the input facet of the
photonic lattice, showing honeycomb geometry with ‘zig-zag’ edge
terminations on the top and bottom, and ‘armchair’ terminations on the left
and right sides. Scale bar at top right, 15mm. The yellow ellipse indicates the
position and shape of the input beam to this lattice. b, Sketch of the helical
waveguides. Their rotation axis is in the z direction, with radius R and period

Z. c, Band structure (b versus (kx, ky)) for the case of non-helical waveguides
comprising a honeycomb lattice (R 5 0). Note the band crossings at the Dirac
point. d, Bulk band structure for the photonic topological insulator: helical
waveguides with R 5 8mm arranged in a honeycomb lattice. Note the bandgap
opening up at the Dirac points (labelled with the red, double-ended arrow),
which corresponds to the bandgap in a Floquet topological insulator.
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Figure 2 | Dispersion curves of the edge states, highlighting the unique
dispersion properties of the topologically protected edge states for helical
waveguides in the honeycomb lattice. a, Band structure of the edge states on the
top and bottom of the array when the waveguides are straight (R 5 0). The
dispersion of both top and bottom edge states (red and green curves) is flat,
therefore they have zero group velocity. The bands of the bulk honeycomb lattice

are drawn in black. b, Dispersion curves of the edge states in the Floquet topological
insulator for helical waveguides with R 5 8mm: the band gap is open and the edge
states acquire non-zero group velocity. These edge states reside strictly within the
bulk band gap of the bulk lattice (drawn in black). c, Group velocity (slope of green
and red curves) versus helix radius, R, of the helical waveguides comprising the
honeycomb lattice. The maximum occurs at R 5 10.3mm.

LETTER RESEARCH

1 1 A P R I L 2 0 1 3 | V O L 4 9 6 | N A T U R E | 1 9 7

Macmillan Publishers Limited. All rights reserved©2013

5

internal state

internal state

internal state
a b

atom

«s
yn

th
et

ic»
 d

im
en

sio
n

«s
yn

th
et

ic»
 d

im
en

sio
n

atoms in a 1D optical lattice

c
light

m
ea

n 
int

er
na

l s
ta

te

[lattice spacing]
0 0.05 0.1 0.15 0.2 0.25

FIG. 3. Exploiting a synthetic dimension. (a) The synthetic dimension approach consists in interpreting a set of atomic
internal states as fictitious lattice sites, aligned along an extra spatial dimension. Driving transitions between the internal states
allows for “hopping” along the synthetic dimension, which is then characterized by the tunneling matrix element =⌦ exp[i✓(x)],
where the Peierls phase-factor is directly related to the wave-vector of the driving laser field [36]. (b) Loading atoms into a
1D optical lattice, and driving transitions between the internal states, can be used to simulate lattice systems of two spatial
dimensions. By adjusting the Peierls phase-factors exp[i✓(x)], synthetic magnetic fluxes � can be created within this fictitious
2D lattice. (c) Experimental observation of edge skipping orbits, in a synthetic 3-leg ladder (using three internal states of 173Yb
atoms) subjected to a uniform synthetic flux [56].
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FIG. 4. Floquet engineering with cold atoms. (a)
Tunneling can be induced in optical superlattices, by mod-
ulating the potential resonantly with respect to the energy
o↵sets � between neighboring sites. Considering a modu-
lation potential of the form V (x, t) = V0 cos[!t + ✓(x)], the
resulting tunneling matrix elements are Je↵= |Je↵| exp[i✓(x)].
This method allows one to induce Peierls phase-factors, and
hence, artificial magnetic fluxes in 2D optical lattices [19, 78–
80]. (b) Shaking a honeycomb optical lattice circularly
is formally equivalent to subjecting graphene to circularly-
polarized light: this configuration reproduces the so-called
Haldane model [86], shown in (c), where e↵ective next-
nearest-neighbor hopping matrix elements are associated with
a well-defined chirality (stemming from the shaking [18]).

are directly related to the phase ✓(x) of the modulated
potential [24, 25]. In this way, the moving potential
V̂ (t) can be designed so as to engineer synthetic gauge
fields in 2D optical lattices [25]. The experiments re-

ported in Refs. [19, 78–80] realized strong synthetic mag-
netic fluxes and studied their e↵ects on atomic gases. In
Refs. [19, 78], a constant flux per plaquette �=⇡/2 was
engineered throughout the lattice, leading to Bloch bands
with non-zero Chern numbers. This allowed for the first
Chern-number measurement with cold gases [19], which
was achieved by loading bosonic atoms into a Bloch band
with Chern number C=1 and subjecting them to a con-
stant force; the Chern number was then extracted by
measuring the transverse (Hall) drift of the cloud [48, 49],
see Figure 1. The experiment [19] also revealed a signifi-
cant heating, attributed to the periodic driving, through
dynamical measurements of excitations to higher bands.
This pointed out the current limitations of this scheme in
view of stabilizing topological states. Similar center-of-
mass drift measurements were recently performed [81–83]
to extract the Zak phase and Chern number of 1D (Thou-
less) quantum pumps [40, 84].
Shaking a 2D optical lattice in an o↵-resonant man-

ner also constitutes a powerful method by which e↵ec-
tive magnetic fluxes and topological band structures can
be created [18, 85]. In particular, in the high-frequency
regime, the e↵ective Hamiltonian Ĥe↵ of a circularly
shaken honeycomb optical lattice [18, 29] becomes equiv-
alent to the emblematic Haldane model [86], in direct
analogy with graphene irradiated by circularly-polarized
light [27]; see Figure 4 (b,c). This allows for the realiza-
tion of the anomalous Hall e↵ect in cold atoms, as was
experimentally demonstrated in Ref. [18] through the ob-
servation of an anomalous velocity [38, 40] in response to
an applied force.

Topological superfluids and Majorana bound states

The occurrence of quasiparticles with non-Abelian
statistics, called non-Abelian anyons, has first been pre-
dicted in certain fractional QH states [87], and later in
time-reversal-breaking superconductors with p+ ip pair-

zero—at which point the band gap closes—the Chern number is 2
(indicating the presence of two anti-clockwise edge states, as confirmed
by calculations). The R dependence of the group velocity is shown in
Fig. 2c, where we plot the group velocity of the topologically protected
edge state at kx 5p/a versus R. The maximum calculated group velo-
city is at R 5 10.3mm.

To demonstrate these edge states experimentally, we launch a beam
with an elliptic profile of wavelength 633 nm such that it is incident on
the top row of waveguides in an array with helix radius R 5 8mm. The
position of the input beam is indicated by the ellipse in Fig. 1a. The
light distribution emerging from the output facet is presented in
Fig. 3a–d, with the shape and position of the input beam indicated
by a yellow ellipse. In Fig. 3a, the beam emerges at the upper-right
corner of the lattice, having moved along the upper edge. When we
move the position of the input beam horizontally to the right, the
output beam moves down along the vertical right edge, as shown in
Fig. 3b. The beam emerging from the lattice remains confined to the
edge, not spreading into the bulk and without any backscattering.
Moving the position of the input beam further rightward makes the
output beam move farther down along the side edge, as shown in
Fig. 3c and d. Clearly, the input beam has moved along the top edge,
encountered the corner, and then continued moving downward along
the right edge. We show this behaviour in beam-propagation-method
(BPM) simulations30, solving equation (1) (see Supplementary Video 1).
The central observation of these experimental results is that the corner
(which is in essence a strong defect) does not backscatter light. Indeed,
no optical intensity is evident along the top edge at the output facet, after
having backscattered from the corner. Furthermore, no scattering into
the bulk of the array is observed (owing to the presence of a bulk band-
gap). These observations provide strong evidence of topological protec-
tion of the edge state.

Further evidence follows from the fact that light stays confined to
the side edge of the array as it propagates downwards. This edge is in
the armchair geometry, which, for straight waveguides (R 5 0) does
not allow edge confinement at all (that is, no edge states). However,
when R . 0, edge state dispersion calculations reveal that a confined
edge state emerges. This is essential for the topological protection
because it prevents transport into the bulk of the lattice.

We now experimentally examine the behaviour of the topological
edge states as the helix radius, R, is varied. We find that the group
velocity reaches a maximum and then returns to zero as R is increased,
in accordance with Fig. 2c. To investigate this, we fabricate a series of
honeycomb lattices of helical waveguides with increasing values of R,
cut in a triangular shape (Fig. 4a). We first examine light propagation
in the lattice with non-helical waveguides (that is, R 5 0; Fig. 4b).
Launching a beam into the waveguide at the upper-left corner of the
triangle (circled) excites two types of eigenstates: (1) bulk states extend-
ing to the corner, and (2) edge states that meet at the corner. As the light
propagates in the array, the excited bulk states lead to some degree of
spreading into the bulk (the excitation of these bulk modes can be
eliminated by engineering the beam to only overlap with eigenstates
confined to the edge). In contrast, the edge states do not spread into the
bulk, and, because the edge states are all degenerate (Fig. 2a), they do
not cause spreading along the edges either (that is, zero group velocity).
Figure 4b shows the intensity at the output facet highlighting this effect:
while some light has diffracted into the bulk, the majority remains at
the corner waveguide. This is also shown in simulations (where the
animation evolves by sweeping through the z coordinate from z 5 0 cm
to z 5 10 cm); see Supplementary Video 2.

When the helical waveguides have clockwise rotation, the edge
states are no longer degenerate. In fact, the lattice now has a set of
edge states that propagate only clockwise on the circumference of the
triangle. Light at the corner no longer remains there, and moves along
the edge. Figure 4b–j shows the output facet of the lattice for increasing
radius R. For R 5 8mm, the wave packet wraps around the corner of
the triangle and moves along the opposite edge (Fig. 4f) (the corres-
ponding simulation is shown in Supplementary Video 3; the loss of
intensity over the course of propagation is due to bending/radiation
losses). Importantly, the light is not backscattered even when it hits the
acute corner, owing to the lack of a counter-propagating edge state.
This is a key example of topological protection against scattering. For
R 5 12mm, the wavepacket moves along the edge, but with a slower
group velocity. This is consistent with the prediction that the group
velocity of the edge state reaches a maximum at R 5 10.3mm and
thereafter decreases with increasing radius. The experiments suggest
that the maximal group velocity is achieved between 6mm and 10mm,
while the theoretical result (10.3mm) is well within experimental error,
given that this is a prediction from coupled-mode theory. Exact simu-
lations confirm the experimental result.

By R 5 16mm, bending losses are large, leading to leakage of optical
power into scattering modes (accounting for the large background
signal). The bending losses for R 5 4mm, 8mm, 12mm and 16mm were
found to be, respectively, 0.03 dB cm21, 0.5 dB cm21, 1.7 dB cm21 and
3 dB cm21. Recall that each lattice has propagation length z 5 10 cm.
The large background signal prevents us from experimenting with
larger R, where we would expect two anti-clockwise-propagating edge
states, as discussed earlier. As shown in Fig. 4j, the group velocity of the
wavepacket approaches zero and therefore the optical power remains
at the corner waveguide. These observations clearly demonstrate the
presence of one-way edge states on the boundary of the photonic
lattice that behave according to theory. Note that for different initial
beams—the elliptical beam of Fig. 3, and the single-waveguide excita-
tion of Fig. 4—the topological edge state behaves exactly as the model
predicts, providing experimental proof of the existence of the topo-
logical edge state.

To demonstrate the z dependence of the wavepacket as it propagates
along the edge, we turn to a combination of experimental results and

a b

c d

Figure 3 | Light emerging from the output facet of the waveguide array as
the input beam is moved rightwards, along the top edge of the waveguide
array. The yellow ellipse at the top of each panel shows the position of the input
beam (which is at the top of the array, see Fig. 1a), which is moved progressively
to the right in a–d. The beam propagates along the top edge of the array (which
is in the zig-zag configuration), hits the corner, and clearly moves down the
vertical edge (which is in the armchair configuration). Note that the wavepacket
shows no evidence of backscattering or bulk scattering due to its impact with
the corner of the lattice. This scattering of the edge state is prevented by
topological protection.
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zero—at which point the band gap closes—the Chern number is 2
(indicating the presence of two anti-clockwise edge states, as confirmed
by calculations). The R dependence of the group velocity is shown in
Fig. 2c, where we plot the group velocity of the topologically protected
edge state at kx 5p/a versus R. The maximum calculated group velo-
city is at R 5 10.3mm.

To demonstrate these edge states experimentally, we launch a beam
with an elliptic profile of wavelength 633 nm such that it is incident on
the top row of waveguides in an array with helix radius R 5 8mm. The
position of the input beam is indicated by the ellipse in Fig. 1a. The
light distribution emerging from the output facet is presented in
Fig. 3a–d, with the shape and position of the input beam indicated
by a yellow ellipse. In Fig. 3a, the beam emerges at the upper-right
corner of the lattice, having moved along the upper edge. When we
move the position of the input beam horizontally to the right, the
output beam moves down along the vertical right edge, as shown in
Fig. 3b. The beam emerging from the lattice remains confined to the
edge, not spreading into the bulk and without any backscattering.
Moving the position of the input beam further rightward makes the
output beam move farther down along the side edge, as shown in
Fig. 3c and d. Clearly, the input beam has moved along the top edge,
encountered the corner, and then continued moving downward along
the right edge. We show this behaviour in beam-propagation-method
(BPM) simulations30, solving equation (1) (see Supplementary Video 1).
The central observation of these experimental results is that the corner
(which is in essence a strong defect) does not backscatter light. Indeed,
no optical intensity is evident along the top edge at the output facet, after
having backscattered from the corner. Furthermore, no scattering into
the bulk of the array is observed (owing to the presence of a bulk band-
gap). These observations provide strong evidence of topological protec-
tion of the edge state.

Further evidence follows from the fact that light stays confined to
the side edge of the array as it propagates downwards. This edge is in
the armchair geometry, which, for straight waveguides (R 5 0) does
not allow edge confinement at all (that is, no edge states). However,
when R . 0, edge state dispersion calculations reveal that a confined
edge state emerges. This is essential for the topological protection
because it prevents transport into the bulk of the lattice.

We now experimentally examine the behaviour of the topological
edge states as the helix radius, R, is varied. We find that the group
velocity reaches a maximum and then returns to zero as R is increased,
in accordance with Fig. 2c. To investigate this, we fabricate a series of
honeycomb lattices of helical waveguides with increasing values of R,
cut in a triangular shape (Fig. 4a). We first examine light propagation
in the lattice with non-helical waveguides (that is, R 5 0; Fig. 4b).
Launching a beam into the waveguide at the upper-left corner of the
triangle (circled) excites two types of eigenstates: (1) bulk states extend-
ing to the corner, and (2) edge states that meet at the corner. As the light
propagates in the array, the excited bulk states lead to some degree of
spreading into the bulk (the excitation of these bulk modes can be
eliminated by engineering the beam to only overlap with eigenstates
confined to the edge). In contrast, the edge states do not spread into the
bulk, and, because the edge states are all degenerate (Fig. 2a), they do
not cause spreading along the edges either (that is, zero group velocity).
Figure 4b shows the intensity at the output facet highlighting this effect:
while some light has diffracted into the bulk, the majority remains at
the corner waveguide. This is also shown in simulations (where the
animation evolves by sweeping through the z coordinate from z 5 0 cm
to z 5 10 cm); see Supplementary Video 2.

When the helical waveguides have clockwise rotation, the edge
states are no longer degenerate. In fact, the lattice now has a set of
edge states that propagate only clockwise on the circumference of the
triangle. Light at the corner no longer remains there, and moves along
the edge. Figure 4b–j shows the output facet of the lattice for increasing
radius R. For R 5 8mm, the wave packet wraps around the corner of
the triangle and moves along the opposite edge (Fig. 4f) (the corres-
ponding simulation is shown in Supplementary Video 3; the loss of
intensity over the course of propagation is due to bending/radiation
losses). Importantly, the light is not backscattered even when it hits the
acute corner, owing to the lack of a counter-propagating edge state.
This is a key example of topological protection against scattering. For
R 5 12mm, the wavepacket moves along the edge, but with a slower
group velocity. This is consistent with the prediction that the group
velocity of the edge state reaches a maximum at R 5 10.3mm and
thereafter decreases with increasing radius. The experiments suggest
that the maximal group velocity is achieved between 6mm and 10mm,
while the theoretical result (10.3mm) is well within experimental error,
given that this is a prediction from coupled-mode theory. Exact simu-
lations confirm the experimental result.

By R 5 16mm, bending losses are large, leading to leakage of optical
power into scattering modes (accounting for the large background
signal). The bending losses for R 5 4mm, 8mm, 12mm and 16mm were
found to be, respectively, 0.03 dB cm21, 0.5 dB cm21, 1.7 dB cm21 and
3 dB cm21. Recall that each lattice has propagation length z 5 10 cm.
The large background signal prevents us from experimenting with
larger R, where we would expect two anti-clockwise-propagating edge
states, as discussed earlier. As shown in Fig. 4j, the group velocity of the
wavepacket approaches zero and therefore the optical power remains
at the corner waveguide. These observations clearly demonstrate the
presence of one-way edge states on the boundary of the photonic
lattice that behave according to theory. Note that for different initial
beams—the elliptical beam of Fig. 3, and the single-waveguide excita-
tion of Fig. 4—the topological edge state behaves exactly as the model
predicts, providing experimental proof of the existence of the topo-
logical edge state.

To demonstrate the z dependence of the wavepacket as it propagates
along the edge, we turn to a combination of experimental results and

a b

c d

Figure 3 | Light emerging from the output facet of the waveguide array as
the input beam is moved rightwards, along the top edge of the waveguide
array. The yellow ellipse at the top of each panel shows the position of the input
beam (which is at the top of the array, see Fig. 1a), which is moved progressively
to the right in a–d. The beam propagates along the top edge of the array (which
is in the zig-zag configuration), hits the corner, and clearly moves down the
vertical edge (which is in the armchair configuration). Note that the wavepacket
shows no evidence of backscattering or bulk scattering due to its impact with
the corner of the lattice. This scattering of the edge state is prevented by
topological protection.
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Pumping on edge : chiral edge state

spatially-varying refractive index 
along direction of propagation, z

Propagating waveguides 
also recently used to 

realise anomalous Floquet 
topological states

Maczewsky et al., Nat. Comm. 8 (2017). 
Mukherjee et al., Nat. Comm. 8 (2017). 

Like Schrodinger but with roles of t and z reversed!



Dynamical modulation: resonator lattices 

Resonator
Lattice 

Lattice sites are resonators, e.g. 
Coupled together e.g. by waveguides 

or auxiliary resonators   

Often can be well-described by tight-
binding Hamiltonians

This intermediate resonator supports a px state with frequency vA,
and a py state with frequency vB (Fig. 4b). The px state couples
with the monopole at the left with strength V1 and the py state
couples with the quadrupole on the right with strength V2. A
photonic transition was driven between the px and py states by mod-
ulating the refractive index of the intermediate region at frequency
V¼ |vA 2 vB| (refs 24–26). Such a modulation couples the px
and py state with a dynamic coupling constant Vdcos(Vtþf ),
where f is the modulation phase that we control. In the regime
where Vd much less than symbol V1 and V2, which is the experimen-
tally relevant regime because the modulation is typically weak, we
can show, using coupled mode theory, that the modulation
induces a dynamic coupling between the left and right resonators,
with an equivalent strength of (Vd/2)cos(Vtþ f ) (Supplementary
Section SI).

We verified the existence of dynamic coupling between the left
and right resonators by a direct finite-difference time-domain simu-
lation of the structure shown in Fig. 4a. We used a modulation
strength of D1¼ 0.0178 in the intermediate region. Figure 4c
shows the slowly varying envelope of the amplitude of the monopole
state. A dynamic and complete Rabi oscillation clearly exists, which
matches well with two-mode coupled mode theory. Thus, using
first-principles simulations, we have demonstrated dynamic coup-
ling of two spatially separated resonators.

To demonstrate the predicted effects here, the dynamic coupling
strength between the resonators needs to dominate over the resona-
tor loss rate. In the optical domain, choosing a modulation strength
of D1/1¼ 5.4 × 1025, and a modulation frequency of V¼ 20 GHz,
both of which are achievable experimentally31,32, we should be able
to achieve a dynamic coupling strength of V¼ 5 × 1025(2pc/a),
which corresponds to 14.3 GHz if we operate at a wavelength of
1.55 mm, and is one order of magnitude larger than the intrinsic
decay rate of state-of-the-art photonic-crystal resonators34,35. In
the meantime, we have V , V and thus the rotating wave approxi-
mation is still satisfied. Moreover, the radiation loss of resonators
can in principle be removed by placing the photonic resonators in
a three-dimensional photonic crystal36. For this purpose, we note
significant recent progress in fabricating high-quality three-dimen-
sional photonic crystals37.

To construct our system requires the integration of a substantial
number of modulators on-chip, and in this regard we note a recent
work demonstrating electrically induced non-reciprocity by separ-
ately modulating 88 different regions on a silicon chip38. This exper-
iment achieved a refractive index modulation of "1 × 1024 in each
modulated region, with a total power consumption of 316 mW

(25 dBm). The predicted effects here will require a similar number
of modulated regions. However, in our system, the area of each
modulated region, being a single-mode resonator, can be consider-
ably smaller than that of ref. 38 and as a result the total required
electric power may be significantly lower. Finally, ref. 38 experimen-
tally showed that the phase of the modulations can be controlled to a
sufficient accuracy to achieve a significant non-reciprocal response.
We believe that the requirement for phase accuracy in our design
is similar.

In the microwave regime, we propose the structure shown in
Fig. 5, where two RLC resonators, each having different frequencies
vA and vB, are connected by transmission lines through a frequency
conversion device composed of mixers. The mixer contains a local
oscillator at a frequency of V¼ vA 2 vA (Fig. 5b). An incident wave
from the left (right), at a frequency vA (vB), mixes with the local
oscillator, and generates an output at vB (vA) to the right (left),
and thus achieves dynamic coupling Vcos(Vtþ f) between the
two resonators. The phase of the local oscillator f is the modulation
phase of the coupling constant between the two resonators. The
strength of the coupling between the microwave resonators is
V¼ [2a/(1þ a2)](Zc/L), where L is the inductance of the
microwave resonator, Zc is the characteristic impedance of the
transmission line, and a is the conversion efficiency of the mixer
(Supplementary Section SII). Typical mixers have a conversion
efficiency of 4–7 dB (ref. 39). Strong dynamic coupling between
microwave resonators can be achieved by choosing a low resistance
for the resonator. For example, for a mixer with a conversion
efficiency of 4 dB, the resistance R of the microwave resonator
should satisfy R , 1.37Zc (typically Zc¼ 50 V), to meet the
requirement V . g.

In summary, we have shown that in a dynamically modulated
photonic resonator lattice, the modulation phases introduce a
gauge field for photons, which can be used to apply an effective
magnetic field to the photons. Here, for illustration purposes, we
have considered only a uniform effective magnetic field. However,
because the modulation phase distributions can be arbitrarily speci-
fied, we anticipate tremendous richness of photon motion in such a
dynamic lattice, which is important for both fundamental studies
and potential applications. This work should provide additional
stimulus to the significant recent works aiming to achieve non-
magnetic on-chip non-reciprocity40–43, by highlighting new
fundamental physics effects in these systems.
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Figure 5 | Realization of dynamic coupling between resonators in the microwave regime. a, Two microwave RLC resonators with frequencies vA and vB,
respectively, coupled through a transmission line waveguide incorporating a frequency conversion device. The frequency conversion device introduces
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Preparing and probing Chern bands with cold atoms 13

(a) Goal: induce Peierls phase factors (b) Using internal states of the atoms

(c) Shaking the lattice (d) Combining superlattices and resonant driving

Figure 1.4 (a) E↵ective magnetic fluxes can be created in deep optical
lattices by inducing complex tunneling matrix elements. (b) Method us-
ing state-dependent optical potentials Vg,e, trapping atoms in two internal
states |gi and |ei, combined with a resonant atom-light coupling with fre-
quency !ge = (Ee � Eg)/~. (c) Shaking a lattice, with an arbitrarily large
driving frequency !. (d) Method using a superlattice with energy o↵set
�, large compared to the bare hopping energy, combined with a resonant
onsite energy modulation with frequency ! = �/~.

lattice sites (a and b), separated in energy by a large o↵set �, and subjected
to a resonant modulation acting on the lower site (a) only. We write the
tight-binding Hamiltonian in the form

Ĥ(t) = �J
⇣
â†b̂+ b̂†â

⌘
+� b̂†b̂+  cos(!t+ �)â†â, (1.15)

where J is the bare hopping amplitude between the sites. In the large-
frequency regime � = ~! � J , the long-time dynamics resulting from
the time-dependent Hamiltonian Ĥ(t) is found to be captured by a time-
independent (e↵ective) Hamiltonian, which in this case, takes the simple
form [30, 31, 32, 33, 34]

Ĥ
e↵

= �JJ
1

(/~!) exp(i�) â†b̂+ h.c., (1.16)

where J
1

denotes the Bessel function of the first kind. According to Eq.
(1.16), the tunneling between the sites is e↵ectively restored and the cor-
responding tunneling matrix elements include a Peierls phase-factor related
to the phase of the modulation �, which can be made space-dependent. The
result in Eq. (1.16) constitutes the building blocks for the generation of mag-
netic fluxes in time-modulated optical lattices, as implemented in Munich
[35, 36, 15] and at MIT [37]. The following of the Section describes these
schemes in more detail.

In order to treat time-modulated optical lattices, we first introduce a set of
useful equations, which o↵er a powerful theoretical framework to analyse the

General concept same as: 
superlattice + resonant modulation (cold atoms)

Realizing effective magnetic field for photons by
controlling the phase of dynamic modulation
Kejie Fang1, Zongfu Yu2 and Shanhui Fan2*

The goal to achieve arbitrary control of photon flow has motivated much of the recent research on photonic crystals and
metamaterials. As a new mechanism for controlling photon flow, we introduce a scheme that generates an effective
magnetic field for photons. We consider a resonator lattice in which the coupling constants between the resonators are
harmonically modulated in time. With appropriate choice of the spatial distribution of the modulation phases, an effective
magnetic field for photons can be created, leading to a Lorentz force for photons and the emergence of topologically
protected one-way photon edge states that are robust against disorders—without the use of magneto-optical effects.

For charged particles such as electrons, the use of a magnetic field
has played an essential role in many fundamental physical
phenomena and applications. On the classical level, a Lorentz

force induced by a magnetic field has been used to create devices
such as magnetic lenses, which are widely used in modern
accelerators and electron microscopy. On the quantum level, when
a low-temperature two-dimensional electron gas is placed in a
perpendicular magnetic field, the transverse conductance of the
electron gas becomes quantized, leading to integer and fractional
quantum Hall effects1,2. One defining property of quantum Hall
systems is the existence of unidirectional edge modes3,4, which are
topologically protected and characterized by a non-zero Chern
number for the bulk band structure5,6.

Photons are neutral particles. Accordingly, there are no naturally
analogous magnetic fields. Nevertheless, with the development of
artificial photonic structures such as photonic crystals7–9 and meta-
materials10–12, there has been considerable interest recently in
seeking to manipulate photons in a manner similar to the manipu-
lation of electrons using a magnetic field. In particular, an effective
magnetic field in momentum space for photons has been discussed
extensively, and has been used to achieve the Hall effect for light13

and to realize one-way edge modes in magneto-optical photonic
crystal that are direct photonic analogues of quantum Hall
systems14–18. These achievements, however, do not correspond
directly to a magnetic field in real space.

An optical analogue of the quantum spin Hall effect has also
been proposed19,20. In such systems, photons with opposite spins
experience an effective magnetic gauge field along opposite direc-
tions. As a result, the edge modes of opposite spins propagate in
opposite directions, therefore realizing a photonic analogue of the
electronic quantum spin Hall effect. However, the gauge field in
these systems does not break time-reversal symmetry.

For photons, in contrast to electrons, there is no Kramers degener-
acy. Consequently, unlike a regular electronic potential perturbation,
which preserves electron spin21, a regular dielectric perturbation in
photonics typically induces photon spin mixing. As a result, the
edge modes in refs 19 and 20 are not robust against all disorders.
Such a limitation has been noted in experiments on systems that
exhibit similar spin-dependent photon dispersion relations22.

In a recent paper23, it was shown that in interband photonic tran-
sitions, as induced by dynamic refractive index modulation, the

phase of the modulation is connected to a gauge transformation
of the photon wavefunction. In ref. 23, this effect was then used
to construct an optical isolator. An effective magnetic field,
however, is characterized by the highly non-trivial topological prop-
erties of photon wavefunctions. In two dimensions, for example, one
such topological property is a non-zero Chern number. Such a topo-
logical property is absent in most isolators (which are one-
dimensional systems), including the isolator of ref. 23. Here, we
show that, by specifically configuring a system undergoing inter-
band photonic transition, we can naturally achieve an effective mag-
netic field that couples to photons. Such an effective magnetic field
breaks time-reversal symmetry and operates in real space. As dem-
onstrations, we show that such an effective magnetic field can lead to
the circular motion of light beams, as driven by a Lorentz-like force,
and photonic one-way edge modes in a photonic resonator lattice.

Effective magnetic field
To introduce an effective magnetic field for photons we consider a
square lattice of photonic resonators as shown in Fig. 1. The lattice
consists of two interpenetrating square sublattices, labelled A and B.
The resonators in each sublattice have frequencies of vA and vB,
respectively. We assume only nearest-neighbour coupling, and the
coupling occurs only between the two sublattices. Moreover, we
assume that the coupling constants are modulated harmonically24–26.
We will discuss physical implementations that achieve such a
coupling in the section ‘Proposal for experimental implementation’.
The resulting Hamiltonian is then given by

H = vA

∑

i

a†
i ai + vB

∑

j

b†j bj

+
∑

kijl

Vcos(Vt + fij)(a
†
i bj + b†j ai) (1)

where V is the strength of the coupling, V is the modulation
frequency, fij is the phase of the modulation between resonators
at sites i and j, and a† and b† are the creation operators in the A
and B sublattices, respectively. In this system, the modulation is
therefore applied on the ‘bonds’ that connect sites i and j.

We now assume in Hamiltonian (1) that V¼vA 2 vB, and V
much less than symbol V. In this limit, the rotating wave
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the Hamiltonian simplifies to

H =
∑

kijl

V
2
(e−ifij c†i cj + eifij c†j ci) (2)

where ci( j) = eivA(B)tai(bj). Hamiltonian (2) is identical to the
Hamiltonian of a charged particle on a lattice subjected to a mag-
netic field27, if we make the association

∫j

i
Aeff dl = fij (3)

Thus, we find that the phase of the harmonic modulation can intro-
duce an effective gauge potential Aeff to photons. The phase distri-
bution of Fig. 1 corresponds to the Landau gauge in the rotating

frame, as photons hopping along the positive y-direction at a
given x-coordinate always acquire the same phase.

To achieve a uniform effective magnetic field for photons, we
assigned the modulation phase shown in Fig. 1, with all bonds along
the x-direction having the same phase 0, and each bond along the
y-direction having a different modulation phase, depending on the
location of the bond. Under a phase distribution such as that in
Fig. 1, the lattice is associated with a uniform effective magnetic field Beff,

Beff =
1
a2

∮

plaquette

Aeff dl = f

a2 (4)

where a is the lattice constant.
From the analytic arguments in equations (2) to (4), we therefore

see that the modulation phase in the time-dependent Hamiltonian
in equation (1) can be used to achieve an effective magnetic field
for a photon. Below, we will verify this prediction by a direct
numerical simulation of the time-dependent Hamiltonian in
equation (1), and by demonstrating some of the novel electro-
magnetic effects associated with the presence of an effective
magnetic field.

Lorentz force
Classically, in free space, a particle of charge q and mass m in a
uniform magnetic field B is driven by the Lorentz force, F¼ qv× B,
where v is the velocity of the charged particle. As a result, the
charged particle moves in a circle in a plane perpendicular to the
uniform magnetic field, with radius R¼mv/(qB), if the initial
velocity v is perpendicular to the magnetic field. The same circular
motion can also be observed quantum mechanically if one considers
the motion of a wave packet of the charged particle subject to a
magnetic field.

We now show that the effective magnetic field, as introduced by
the choice of modulation phase distribution, can also induce a cir-
cular motion of a photon wavepacket. We consider the structure
shown in Fig. 2a. The right half of the lattice has a phase distribution
as in Fig. 1, representing a uniform effective magnetic field Beff as
given by equation (4). The left half of the lattice has modulation
phase fij¼ 0 for any i,j, which represents a region free of effective
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Figure 1 | Dynamically modulated photonic resonator lattice exhibiting an
effective magnetic field for photons. A lattice of photonic resonators, with
two square sublattices of resonators with frequency vA (red) and vB (blue),
respectively. There is only nearest-neighbour dynamic coupling. The phase
of the dynamic coupling on the horizontal bonds is zero. The phase on the
vertical bonds is proportional to the column index, and within the same
column the sign is flipped between two neighbouring bonds.
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Figure 2 | Photon motion in an effective magnetic field. a, Structure (part), comprising the resonator lattice shown in Fig. 1, used to demonstrate the Lorentz
force for photons. Resonators are indicated by dots. Lattice parameters: vA¼ 30, vB¼0, V¼0, V¼ 6 (all in units of 2pc/a). The left part of the lattice has
no effective magnetic field (f¼0). The right part of the lattice has an effective magnetic field with the modulation phase set in a pattern according to Fig. 1.
A Gaussian wave packet is initiated in the left part of the structure. The packet is described by equation (5), with w¼p

10 a. b, Trajectory of the centre of
mass of the wave packet, after the wave packet (with k¼21.283/a) has entered the right part, where an effective magnetic field is present. Different
symbols correspond to different f. The wave packet has a circular trajectory. c, Radius of the trajectory as a function of 1/f for k¼21.283/a. d, Radius of
the trajectory as a function of k, for f¼0.3.
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the Hamiltonian simplifies to

H =
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kijl

V
2
(e−ifij c†i cj + eifij c†j ci) (2)

where ci( j) = eivA(B)tai(bj). Hamiltonian (2) is identical to the
Hamiltonian of a charged particle on a lattice subjected to a mag-
netic field27, if we make the association

∫j

i
Aeff dl = fij (3)

Thus, we find that the phase of the harmonic modulation can intro-
duce an effective gauge potential Aeff to photons. The phase distri-
bution of Fig. 1 corresponds to the Landau gauge in the rotating

frame, as photons hopping along the positive y-direction at a
given x-coordinate always acquire the same phase.

To achieve a uniform effective magnetic field for photons, we
assigned the modulation phase shown in Fig. 1, with all bonds along
the x-direction having the same phase 0, and each bond along the
y-direction having a different modulation phase, depending on the
location of the bond. Under a phase distribution such as that in
Fig. 1, the lattice is associated with a uniform effective magnetic field Beff,

Beff =
1
a2

∮

plaquette

Aeff dl = f

a2 (4)

where a is the lattice constant.
From the analytic arguments in equations (2) to (4), we therefore

see that the modulation phase in the time-dependent Hamiltonian
in equation (1) can be used to achieve an effective magnetic field
for a photon. Below, we will verify this prediction by a direct
numerical simulation of the time-dependent Hamiltonian in
equation (1), and by demonstrating some of the novel electro-
magnetic effects associated with the presence of an effective
magnetic field.

Lorentz force
Classically, in free space, a particle of charge q and mass m in a
uniform magnetic field B is driven by the Lorentz force, F¼ qv× B,
where v is the velocity of the charged particle. As a result, the
charged particle moves in a circle in a plane perpendicular to the
uniform magnetic field, with radius R¼mv/(qB), if the initial
velocity v is perpendicular to the magnetic field. The same circular
motion can also be observed quantum mechanically if one considers
the motion of a wave packet of the charged particle subject to a
magnetic field.

We now show that the effective magnetic field, as introduced by
the choice of modulation phase distribution, can also induce a cir-
cular motion of a photon wavepacket. We consider the structure
shown in Fig. 2a. The right half of the lattice has a phase distribution
as in Fig. 1, representing a uniform effective magnetic field Beff as
given by equation (4). The left half of the lattice has modulation
phase fij¼ 0 for any i,j, which represents a region free of effective
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Figure 1 | Dynamically modulated photonic resonator lattice exhibiting an
effective magnetic field for photons. A lattice of photonic resonators, with
two square sublattices of resonators with frequency vA (red) and vB (blue),
respectively. There is only nearest-neighbour dynamic coupling. The phase
of the dynamic coupling on the horizontal bonds is zero. The phase on the
vertical bonds is proportional to the column index, and within the same
column the sign is flipped between two neighbouring bonds.
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Figure 2 | Photon motion in an effective magnetic field. a, Structure (part), comprising the resonator lattice shown in Fig. 1, used to demonstrate the Lorentz
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A Gaussian wave packet is initiated in the left part of the structure. The packet is described by equation (5), with w¼p

10 a. b, Trajectory of the centre of
mass of the wave packet, after the wave packet (with k¼21.283/a) has entered the right part, where an effective magnetic field is present. Different
symbols correspond to different f. The wave packet has a circular trajectory. c, Radius of the trajectory as a function of 1/f for k¼21.283/a. d, Radius of
the trajectory as a function of k, for f¼0.3.
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In rotating wave approx, in rotating frame:
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Synthetic Dimensions in Photonics
1. Identify a set of states and reinterpret as sites in a synthetic dimension
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2. Couple these modes to simulate a tight-binding “hopping” 
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Concept: 

3. Combine with real spatial dimensions or more synthetic dimensions as desired 

by making use of additional degrees of freedom of photons.
For instance, we can simulate the quantum spin Hall effect42

in non-Abelian gauge fields43,44 by using the horizontal and
vertical polarizations of polarized photons to represent the up and
down state (s¼±1) of a spin. By using birefringent waveplates
whose optical axes are properly aligned with respect to the
horizontal and vertical polarizations, we can assign different
phases to the two polarizations and cause transitions between
them when they pass the waveplates (see Supplementary
Note 3 for details). We can then manipulate the polarization
states of the photon to mimick the spin flips and spin-dependent
phase delays caused by non-Abelian gauge fields, as illustrated

in Fig. 2. The simulated Hamiltonian is (Supplementary
Note 3)

H2 ¼"k
X

j;l

âyj;lþ 1ei2pŷy âj;l þ âyjþ 1;le
i2pŷx âj;l þ h:c:

! "

þ
X

j;l

ljâ
y
j;lâj;l;

ð2Þ

where âyj;l ¼ ða
y
j;l;$; ayj;l;lÞ is a two-component (the horizontal

and vertical polarization) photon creation operator, and lj is
an effective on-site energy. The tunnelling phases that correspond
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Figure 1 | A 1D array of degenerate cavities for simulating a 2D rectangular lattice in a magnetic field. (a) The optical design for simulating H1. Each

main cavity has an auxiliary cavity consisting of two BSs (BSj
1 and BSj

3) and two SLMs (SLMj
1 and SLMj

2). There is also a coupling cavity (made of BSj
2 and

BSjþ 1
4 ) between adjacent main cavities (It can be replaced with a simple BS to reduce the number of optical elements in experiments). The length of both

the auxiliary and coupling cavity is chosen for destructive interference, and most light remains in the main cavity. The cavities at the two ends of the array
can be coupled to realize periodic boundary condition, or uncoupled for open boundary condition. (b) Mapping of the 1D simulator array in (a) to a 2D
rectangular lattice in a magnetic field. (c) The coupling cavity (left) for simulating H5 and the optical design (right) for the beam rotators BR1 and BR2 with
opposite rotation angles ±W¼±2pf0. The main cavity and auxiliary cavity require no modification, except that the phase difference between the arms
containing the SLMs is set to 0.
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since the position is well-defined. Thus, the observed response
resembles a superposition of semiclassical circular Lorentz trajec-
tories with different initial velocity directions. A probe injected
closer to the edge excites chiral integer quantum Hall effect edge
states; see Fig. 3(b).

The Aharonov–Bohm effect [40] is one of the most intriguing
features of quantum mechanics. In an interferometer, electrons
can acquire a phase difference determined by the magnetic flux
enclosed by the interfering pathways, even though they never feel
any force due to the magnetic field. Figure 3(c) depicts a setup
that is based on the wavelength-conversion scheme and realizes an
optical analog of the Aharonov–Bohm effect: a local probe is
transmitted via two pathways, leading to an interference pattern
in the transmission. The pattern is shifted according to the flux
through the “ring” [see Fig. 3(d)], confirming the effect.

All the effects displayed in Fig. 3 have been simulated numeri-
cally for the wavelength-conversion scheme (see Supplement 1),
but similar results hold for the modulated-link scheme.

4. GAUGE FIELDS IN SYNTHETIC DIMENSIONS

So far we have analyzed schemes to engineer hopping phases for
photons. We now ask about situations in which the phonons are
not only employed as auxiliary virtual excitations, but rather occur
as real excitations, which can be interconverted with the photons.
This means, in addition to the modes making up the lattices
described above (in either of the two schemes), we now consider
on-site vibrational modes b̂j coupled optomechanically to the
corresponding optical modes âj. Using the standard approach
[1], we arrive at a linearized optomechanical interaction of the
form −gâ†j b̂j ! h:c. Moreover, to be general (and generate non-
trivial features connected to the gauge field structure), we will
assume that the neighboring phonon modes may also be
coupled, as described by a tight-binding Hamiltonian of the form
−K

P
hijib̂

†
j b̂i ! h:c.

When discussing the effects of gauge fields in such a setting,
the system is best understood within the concept of ‘synthetic’
dimensions [41–44]. The optomechanical interaction can be
viewed in terms of an extension of the 1D or 2D lattice into such
an additional synthetic dimension. In our case, this dimension

only has two discrete locations, corresponding to photons versus
phonons. In that picture, the optomechanical interaction, con-
verting photons to phonons, corresponds to a simple hopping be-
tween sites along the additional direction. Figure 4(a) sketches
this for an optomechanical ring: photons and phonons represent
two layers separated along the synthetic dimension. Applying any
of our two previously discussed schemes, a photon hopping from
site i to j will acquire a phase ϕij "

R rj
ri drA. The gauge field A

must now be viewed as a vector field in this new three-
dimensional (3D) space, where one of the dimensions is synthetic.
A finite hopping phase ϕ at one of the optical links creates a mag-
netic flux through the optical plaquette as desired; see Fig. 4(a).
However, and this is the important point, since the magnetic field
B is divergence-free, the field must penetrate at least one addi-
tional plaquette, causing the opposite magnetic flux in the syn-
thetic dimension (assuming g ∈ R). In general, realizing that
there is this kind of behavior is crucial to avoid puzzles about
seeming violations of gauge symmetry in situations with photon
magnetic fields in optomechanical arrays. It is necessary to keep
track of the full vector potential in the space that includes the
synthetic dimension.

We now take a step back, getting rid of the previously dis-
cussed engineered schemes that required two lasers and some
arrangement of ‘link’ modes. Rather we will consider simple
optomechanical arrays, i.e., lattices of optical and vibrational
modes, with photon and phonon tunnel coupling between modes
and with the optomechanical interaction. We ask: What is the
effect of an arbitrary, spatially varying optical phase field in the
driving laser that sets the strength of the optomechanical cou-
pling? It turns out that the resulting spatially varying phase of
the optomechanical coupling, gj " jgjje

iφj , can be chosen to cre-
ate arbitrary magnetic fields perpendicular to the synthetic dimen-
sion. A particularly simple example is a simple linear chain of
optomechanical cells. Shining a tilted laser (i.e., with a phase
gradient, φj " j · δφ) onto such a 1D optomechanical array
creates a constant magnetic flux through the plaquettes of the
“optomechanical synthetic ladder” that can be drawn to
understand the situation; cf. Fig. 4(b). The quantum mechanics

Fig. 3. Microscopic simulation of the wavelength-conversion scheme,
Eq. (4), indicating its feasibility: spatial distribution of light intensity
upon local injection of a probe laser (a) in the bulk and (b) at the edge,
for a constant artificial magnetic field. Bulk transport (a) is governed by
Landau levels and can be understood as a superposition of classical cyclo-
tron orbits (yellow circles) for different momentum directions. (b) At the
edges robust edge channels exist. (c) Optical Aharonov–Bohm effect in
minimal symmetric setup. (d) The interference pattern (normalized
probe laser transmission intensity) is shifted by the magnetic flux through
the ring. [Parameters: (a),(b) 22 × 22 grid; (a),(b) δ " 0.3Ω0, (d) δ "
0.1Ω0; (a),(b) g " 0.2Ω0, (d) g " 0.01Ω0; (a),(b) κ " 0.01Ω0;
Γ " κ∕10; (a),(b) Φ " 2π∕8; (a),(b) J " 0.13Ω0, (d) J " 0.001Ω0,
(a) Δp " 1.278Ω0, (b) Δp " 1.260Ω0, (d) Δp " 1.103Ω0.]

Fig. 4. Optomechanical gauge fields within the concept of synthetic
dimensions. (a) The optomechanical coupling, g , can be viewed as con-
necting sites along a synthetic dimension (photons versus phonons). A
phase for the photon hopping, engineered using the schemes from above,
creates a flux in the optical plaquette (blue, top) and in the adjacent syn-
thetic plaquette (gray). Hence, the magnetic field (black lines) in the full
space is divergence-free. (b) Engineering exclusively the phases of g allows
us to create magnetic fields/fluxes, but only perpendicular to the syn-
thetic dimension. Shining a single tilted laser on a 1D chain yields a syn-
thetic optomechanical ladder system with constant synthetic magnetic
flux. (c) 2D array, with the field inside the (physical) plane generated
by an arbitrary laser phase pattern.
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objective and an InGaAs infrared camera (640 × 512 pixel grid with
a 25 mm pitch; Fig. 1c). Such a set-up allowed us to measure the rela-
tive amount of light scattered from each site26. Transmission
through the device was measured using an optical vector analyser
(Luna Technologies OVA 5000).

To describe the essence of the scheme, we considered a single
plaquette of our lattice, which consisted of four site resonators
and four link resonators in the form of rounded rectangles
(Fig. 1a). The link and site resonators were coupled to one
another through directional couplers, so photons circulating in
one direction in the site resonators only coupled with each other
and with photons circulating in the opposite direction in the link
resonators. The effective length of the link resonators was chosen
to be larger than that of the site resonators by 2h, so that the
links and sites were resonant at different frequencies.
Consequently, a photon resonant with the site resonators spent sub-
stantially more time in the sites than in the links. We associate the
clockwise photons in site resonators with the up-component of a
pseudo-spin. By virtue of time-reversal symmetry, the pseudo-
spin-down component (anticlockwise photons in the site resona-
tors) is degenerate with the pseudo-spin-up component. For the
moment, we focus on the spin-up component. Depending on the
positioning of the links, the photon acquires a different phase
hopping forwards than backwards. In particular, the hopping
process between sites 1 and 2 in Fig. 1a is described by
â†

2â1e−if12 + â†
1â2eif12 , where âi is the creation operator of a

photon at site i. The phase arises from an offset of the link wave-
guides from the symmetric point (defined as equal amounts of
additional length above and below the directional coupler).
Specifically, the additional phase is given by the optical length
f12¼ 4pnx12/l, where n is the index of refraction, x12 is the position
shift of the link resonator, and l is the wavelength of the light. Note
that the additional length h and position shifts away from the sym-
metric point are designed to keep the lengths of the directional cou-
plers, the geometry of their coupling regions, and their coupling
efficiencies invariant (Fig. 1a). Thus, the overall Hamiltonian
describing photon hopping in the plaquette can be written as

− J â†
2â1e−if12 + â†

3â2 + â†
4â3eif34 + â†

1â4

[ ]
+ h.c. (1)

where J is the tunnelling rate and the photon going anticlockwise
around the plaquette acquires a 2pa phase (where a¼
2n(x342 x12)/l) and h.c. is the Hermitian conjugate. If the phase

per plaquette is uniform over a region, the photonic dynamics are
equivalent to those of charged particles in a uniform perpendicular
magnetic field9. Such a system is predicted to exhibit edge states
at the boundaries of that region27,28. In a photonic system, such
edge states can be excited by driving the system in specific
frequency bands.

To verify that the expected edge physics arises entirely from our
synthetic gauge field, we first designed a phase slip between 10 × 4
stripes, as shown in Fig. 1b. This results in magnetic domains that
are entirely due to passive, and controlled, interference effects.
The resulting edge states of the system then follow along the edge
of the magnetic domains induced by this phase slip (Fig. 1b),
rather than the physical edge of the system (Supplementary
Section S2). The effective uniform magnetic field in the stripe is
given by a≈ 0.15. The dispersion of the system is shown in
Fig. 2a, where the edge-state bands are shown between magnetic
bulk bands. The light is coupled to the two-dimensional ring reso-
nators using a bent waveguide at the two bottom corners (Fig. 1b).
Depending on the pumping direction, the two different pseudo-spin
components can be excited, for example, coupling light into the
system at port 1 (2), pumps the system in the spin-up (spin-
down) component.

Results
As a demonstration of the scheme we measured the transmission
spectrum of the two-dimensional system through various ports and
compared it with our simulation (Fig. 2). We first characterized the
different system parameters using simpler devices including a notch
filter (single resonator coupled to a waveguide) and an add/drop
filter (single resonator coupled to two waveguides) fabricated on the
same chip to allow for calibration and characterization of the wave-
guides and resonators (Supplementary Section S2). We estimated
the probing waveguide–resonator coupling rate (kex ≈ 15 GHz),
the intrinsic loss (kin ≈ 1 GHz) and the tunnelling rate between site
resonators (J ≈ 16 GHz), with all measurements within 2 nm of
the centre wavelength of 1,539 nm. Given these parameters, we simu-
lated a 10 × 10 lattice using the transfer matrix formalism
(Supplementary Section S2) (Fig. 2a). We also considered a random
onsite impurity shift of the resonance frequency with a standard devi-
ation of 0.8J. In a lossless system, the transmission spectrum for the
spin-down (T12) and spin-up (T34) should be identical, although
they may take different paths. However, the presence of loss breaks
this symmetry. We observed a qualitative agreement between simu-
lation and experiment (Fig. 2b,c).
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Figure 1 | Experimental set-up. a, A single plaquette consisting of four link resonators and four site resonators: grey and white rounded rectangles represent
site and link resonators, respectively. These two types of resonators differ due to an extra length of 2h in the link resonators. Moreover, due to the vertical
shift of the link resonators, a photon acquires a non-zero phase when it hops between resonators (1,2) and (3,4). Therefore, a photon progressing
anticlockwise (clockwise) around the plaquette acquires a 2pa (22pa) phase. b, Scanning electron microscope (SEM) image of the device. Stripes with
uniform magnetic field are delineated with white dashed lines. c, Schematic of the experimental set-up. EDFA, erbium-doped fibre amplifier.
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differs from n0. The dispersion relation here thus is chosen to illustrate a waveguide with

a zero group velocity dispersion near frequency ω0. Each of the rings is modulated as

described above with an electro-optic modulator with a modulation frequency Ω, and with

a modulation phase φl in Eq. (3). To excite the system, a continuous-wave signal, having a

single frequency at ωm=0, is sent into the left ring resonator (l = 1). The distribution of the

intensity |El,m|2 as a function of l and m at t = 400 n0L/c (when the field finishes one loop in

the synthetic space) is plotted in Figure 3(c). We note that there is almost zero intensity for

the sidebands with m = ±5 and ±4. Thus the group velocity dispersion indeed provides a

boundary in the frequency space. The intensity is concentrated at the edge of the synthetic

space forming a topologically protected one-way mode. We plot in Fig. 3(d) the intensity

spectra corresponding to the E(t, r) field inside each resonators. For the resonators at the

spatial edge, (l = 1, and l = 6), the intensity spectra have significant components in all

on-resonance side bands, while for the resonators at the center of the structure (l = 3, and

l = 4), the intensity spectra are almost completely concentrated in the on-resonance side

bands that have the highest and lowest frequencies.

FIG. 4: (a) An array of five ring resonators. Two extra single-mode resonators couple between the

array and the waveguides with detectors. (b) The intensity spectra of the input and output. The

output spectra is measured at detector 2.
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•How can we engineer topology for photons?  
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•  Quantum spin Hall systems 
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Time-reversal symmetry?
T 2 = +1Remember from Lecture 2, for bosons there is no Kramer’s theorem as

Problem:  Two counter-propagating bosonic edge states (e.g. like in a topological 
insulator) will generally couple and backscatter —> not topologically-robust! 

Work-around solution:  Design the system to suppress the inter-mode coupling

Caveat: The following photonics set-ups are inspired by Class AII 
systems but they are not truly topological

Figure adapted from 
C. L. Kane & E. J. Mele, Science  
314, 5806, 1692 (2006)
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Ingredients for a photonic “topological insulator”: 
1) A “pseudo” spin-1/2?
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Figure 1 |Wave propagation in a 2D PTI. a, Photonic analogue of Kramers partners in a spin-degenerate metamaterial. b, Band structure of a metacrystal
comprising a hexagonal lattice of spin-degenerate metamaterials with (dashed lines, � = 0.5) and without (solid lines, � = 0) optical activity (right inset).
The metacrystal becomes a PTI through the opening of the second (topological) bandgap near the K and K0 points of the Brillouin zone for finite optical
activity. The left inset shows the Brillouin zone with the K and K0 valleys indicated by blue and red triangles, respectively. c, Eigen-frequency surfaces
illustrating degeneracy removal at the K (K0) point for � 6= 0. d, The hexagonal lattice of the metacrystals and two possible microscopic structures of its
metamaterial constituent rods with desirable bi-anisotropic response. PTI parameters: circular rods of radius r0 = 0.34a0 arranged in a hexagonal lattice
with period a0; each rod filled with spin-degenerate metamaterial with ✏? = µ? = 14, ✏zz = µzz = 1, and � = �xy/✏?µ? = 0.5.

accurate term of Kramers partners is used in condensed-
matter physics31. Note that space-dependent spin-degenerate
metamaterials have been used to design 3D optical invisibility
cloaks19. For further simplicity, from here onwards we consider
a 2D metacrystal comprising a hexagonal array (Fig. 2b) of spin-
degenerate uniaxialmetamaterial rods with ✏̂ =diag{✏?,✏?,✏zz} and
µ̂ = diag{µ?,µ?,µzz}, where ✏? = µ? and ✏zz = µzz are separated
by vacuum spaces.

To realize the PTI, we take advantage of another unique property
of metamaterials: their large bi-anisotropic response. Specifically,
the electromagnetic response of an optically activemediumwith the
bi-anisotropic tensor �̂ is described by the following constitutive
relations: D = ✏̂ ·E+ i�̂ ·H and B = µ̂ ·H� i�̂T ·E (refs 32,33).
Although optical activity is not uncommon in natural materials
containing chiral molecules, it is generally very small (|�ij | ⌧ 1).
On the contrary, giant magneto-electric coupling can now be engi-
neered inmetamaterials for frequencies ranging frommicrowave to
visible wavelengths using relatively simple metamolecules (Fig. 1b,
inset) such as split-ring resonators34–38 (SRRs), �-particles33,39,40
or metallic helices41–44. To emulate strong spin–orbit coupling in
topological insulators1,2, we expand the concept of spin-degenerate
metamaterials comprising the metacrystal by including their finite
optical activity through amagneto-electric tensor of a specific form:
�xy = ��yx 6= 0, with all other elements �ij = 0 (see Supplementary
Information SA for details).

Although numerous designs of a spin-matched optically active
metamaterial are possible, and addressing their comparative
advantages goes beyond the scope of this paper, two designs
(sketched in Fig. 1d) relevant to the microwave spectral range

are examined in detail in Supplementary Information SC. Here
the high electric permittivity ✏? is provided by either cut
wires or straight segments of the �-particles parallel to x-
and y-directions, and the high magnetic permeability µ? is
provided by SRRs placed in the x–z and y–z planes. Optical
activity is provided by the same elements owing to their lack
of spatial inversion symmetry33. If necessary, the gaps of cut
wires and/or SRRs can be loaded by lumped elements (for
example, capacitors) to lower the frequencies at which strong
electric/magnetic responses are reached. Note that the resonant
response of such elements implies that the effective constitutive
parameters of the metamaterial are dispersive (that is, frequency
dependent). Realistic dispersion does not affect the topological
properties of the PTI as was recently demonstrated in the context
of gyro-magnetic photonic crystals14,24. It does, however, reduce
the operational frequency band owing to generic propagation band
flattening in dispersive materials. In what follows, dispersion is
neglected for clarity, and finite frequency dispersion is addressed
in Supplementary Information SC.

The non-vanishing magneto-electric tensor mixes the TE and
TM polarizations according to the following propagation equations
for waves through the metacrystal:
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Usually, TE and TM modes have different wave-vectors, but in special 
metamaterials (where ε = μ), the wave-vectors are identical. Then:

Proposal: Khanikaev, et al. , Nature Materials 12, 233 (2013)
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Figure 3 | Excitation of surface waves by a point dipole source at the interface between topologically trivial and non-trivial photonic insulators.
a, Selective excitation of spin-up and spin-down photonic one-way edge states along a straight interface. Bottom metacrystal parameters: the same as in
Fig. 1. Top metacrystal: the same as bottom, but all sizes are scaled by the factor ⌘= 0.76 to ensure the coincidence of photonic bandgaps in both
metacrystals. b–d, Robustness of the edge modes against different types of defect: sharp bending of the interface (b), a cavity obstacle (c) and a strongly
disordered domain in both of the adjacent crystals (d). Colour scale in a–d: local field intensity | ±

e (x?)|.
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Figure 4 |Non-obstructing large photon antennas due to spin-cloaking. Spin-cloaked electric-dipole antenna (indicated by the rectangular region)
embedded into the cavity between topologically trivial and non-trivial metacrystals. a,b, The spin-polarized one-way transport of the spin-up  +

e (x?) and
spin-down  �

e (x?) edge modes avoiding a silent dipole antenna placed in the cavity. c,d, Selective directional excitation of these modes by the
electric-dipole antenna.

a strong local distortion of the crystalline lattice introduced by
randomly shifting rods in both crystals in the proximity of their
junction, modelling a local fusing of the two crystals. However,
even in this case the edge mode avoids backscattering by detouring
around the disordered region. The same lack of backscattering

from all three types of interfacial perturbation is observed when
the source on the right launches a spin-down surface wave
(bottom plots in Fig. 3b–d).

Spin-degenerate metamaterials and PTIs may have a surprising
practical application in photonics by enabling the placement
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Figure 2 |One-way spin-polarized transport of photonic edge states.
a, Dispersion of the spin-up (green) and spin-down (red) helical edge
states supported by a bi-anisotropic domain wall. Opaque and transparent
bands correspond to two interfaces, with �xy < 0 to �xy > 0 and with
�xy > 0 to �xy < 0 transitions, respectively. The blue lines illustrate the
super-cell’s bulk photonic states corresponding to different wavenumbers
in the direction perpendicular to the interface. b, The absolute value of | ±

e |
for right/left-propagating edge states of a bi-anisotropic (�xy < 0 to
�xy > 0) domain wall. The enlarged regions show the difference in the
temporal evolution between the spin-up  +

e and spin-down  �
e modes.

Although the field profiles Re( +) and Re( �) are identical, the modes
propagate in opposite directions and the power flux (black arrows) inside
the rods rotates in opposite directions. Field dynamics can be found in the
animations of the  ± wavefunctions given in the Supplementary
Information.

which is valid to the lowest order in �xy . On the contrary, the spin
states  ±(x,y) represent the true eigenmodes that are decoupled
from each other and satisfy the following propagation equation:

✓
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✏?µ?
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z
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One consequence of equation (1) is that each spin-state
solution  +(x?; q) ⌘ �p(x?; q)eiq·x? (where �p(x, y) is a
lattice-periodic function) with the Bloch wave vector +q
has a counterpart (Kramers partner) spin-state solution
 �(x?;�q) ⌘ �⇤

p (x?;q)e�iq·x? with the Bloch wave vector �q
and the same frequency ! = ck0. To demonstrate the emergence
of PTIs, consider the propagation band structure in a metacrystal
with rods of radius r0 = 0.34a0 (where a0 is the lattice constant),
and the metamaterial’s constitutive parameters ✏? = µ? = 14
and ✏zz = µzz = 1. The numerically calculated band diagram for
the optically passive (�̂ = 0) crystal obtained by the plane-wave
expansion method is shown in Fig. 1b. Owing to the hexagonal
symmetry of the metacrystal, the second and third (labelled,
respectively, as n = 1,2) doubly degenerate bands cross at the
corner points of the Brillouin zone (Fig. 1b,c) forming a four-fold
degenerate Dirac point24. Note that each of the two spin states is
doubly degenerate at the K(K0) points because of the dipolar nature
of the  ±

n (x?;K) ( ±
n (x?;K0)) doublet transforming according

to the E1 irreducible representation of the C6v symmetry group

of the metacrystal. This degeneracy can be interpreted as orbital
because the two members of the doublet can be linearly combined
into a clockwise- (RCP) or anticlockwise- (LCP) rotating state.
Away from the K/K0 corner points of the Brillouin zone, the band
structure contains two identical overlaid spectra corresponding
to the degenerate  ±

n (x?;q) spin states. It is also important to
mention that the K and K0 points of the Brillouin zone are not
connected by any of the reciprocal lattice vectors but are related
by time-reversal symmetry. Thus, photonic Kramers partners
of the PTI belong to the two distinct valleys of the Brillouin
zone defined by the K and K0 points as shown in the left inset
of Fig. 1b. For example, if q1 = K+ �k and q2 = K0 � �k, then
 +

n (x?;q1) and  �
n (x?;q1) states in proximity of the K point

have  �
n (x?;q2) and  +

n (x?;q2) as their respective partners in
proximity of the K0 point.

As there is no bandgap at the Dirac point for �̂ = 0, the
resulting spin-degenerate metacrystal is not a PTI and the photonic
states corresponding to the crossing Dirac bands are topologically
trivial. Finite optical activity of the constituent metamaterial
markedly changes the band structure. As shown in Fig. 1b for
� = �xy/✏µ = 0.5 (black dashed lines), the Dirac point disappears
and a finite topological bandgap proportional to |�xy | emerges,
thereby turning the metacrystal into a PTI for a finite range
of frequencies inside the gap (Fig. 1c). The four-fold degeneracy
of the Dirac point is therefore lifted by finite optical activity.
Thus, reduced two-fold degeneracy of the n = 1 propagation
band at the K/K0 points of the Brillouin zone is between the
spin-plus clockwise-rotating state (RCP)  +

RCP(x?;K/K0) and the
spin-minus anticlockwise-rotating (LCP) state  �

LCP(x?;K/K0).
Similar arguments can be made for the n = 2 band for which
double degeneracy is between the spin-plus anticlockwise-rotating
state (LCP)  +

LCP(x?;K/K0) and the spin-minus clockwise-rotating
(RCP) state  �

RCP(x?;K/K0). This entanglement between the spin
state (defined by the phase relationship between the TE and TM
waves) and the orbital state (defined by the polarization state of
the in-plane dipole moment) is the physical manifestation of spin–
orbital coupling in metacrystals. The difference in the temporal
evolution between the spin-up and spin-down modes of the bulk
(infinite) PTI metacrystal can be seen from the animations of
the wavefunction dynamics within a single unit cell given in the
Supplementary Information.

To illustrate a one-to-one mapping of the proposed PTI to
electronic topological insulators2, we construct an effective low-
energy Hamiltonian for the propagating spin states of such a
metacrystal. The effective Hamiltonian is obtained by truncating
the plane-wave expansion basis to three plane waves corresponding
to the three reciprocal lattice vectors closest to the K and
K0 points and then using the photonic k ·p approximation24,45, as
outlined in Supplementary Information SA. Note that as photonics
Kramers partners lie in different valleys, both the K and K0 points
should be included in the Hamiltonian. This procedure results
in the following effective 4 ⇥ 4 photonic Hamiltonians for the
two spin (±) states

Ĥ±(�k)= vD(⌧̂z �̂x�kx + �̂y�ky)±⇣ ⌧̂z �̂z (2)

Eigenfunctions of each of these two Hamiltonians repre-
sent the spin-polarized four-component vectors of Bloch wave
amplitudes, 9±(�k) ⌘ [ ±

RCP(q1), ±
LCP(q1), ±

RCP(q2), ±
LCP(q2)]T,

⌧̂i and �̂i are Pauli matrices acting in the 2D subspaces of
Brillouin-zone valleys (K and K0) and polarization states (LCP
and RCP) or subbands, respectively, vD is the phase velocity
of the modes at the Dirac points, which is a photonic ana-
logue of the Dirac velocity, and ⇣ ⇠ �xy (see Supplementary
Information SA for details). The dispersion relation for the
two photonic spin states in the bulk of the PTI that follows
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Figure 3 | Excitation of surface waves by a point dipole source at the interface between topologically trivial and non-trivial photonic insulators.
a, Selective excitation of spin-up and spin-down photonic one-way edge states along a straight interface. Bottom metacrystal parameters: the same as in
Fig. 1. Top metacrystal: the same as bottom, but all sizes are scaled by the factor ⌘= 0.76 to ensure the coincidence of photonic bandgaps in both
metacrystals. b–d, Robustness of the edge modes against different types of defect: sharp bending of the interface (b), a cavity obstacle (c) and a strongly
disordered domain in both of the adjacent crystals (d). Colour scale in a–d: local field intensity | ±
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Figure 4 |Non-obstructing large photon antennas due to spin-cloaking. Spin-cloaked electric-dipole antenna (indicated by the rectangular region)
embedded into the cavity between topologically trivial and non-trivial metacrystals. a,b, The spin-polarized one-way transport of the spin-up  +

e (x?) and
spin-down  �

e (x?) edge modes avoiding a silent dipole antenna placed in the cavity. c,d, Selective directional excitation of these modes by the
electric-dipole antenna.

a strong local distortion of the crystalline lattice introduced by
randomly shifting rods in both crystals in the proximity of their
junction, modelling a local fusing of the two crystals. However,
even in this case the edge mode avoids backscattering by detouring
around the disordered region. The same lack of backscattering

from all three types of interfacial perturbation is observed when
the source on the right launches a spin-down surface wave
(bottom plots in Fig. 3b–d).

Spin-degenerate metamaterials and PTIs may have a surprising
practical application in photonics by enabling the placement
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marked with magenta color for a configuration corresponding to
a photonic ordinary insulator (POI), which has identical
geometry as PTI except the constitutive parameters corresponds
to the purple cross in Fig. 2a. The POI has a zero spin Chern
number. It possesses a trivial phase and the gapped edge states
will appear (see Supplementary Fig. 3 and Note 3).

Because of the topological character, each phase in the diagram
is an isolated ‘island’. The non-trivial phase cannot be
adiabatically connected to a trivial phase without closing and
reopening the bandgap. The green solid line (yellow dashed line)
in Fig. 2a highlights the band inversion at M (K) point. Two pairs
of modes at M (K) point exchange their positions, involving the
bandgap’s closing and reopening. The spin Chern number
changes together with the topological phase. To show the band
inversion between non-trivial and trivial phases, Fig. 2d–h plot
the band structures at the five black points in Fig. 2a. We keep the
ratio m2z/m1z¼ 1.76 unchanged and gradually increase m2///m1//
from 1.1 to 1.4. The irreducible representations of the eigenmodes
are labelled to trace the band inversion behaviour. As the ratio
m2///m1// increases, the two eigenmodes at M point first merge
together (Fig. 2e) and reopen (Fig. 2f), and then the two
eigenmodes at K point switch order (Fig. 2f,h). In both inversions,
the bandgap closes and reopens along with the change of spin
Chern number. Furthermore, when m2///m1//o1, there are two
PTI phases due to the band inversion at K point. Spin Chern
numbers of both phases are non-zero, but have opposite signs
indicating the opposite propagation directions of their spin-up
(spin-down) edge states.

In general, topologically protected state supporting robust
transport will exist at the boundary separating a PTI and a
topologically trivial photonic insulator. We first constructed a
flat edge between a PTI and a low-index waveguide which
comprises a pair of parallel plates filled with the homogeneous
medium of e3 ¼

ffiffiffiffiffi
13
p

and m3 ¼ 1=
ffiffiffiffiffi
13
p

. The low-index wave-
guide serves as a trivial photonic insulator below its cutoff
frequency of 0.3125 (c/a). Figure 3a shows the right-going edge
state is guided at the edge between the two insulators, when an
Hz-polarized magnetic dipole is placed at the left of edge. The
two domains at the left and right sides of the edge is filled with a
dielectric (e¼ 13), where the wave can propagate. To demon-
strate the topologically protected properties, a square barrier
with a material of e3 ¼

ffiffiffiffiffi
13
p

and m3 ¼ 1=
ffiffiffiffiffi
13
p

is introduced at
the edge to probe the wave transport properties in the presence

of defects. Figure 3b demonstrated that the wave can go around
the barrier and keep moving rightward, and the amplitude of the
transmitted wave is the same as the case without the barrier. It is
obvious that the edge transport is robust against a barrier with
matched e/m ratio which cannot couple the two spin states. As a
control calculation, the edge between POI and the low-index
waveguide is studied in Fig. 3c,d. Here the EM waves
experiences strong backscattering and nearly no transmission
can be observed after the square barrier is inserted. Topologi-
cally protected state can also exist between PTI and POI, as
shown in Fig. 3e,f. The defect is introduced by removing five
rods near the PTI edge, and the wave can pass through the defect
with no backscattering. In the next section, we will employ such
kind of defect to experimentally demonstrate the robust
transport.

Experimental observation of topological edge states. To
experimentally realize the PTI, we constructed samples using
carefully designed non-resonant meta-atoms (Fig. 1a). The meta-
atoms have the same ‘gyro’ and ‘star’ geometries, but are arranged
in conjugate patterns for POI (upper half in Fig. 1b) and PTI
(lower half in Fig. 1b) and different geometry dimensions
(Fig. 1c–f; see Methods). All PTI bands are nearly double
degenerate from 1.6 to 3.2 GHz (Fig. 4b). A non-trivial bandgap
spanning from 2.65 to 2.93 GHz (highlighted by blue color) is
achieved. Microwave transmission spectra in Fig. 4a,c confirmed
the theory-predicted bandgaps along GM and GK directions. For
the POI (Fig. 4e), the photonic bands are almost identical to those
of PTI, but with a distinct topological classification from the PTI.

Spin-filtered gapless edge state is a signature feature at the
boundary of two e/m-matched materials with different topological
characters. Such a boundary is realized by placing two metacrystal
waveguides side-by-side (green line in Fig. 1a). Figure 5a shows
that the spin-up/down gapless states (blue/red curves) span the
whole bandgap and connect to the neighbouring bulk bands (grey
areas). The corresponding measured transmission spectra were
illustrated in Fig. 5b, where high transmittance occurs within the
frequency range of the gapless states. Moreover, the edge in this
bandgap is spin-filtered, as the group velocity of spin-up/down
state always points to the þ x/# x direction. So when the source
was at the left, only a rightward spin-up state can be excited,
indicating that the Ez and Hz fields are in phase throughout the

Experimental setup
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Edge between PTI and POI

Figure 1 | PTI and POI. Both insulators are waveguides filled with hexagonal metacrystals. (a) Photograph of two experimental samples with the top
copper plate removed to show the geometry inside. Spin-filtered EM waves are guided at the edge (green line) between both insulators. (b) Zoom-in near
the edge. The hexagonal unit cells of PTI (blue and cyan hexagons) and POI (pink and red hexagons) are composed of ‘gyro’ and ‘star’ non-resonant meta-
atoms. (c,d) Geometry dimensions for POI. (e,f) Geometry dimensions for PTI.
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upper half of waveguide. As the probe antenna was placed outside
the waveguide, the transmitted waves on the exit would acquire
additional phases due to different impedances for TE1 and TM1
modes. As a result, the measured phase difference (see Methods)

between the Ez and Hz fields of the gapless topological state would
be constant but deviate from 0!. This was verified by the phase
plateau around ! 50! from 2.68 to 2.92 GHz (black in Fig. 5c). In
addition, since the spin-up state was the only allowed rightward
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Figure 2 | Non-trivial/trivial bandgaps in the conceptual metacrystal waveguide design. A hexagonal lattice of anisotropic rods is embedded in a PEC
waveguide. The field inhomogeneities give rise to the cross coupling between TE1 and TM1 modes and open a topologically non-trivial bandgap. (a) Phase
diagram for the lowest bandgap. Blue and red regions indicate the non-trivial and trivial complete gap, and grey region represents the partial gap. The solid
and dashed curves show the mode exchange at M and K-points. The transition between PTI and POI coincides with a gap reopening and mode exchanges
at M and K points, due to the different topologies of two insulators. (b) Band structure of PTI. The constitutive parameters correspond to the purple open
circle in a with the value of e2¼ 13m2, m2¼ diag{0.39, 0.39, 0.44} in the rod and e1¼ 13m1, m1¼ diag{0.67, 0.67, 0.25} in the background. (c) Trivial band
structure of POI. The constitutive parameters correspond to the purple cross in (a) with the value of e2¼ 13m2, m2¼ diag{0.72, 0.72, 0.22}, e1¼ 13m1 and
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Experimental realisation (Hong Kong): Chen, et al., Nature Comm. 5, 5782 (2014)

Microwave 
regime



objective and an InGaAs infrared camera (640 × 512 pixel grid with
a 25 mm pitch; Fig. 1c). Such a set-up allowed us to measure the rela-
tive amount of light scattered from each site26. Transmission
through the device was measured using an optical vector analyser
(Luna Technologies OVA 5000).

To describe the essence of the scheme, we considered a single
plaquette of our lattice, which consisted of four site resonators
and four link resonators in the form of rounded rectangles
(Fig. 1a). The link and site resonators were coupled to one
another through directional couplers, so photons circulating in
one direction in the site resonators only coupled with each other
and with photons circulating in the opposite direction in the link
resonators. The effective length of the link resonators was chosen
to be larger than that of the site resonators by 2h, so that the
links and sites were resonant at different frequencies.
Consequently, a photon resonant with the site resonators spent sub-
stantially more time in the sites than in the links. We associate the
clockwise photons in site resonators with the up-component of a
pseudo-spin. By virtue of time-reversal symmetry, the pseudo-
spin-down component (anticlockwise photons in the site resona-
tors) is degenerate with the pseudo-spin-up component. For the
moment, we focus on the spin-up component. Depending on the
positioning of the links, the photon acquires a different phase
hopping forwards than backwards. In particular, the hopping
process between sites 1 and 2 in Fig. 1a is described by
â†

2â1e−if12 + â†
1â2eif12 , where âi is the creation operator of a

photon at site i. The phase arises from an offset of the link wave-
guides from the symmetric point (defined as equal amounts of
additional length above and below the directional coupler).
Specifically, the additional phase is given by the optical length
f12¼ 4pnx12/l, where n is the index of refraction, x12 is the position
shift of the link resonator, and l is the wavelength of the light. Note
that the additional length h and position shifts away from the sym-
metric point are designed to keep the lengths of the directional cou-
plers, the geometry of their coupling regions, and their coupling
efficiencies invariant (Fig. 1a). Thus, the overall Hamiltonian
describing photon hopping in the plaquette can be written as

− J â†
2â1e−if12 + â†

3â2 + â†
4â3eif34 + â†

1â4

[ ]
+ h.c. (1)

where J is the tunnelling rate and the photon going anticlockwise
around the plaquette acquires a 2pa phase (where a¼
2n(x342 x12)/l) and h.c. is the Hermitian conjugate. If the phase

per plaquette is uniform over a region, the photonic dynamics are
equivalent to those of charged particles in a uniform perpendicular
magnetic field9. Such a system is predicted to exhibit edge states
at the boundaries of that region27,28. In a photonic system, such
edge states can be excited by driving the system in specific
frequency bands.

To verify that the expected edge physics arises entirely from our
synthetic gauge field, we first designed a phase slip between 10 × 4
stripes, as shown in Fig. 1b. This results in magnetic domains that
are entirely due to passive, and controlled, interference effects.
The resulting edge states of the system then follow along the edge
of the magnetic domains induced by this phase slip (Fig. 1b),
rather than the physical edge of the system (Supplementary
Section S2). The effective uniform magnetic field in the stripe is
given by a≈ 0.15. The dispersion of the system is shown in
Fig. 2a, where the edge-state bands are shown between magnetic
bulk bands. The light is coupled to the two-dimensional ring reso-
nators using a bent waveguide at the two bottom corners (Fig. 1b).
Depending on the pumping direction, the two different pseudo-spin
components can be excited, for example, coupling light into the
system at port 1 (2), pumps the system in the spin-up (spin-
down) component.

Results
As a demonstration of the scheme we measured the transmission
spectrum of the two-dimensional system through various ports and
compared it with our simulation (Fig. 2). We first characterized the
different system parameters using simpler devices including a notch
filter (single resonator coupled to a waveguide) and an add/drop
filter (single resonator coupled to two waveguides) fabricated on the
same chip to allow for calibration and characterization of the wave-
guides and resonators (Supplementary Section S2). We estimated
the probing waveguide–resonator coupling rate (kex ≈ 15 GHz),
the intrinsic loss (kin ≈ 1 GHz) and the tunnelling rate between site
resonators (J ≈ 16 GHz), with all measurements within 2 nm of
the centre wavelength of 1,539 nm. Given these parameters, we simu-
lated a 10 × 10 lattice using the transfer matrix formalism
(Supplementary Section S2) (Fig. 2a). We also considered a random
onsite impurity shift of the resonance frequency with a standard devi-
ation of 0.8J. In a lossless system, the transmission spectrum for the
spin-down (T12) and spin-up (T34) should be identical, although
they may take different paths. However, the presence of loss breaks
this symmetry. We observed a qualitative agreement between simu-
lation and experiment (Fig. 2b,c).

2πα

2πα

L1 + η

L2

L2
L1

J

a

Pol.

Attn.

EDFA

Tunable 
laser

Analyser

Microscope

InGaAs
video

camera

c

Device

b

Port 3

Port 1

Port 4

Port 2

Link resonator

Site resonator

Probing
waveguide

4

1 2

3
10 µm

30 µm

x12

x34
R

κin

κex

Figure 1 | Experimental set-up. a, A single plaquette consisting of four link resonators and four site resonators: grey and white rounded rectangles represent
site and link resonators, respectively. These two types of resonators differ due to an extra length of 2h in the link resonators. Moreover, due to the vertical
shift of the link resonators, a photon acquires a non-zero phase when it hops between resonators (1,2) and (3,4). Therefore, a photon progressing
anticlockwise (clockwise) around the plaquette acquires a 2pa (22pa) phase. b, Scanning electron microscope (SEM) image of the device. Stripes with
uniform magnetic field are delineated with white dashed lines. c, Schematic of the experimental set-up. EDFA, erbium-doped fibre amplifier.
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Differential Optical Paths: Resonator Lattice

onators; the photons circulate clockwise around each res-
onator. But, as the panel shows, a photon leaking out of one
resonator and entering an adjacent one can be engineered to
follow different paths depending on whether it goes left to
right or right to left. Thus for motion around the four-
resonator plaquette as a whole, the counterclockwise path is
longer than the clockwise one; the photon picks up a greater
number of phase wiggles for the counterclockwise trajectory.

In sum, a properly designed array of optical resonators
(figure 2c shows an electron micrograph of our device) mim-
ics a system in which charged particles hop from site to site
in a magnetic field. To see that the photons are skipping along
the edges of the resonator array, one can measure the trans-
mission properties of the material or, as shown in figure 2d,
directly image the light that leaks out of the device because
of otherwise unwanted scattering. 

Our approach to topological physics with light does not
involve magnetic fields. Because of the absence of magnetic
fields, which change sign when time is reversed, our system
is analogous to other time-reversal invariant topological sys-
tems such as quantum spin Hall systems. (For more informa-
tion, see the article by Xiao-Liang Qi and Shou-Cheng Zhang,
PHYSICS TODAY, January 2010, page 33.)

Where do we go from here?
Nowadays research efforts with light analogues of the topo-
logical insulator are focused on two different areas. One is
the application of those devices to real-world challenges in
photonic systems—for example, increasing the density of in-
formation that can be carried in optical fibers or creating ro-

bust on-chip delay lines. Disorder-resistant devices may well
find wide-ranging applications.

The other principal focus involves adding interactions.
So far, experimental efforts have been limited to noninteract-
ing systems, as photons do not interact directly with each
other. However, extremely rich physics arises when strong
interactions are present. Of particular interest is the so-called
fractional quantum Hall effect, which may even open the
door to fault-tolerant quantum computation. (See PHYSICS
TODAY, December 1998, page 17; the article by Sankar Das
Sarma, Michael Freedman, and Chetan Nayak, July 2006,
page 32; and the article by Nick Read, July 2012, page 38.)

Adding interactions requires interfacing the photons
with a material system such as an optical nonlinear medium,
a Josephson junction, or more exotic nonlinear elements. Re-
cent developments, including the first single-photon transis-
tors and so-called photonic molecules, suggest that interact-
ing photons are on their way. 
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(2009).
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photonics,” Nat. Photonics 7, 1001 (2013).
‣ O. Firstenberg et al., “Attractive photons in a quantum
nonlinear medium,” Nature 502, 71 (2013). ■
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Figure 2. Topological physics with resonators. (a) A charged particle in a magnetic field satisfies a different quantization
 condition—the integer number of 2π phase wiggles in its wavefunction—when circulating counterclockwise (red) versus clockwise
(blue). That difference is proportional to the magnetic flux threading the loop. (b) One can engineer a different number of wiggles
for clockwise and counterclockwise circulation through an array of optical resonators. The illustration here shows a plaquette of
four optical resonators coupled by waveguides. For the counterclockwise (red) path, light traveling from resonator 3 to resonator 4
travels a greater distance than light traveling along the clockwise (blue) path from 4 to 3. That length imbalance means that the
phase picked up by photons is different for counterclockwise versus clockwise propagation. (c) Shown here is an electron micro-
graph of an array of optical resonators with waveguides, fabricated with silicon-on-insulator technology. Light enters and exits via
waveguide ports on the bottom left and right of the device. In the inset the resonator is red and surrounding waveguides are
white. (d) Depending on the frequency of light entering the array, light can take the long way around from input to output ports
(left), be trapped in the bulk (center), or travel on just a single edge (right).
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In practice, we tune our resonator to degeneracy by varying its 
length, which primarily changes the harmonic trapping without chang-
ing the effective magnetic field, and we track the energy spectrum and 
spatial profiles of resonator modes by observing the transmission of 
circularly polarized light with a holographically programmed spatial 
profile (Fig. 2, see Supplementary Information). Figure 2a shows the 
evolution of a number of mode energies in numerous Landau levels 
as we adjust the resonator length over almost a centimetre. Using the 
observed mode-profiles (shown as insets), we identify the four lowest 
modes in the figure as those comprising the lowest conical Landau 
level, and centre the graph on their approximate degeneracy point. 
Figure 2b shows high-resolution spectroscopy of a larger number of 
modes in the lowest Landau level near the length where the harmonic 
confinement is cancelled. We precisely extract the change in resonator 
length from the spectroscopically measured free spectral range and 
compensate the residual harmonic trapping to zero. At this point,  
the residual non-degeneracy comes from local disorder, which causes 
an observed level repulsion for high angular momentum states (Fig. 2b,  
main panel) that is not observed at lower angular momentum  
(Fig. 2b, top inset) as well as a significant reduction in mode lifetime 
(Fig. 2c). Away from degeneracy the modes are nearly ideal rings with 
2π  ×  l phase winding (experimentally determined by varying the phase 
profile of the injected light, see Supplementary Information); at degen-
eracy these modes mix due to local disorder potentials (Fig. 2d). This 
effect is apparent because of the long particle lifetime (high finesse of 
our resonator) and, in only causing mode distortion, is qualitatively 
different from global potentials such as astigmatism that cause mode 
deconfinement (see Supplementary Information). The local disorder 
merely creates chiral, localized states; it does not break topological 

protection so long as it only mixes modes within a single Landau level 
and, in an interacting system, is weaker than the interactions. This 
insensitivity to weak disorder is a notable advantage of our set-up as 
compared to, for example, injecting angular momentum modes into a 
two mirror resonator19 (see Supplementary Information).

To demonstrate our system’s stability out to large displacements from 
the cone tip, Fig. 3a, b shows large-angular-momentum orbits. Figure 3a  
presents a large displaced state composed of modes with angular 
momentum up to l ≈  60, which exhibits three-fold symmetry and 
interferes with itself, producing a strongly fringed pattern due to the 
rapid phase winding of each ring. Figure 3b unwraps another large- 
angular-momentum mode showing that if an orbit encircles the cone 
tip, then it must do so three times, as a consequence of the three-fold 
symmetry.

Remarkably, photons in our resonator may live on three  
distinct cones, distinguished by additional magnetic flux threaded 
through their tips. To understand this, note that the planar lowest 
Landau level may be spanned by angular momentum states 

( )ψ = ∝ (− | | )+z z zexpl
x iy

w
l 2

0
   for l = 0, 1, 2, …, with the transverse posi-

tion vector r =  (x, y)T. In our resonator these are partitioned into three 
separately degenerate sets corresponding to lowest Landau levels on 
different cones. These sets are the l =  0, 3, 6, … modes, the l =  1, 4, 7, …  
modes, and the l =  2, 5, 8, … modes and satisfy the angular symmetry 
condition ψl(θ +  2π /3) =  e2π ic/3ψl(θ), where c =  0, 1, or 2 is the lowest 
angular momentum state in the set and serves as the cone’s label. c =  0 
defines the symmetry relation that describes an unthreaded cone; with 
c ≠  0, the cone has an additional Aharanov–Bohm phase arising from 
c/3 magnetic flux quanta threaded through its tip (Fig. 3c). Angular 

B = Bz

B

a b c

d

La

T

Figure 1 | Resonator structure and transverse manifold geometry.  
a, Top, ray trajectories (black lines) in a curved mirror resonator oscillate 
transversely (green arrows). In a particular transverse plane, the 
stroboscopic time evolution of the ray positions samples a harmonic 
oscillator trajectory (blue points). In paraxial optics, the solutions for the 
transverse modes are Hermite–Gauss profiles (red curve). The transverse 
degrees of freedom of a resonator are precisely those of a 2D quantum 
harmonic oscillator (bottom). b, Top, as a four mirror resonator is made 
non-planar (purple arrows), the light rays are induced to rotate (blue 
arrow) about the optic axis. In the transverse plane (represented below), 
this corresponds to flattening the 2D harmonic potential (centrifugal 
force) and the introduction of an effective magnetic field (Coriolis force). 

c, Our non-planar resonator consists of four mirrors (blue and purple) in a 
stretched tetrahedral configuration of on-axis length La and opening half-
angle θ. The image rotates about the optic axis (red) on every round trip.  
d, Left, we depict the transverse plane at the resonator waist pierced by a 
uniform perpendicular (along ẑ) magnetic field B of magnitude B, and 
show a generic profile (red curve) with three-fold symmetry. When the 
plane is cut arbitrarily into three equal sections, the entire profile is fully 
determined within any one-third section of the plane: when a trajectory 
leaves one side of a section, it reappears on the other side. Each section 
may be wrapped into a cone on which the original profile appears once 
(right; this would be true for any discrete rotational symmetry). The 
effective magnetic field is everywhere perpendicular to the cone’s surface.

© 2016 Macmillan Publishers Limited. All rights reserved

Non-planar multimode cavity such that light experiences an image-rotation 
after a roundtrip  —> Analogous to rotation of a gas (see Lecture 3)

Chicago group: Schine, et al., Nature 534, 671 (2016).
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momentum states encircling the cone tip enclose this flux three times, 
so states experience integer flux, reflected in their l  radial 
extension.

Away from the apex, photons on each cone behave as in a flat space 
lowest Landau level. In Fig. 3d, we identify each cone by the lowest 
angular momentum state supported around its apex. Then, on each 
cone, we show that we can create arbitrary angular momentum states 
(l =  0, 1) about displaced points so long as the displaced mode does not 
self intersect or encircle the cone tip. Beyond reflecting the invariance 
of our system under magnetic translations, this permits the creation 
of canonical fractional quantum Hall states in a future interacting  
system, in addition to novel Laughlin states accessible at the cone 
tip (see Supplementary Information). As a visualization, Fig. 3e, f  
projects these displaced l =  0 and l =1 modes onto a cone, further 
demonstrating that, away from the apex, modes on the cone closely 
resemble modes on a regular plane.

The topological numbers that characterize quantum Hall phases are 
predicted to specify the response of the photonic local density of states 
(LDOS) to magnetic field and spatial curvature, as described by the 
Wen–Zee theory12–15 (see Supplementary Information). We perform 
an experimental test of this theory by measuring the LDOS (Fig. 3g–i) 

via transmission images of each state in the relevant weakly split Landau 
level and summing these images (see Supplementary Information). We 
then compare the LDOS near the cone tip with the flat space density 
away from the tip (within each panel Fig. 3g–i) and compare the LDOS 
with different quantities of flux threaded (between panels Fig. 3g–i). 
We clearly observe a density build-up for the c =  0 cone; however, we 
find a vanishing LDOS on the other two cones, reflecting additional 
magnetic flux threaded through their tips equal to −Φ0/3 and −2Φ0/3, 
where Φ0 is the magnetic flux quantum (Fig. 3c). According to the 
Wen–Zee theory, the expected excess state number is given by 
δ = −N s c2

3 3
, where c/3 is the number of flux quanta threaded through 

the cone tip and s is a parameter called the mean orbital spin that char-
acterizes particles’ coupling to spatial curvature and is predicted to be 
1/2 for the lowest Landau level12 (see Supplementary Information). We 
therefore expect δ N =  1/3, 0, and −1/3 of a state near the tips of the 
c =  0, 1, and 2 cones, respectively. By integrating the measured LDOS 
excess or deficit near the apex, we measure the state number excess to 
be 0.31(2) on the c =  0 cone, −0.02(1) on the c =  1 cone, and −0.35(2) 
on the c =  2 cone, yielding the experimentally measured value 
s  =  0.47(1). We find quantitative agreement between our measured 
results and the Wen–Zee theory.
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Figure 2 | Building a Landau level. The modes of our resonator follow the 
Fock–Darwin Hamiltonian of a massive, harmonically trapped particle in 
magnetic field: the magnetic field creates a ladder of Landau levels 
uniformly spaced by the cyclotron frequency, ωc, while the harmonic trap 
of frequency ωtrap uniformly splits levels within each Landau level by 
ω ω/trap

2
c (see Supplementary Information). We probe this spectrum  

versus resonator length Lrt, and demonstrate that, for each Lrt, the 
spectrum is determined by two energies ν(1,0) and ν(0,1) according to 
ν(α,β) =  αν(1,0) +  βν(0,1) mod νFSR, where ωc =  2π  ×  ν(1,1) gives the cyclotron 
frequency and ω ω ν/ = π × ( )2trap

2
c 3,0  provides the harmonic trapping 

frequency. Furthermore, fine-tuning Lrt drives ωtrap to zero, bringing 
specific sets of angular momentum eigenmodes into degeneracy, thereby 
forming Landau levels. a, The frequency separations between several 
modes and a reference l =  0 mode are plotted as the harmonic confinement 
is coarsely tuned relative to an approximately degenerate reference length 
Lrt =  78.460 mm (corresponding free spectral range νFSR =  3.8209 GHz). 
Solid lines are obtained as integer linear combinations of fits to the modes 
labelled (1,0) and (0,1) and the free spectral range. For details on mode 
indexing, see Supplementary Information. b, Main panel, we plot the 
transmission spectrum of the first ∼ 10 modes in the lowest Landau level 
against small deviations from nominal degeneracy. Top inset, low order 

modes become degenerate to within a resonator linewidth, κ ≈  200 kHz, 
while in the main panel, we observe weak level repulsion (approximately 
equal to the resonator linewidth) in the higher order modes consistent 
with mode mixing due to mirror imperfections of ∼ λ/5,000. ωtrap is 
presented on the upper horizontal axis. Bottom insets, as the resonator  
is tuned through degeneracy, the harmonic potential (orange surface) 
changes sign, while the magnetic field (blue arrows) remains nearly 
unchanged. c, The lifetimes (and corresponding finesses) of representative 
modes decrease for higher mode numbers both away from degeneracy 
(blue circles) and near degeneracy (green squares). Here ∆ L is the offset  
of the round-trip resonator length from nominal degeneracy. d, With 
significant residual harmonic trapping (∆ L =  124 µ m), angular 
momentum modes are simple rings. As the trapping is reduced  
(∆ L =  32 µ m), high angular momentum modes begin to mix owing to local 
disorder. When the trapping is precisely cancelled (∆ L =  − 3 µ m), mirror 
imperfection consistent with a single nanoscopic scratch dramatically 
alters the modes’ shape away from the predicted near-Laguerre–Gauss 
profiles. Even the first resonator mode is noticeably triangular, indicating 
at least a mixing of Laguerre–Gauss l =  0 and l =  3 modes. Overcoming 
this disorder necessitates only ∼ MHz photon–photon interactions to 
explore strongly correlated physics.

© 2016 Macmillan Publishers Limited. All rights reserved

(Residual harmonic 
trapping)

Coriolis force in rotating frame —> Lorentz force

Photons traversing the cavity in one direction experience opposite 
“magnetic field” to the opposite direction: quantum spin Hall

Particularly promising set-up for observing strongly-correlated 
states (when combined with atoms & Rydberg-EIT)
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in Fig. 2a, the density of states (DOS) is characterized by a band
structure with two bands separated by a finite gap of size 2|t1–
t2|¼ 45 MHz (grey zone). The extended states occupy bands in
the range nb–t1–t2ononb–|t1–t2| and nbþ |t1–t2|ononbþ t1þ
t2. The DOS is not affected when the values of the couplings t1
and t2 are interchanged. Nevertheless, a topological distinction
between these two situations (called hereafter a and b config-
urations) can be captured by a winding number associated to the

Bloch wave functions (see refs 31,32, Supplementary Note 1 and
Supplementary Figs 1 and 2). An interface between both con-
figurations takes the form of a dimerization defect where two
consecutive couplings are identical (red zone in Figs 1b and 2b).
The topological distinctiveness of the two phases leads to the
formation of an exponentially localized midgap state at n¼ nb.
The corresponding wavefunction can be read off from equation
(1), and takes the form cn ¼ ð$ t1=t2Þ$ j n j =2 for even n and
cn ¼ 0 for odd n. The midgap state is therefore confined to the
sublattice with even index, which we will call the A-sublattice,
while the sites with odd index are called the B-sublattice. The
complementary state on the B-sublattice increases exponentially
and is incompatible with the boundary conditions.

Effects of dimerization defect. Figure 2b shows the DOS mea-
sured for a 21-resonator SSH chain with a central dimerization
defect, still without absorption. Twenty-one modes are observed
within the spectral range of interest. Of these, 20 modes are
extended over the whole system. These modes group into two sets
of 10 and correspond to the upper and the lower band of the
infinite dimer chain. The bands remain separated by a 45 MHz
gap. The topologically induced mode clearly sits the middle of the
gap, at frequency nb. We find that the intensity of the midgap
state belonging to the B-sublattice is zero within experimental
resolution, and thus confirm that the wavefunction is confined to
the A-sublattice. The corresponding wavefunction intensity pro-
file pertaining to the A sites is depicted in Fig. 2d (red dots). As
expected, the intensity decays according to an exponential profile
given by the theoretical result (shown in grey).

Selective enhancement of topological states. We now set out to
enhance the visibility of the topologically induced state. Our
approach rests on the realization that the topological features of
the system extend to a staggered configuration of losses, obtained
by depositing absorptive material on all B sites32. Both in the a
and in the b configuration, the tight-binding system then still
possesses a passive PT-symmetry, given by a reflection ðPÞ at a
point in the middle of a dimer, which maps the passive A sites
onto the lossy B sites but leaves the couplings unchanged. This
mapping corresponds to a time-reversal operation ðTÞ up to a
constant complex frequency shift ig. As a consequence of this
symmetry, all extended states are uniformly suppressed by the
losses (their complex resonance frequencies all acquire the same
imaginary part $ g/2). As it only lives on the A-sublattice, the
topologically induced interface state manifestly breaks the PT-
symmetry. In consequence, it does not have a complex–conjugate
partner, and can be manipulated independently of all the other
states in the system (which is not the case in situations where the
PT-symmetry in the chain is only spontaneously broken20,21).
Thus, the midgap state remains pinned at n¼ nb and is unaffected
by the losses (see Supplementary Note 1).

The spectral analysis presented in Fig. 2c shows that the
extended modes shift downwards in frequency and become
broadened, while the overall spectral weight in the resulting
continuous bands is reduced. These features are consistent with
the frequency dressing on the B sites, nb-nb–g–ig. In contrast,
the peak in the density of states associated to the zero mode
remains fixed at the bare frequency nb, and its height and width is
almost unchanged. As shown in Fig. 2e this mode remains well
confined to the A-sublattice, and still displays an exponential
intensity profile as one moves away from the defect site. Under
the same conditions, non-topological defect states hybridize,
thereby degrading their properties, see Supplementary Note 2 and
Supplementary Figs 3 and 4.
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Figure 2 | Density of states and zero-mode profiles with and without
absorption. (a) Experimentally obtained density of states (DOS) for a
defectless SSH chain (no interface, see inset above the main panel where
open circles denote A sites and grey filled circles denote B sites) for
separation distances d1¼ 12 mm (coupling t1¼ 37.1 MHz) and d2¼ 15 mm
(t2¼ 14.8 MHz). The reference frequency is the bare frequency of an
isolated resonator nb¼ 6.65 GHz. Two bands separated by a gap (grey
zone) are observed. (b) DOS obtained for an SSH chain with a dimerization
defect (inset, red circle). A zero-mode appears in the band gap. (c) DOS
obtained for a complex SSH chain dimerization defect (inset, red circle) and
absorption located on B sites (black filled circles in the inset). While all the
extended modes experience losses, the zero-mode is preserved. (Note that
the ordinate axes scales are different). (d) Experimental intensity profile of
the zero-mode on the A sites (red dots), along with the theoretical intensity
profile p(t1/t2)$ |n| (shaded in grey), for the chain without absorption. The
intensity is zero on B-sites, and the total intensity is normalized to unity.
(e) Intensity profile of the zero mode in presence of losses on the B-sites.
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SSH Model 
In photonic crystals, metamaterials, exciton-polaritons, microwave resonator arrays, etc…

Topological photonics1 aims to implement robust optical
modes by mirroring the interference and interaction effects
that drive condensed matter into topologically protected

phases2,3. A key element for the intended topological
functionality are robust confined states that form at interfaces
between regions with topologically distinct band structures. For
electromagnetic waves, this can be realized in two-dimensions by
breaking symmetries in analogy to the quantum Hall effect4–6 or
the quantum spin Hall effect7–9, while in one-dimension one
simply can employ lattice modulations10–12. Concerning the
latter setting, a minimal one-dimensional model with a
topological band structure is a chain of sites with alternating
couplings (that is, a dimer chain). This model was originally
introduced in an electronic context by Su, Schrieffer and Heeger
(SSH)13 to describe fractionalized charges in polyacetylene, which
appear in the presence of a dimerization defect. Photonic systems
provide a versatile platform to realize analogies of this situation.
The topological defect state has been observed in a quantum walk
scenario12, while a dimer chain with a non-topological defect has
been realised in a waveguide array14.

In absence of the defect, this dimer model has attracted
independent attention because it provides a natural platform for
gain-loss distributed systems displaying a so-called parity-time
ðPTÞ symmetry15–19. The topological features of the PT-
symmetric variant of the chain without a defect has been
discussed in20,21, while two recent experiments have exploited
spontaneous PT-symmetry breaking for mode selection in a
laser22,23. This relies on a mechanism where two modes with real-
frequencies coalesce and bifurcate in a strongly and weakly
amplified mode24–26.

The intrinsic robustness of topologically induced states raises
the general question whether they can be controlled and modified
independently of the other states in the system. It is then natural
to consider whether non-hermitian effects without an electronic
analogue, such as embodied by the losses and gain in PT-
symmetric systems, may be of any help in the photonic setting.

Here we demonstrate the selective control and enhancement of
the topologically induced state in the SSH chain in a one-
dimensional microwave setup. We draw on the passive variant of
non-hermitian PT-symmetry15,17,19 and implement the chain in
presence of the defect and localized absorptive losses by means of
a set of identical coupled dielectric resonators placed in a
microwave cavity27–30. The defect state explicitly breaks the PT
symmetry31,32; this topologically induced anomaly further
simplifies the mode competition. The state can then be isolated
from losses affecting all other modes in the system, which
enhances its visibility in the temporal evolution of a pulse, even in
presence of structural disorder. As the explicit symmetry breaking
is a general characteristic feature of topologically induced
interface states, our results transfer to a wide range of settings.
Besides its relevance for mode guiding and filtering, as well as
rectifiers and couplers exploiting passive PT symmetry, this
mechanism also lays the conceptual ground for selecting a
topologically induced state in mode competition in active variants
of the symmetry, tying it to the topical problem of gain–loss
enabled lasing.

Results
Realization of dimer chains by coupled resonators. Figure 1a
depicts a chain of 21 microwave resonators with a central
dimerization defect. We establish a one-dimensional tight-bind-
ing regime27, where the electromagnetic field is mostly confined
within the resonators. For an isolated resonator, only a single
mode is important in a broad spectral range around the bare
frequency nb¼ 6.65 GHz. This mode spreads out evanescently, so

that the coupling strength can be controlled by adjusting the
separation distance between the resonators27. The resulting
system can be described by the following tight-binding equations:

ðaÞ ðn$ nnÞcn ¼ t2cn$ 1þ t1cnþ 1; n ¼ $ 2; $ 4; . . .
ðn$ nnÞcn ¼ t1cn$ 1þ t2cnþ 1; n ¼ $ 1; $ 3; . . . ;

!

interface ðn$ n0Þc0¼t2ðc$1þc1Þ; n ¼ 0;f

ðbÞ ðn$ nnÞcn ¼ t2cn$ 1þ t1cnþ 1; n ¼ 1; 3; . . . ;
ðn$ nnÞcn ¼ t1cn$ 1þ t2cnþ 1; n ¼ 2; 4; . . . ;

!

ð1Þ

where n enumerates the resonators, with n¼ $ 10,$ 9,$ 8,...10
and n¼ 0 for the central site (see Fig. 1b). The mode amplitude in
the nth resonator is given by cn, t1 and t2 denote the alternating
nearest-neighbour coupling strengths, while nn is the resonance
frequency of the nth isolated resonator. Without absorption, the
resonance frequencies are equal to the bare frequency, nn¼ nb.
Absorption is introduced on selected sites by depositing elastomer
patches on top of the dielectric cylinders (see Fig. 1a). The losses
give rise to a complex resonance frequency nn ¼ n0b$ ig, and also
shift the real part of the bare frequency to n0b & nb$ g. In our
experiments, gC40 MHz, while the separations d1¼ 12 mm and
d2¼ 15 mm correspond to couplings t1¼ 37.1 MHz and
t2¼ 14.8 MHz, respectively.

Behaviour of defect-free chains. As a reference situation, we first
consider a defectless SSH chain without absorption. As depicted
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Figure 1 | Realization of a topological defect in a microwave resonator
chain. (a) Picture of the experimental microwave realization of the complex
Su-Schrieffer-Heeger (SSH) chain. The lattice is composed of 21 identical
coupled dielectric cylindrical resonators (5 mm height, 8 mm diameter and
a refractive index of 6) sandwiched between two metallic plates (note that
the top plate is not shown). To implement dimer chains, the resonators are
separated by spacings d1 or d2 with d1od2, that is, couplings t14t2. A
central dimerization defect is introduced by repeating the spacing d2. The
defect creates an interface state at zero energy, a zero mode, whose
visibility is enhanced by means of absorptive patches placed on one of the
two sublattices. The resulting wavefunction intensity is superimposed onto
the chain. (b) Schematic of the complex SSH chain, with A and B sublattices
indicated in white and grey, respectively. The strong (weak) coupling strength
is represented by a thick (thin) line. In our system, the couplings can be
controlled by varying the resonator spacings. The topologically induced zero-
mode appears at the interface (red) between a configuration (with strong
intradimer coupling) and b configuration (with weak intradimer coupling).
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) couplings at the edge of the chain. (g) Scanning electron microscopy (SEM) image of a zigzag chain
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modes is presented on the right side).

to the two possible dimerizations t > t0 and t < t0. The
di↵erent topology of these two phases is revealed by con-
sidering the winding W of the phase � (k) across the Bril-
louin zone:

W =
1

2⇡

Z

BZ

@� (k)

@k
dk (2)

which corresponds to the Zak phase divided by ⇡.
Although the value of W associated to either dimer-

ization depends on the definition of the unit cell, in finite
size chains the choice is unambiguous since t is defined by
the hopping amplitude between the first and second sites
of the chain. Under this definition, the t > t0 or t < t0

dimerizations exhibit respectively strong and weak cou-
pling between the edge pillars and the rest of the chain
(as depicted in Fig. S5 (a) and (d)), and correspond to
the trivial (W = 0) and non-trivial (W = 1) topologi-
cal phases20. Band structures calculated for chains of 20
sites exhibiting W = 0 and W = 1 are presented in Fig.
S5 (b) and (e), respectively. The most notable di↵erence
is the existence in the latter case of two states localized at
the center of the energy gap corresponding to topological
states localized at each end of the chain. The distribu-
tion of the wave-function over the first six pillars for the
eigenstate indicated by the filled circle, is presented in
the inset of Panel (e). Its envelope (dashed line) decays

as �n, where n is the unit cell number counted from the
edge and � = t/t0.
To implement the SSH Hamiltonian, we consider the

collective photon modes of a 1-dimensional lattice of cou-
pled polariton micropillars. The photonic modes of a
single micropillar are confined in the three dimensions of
space leading to discrete energy levels: the ground state
(s) exhibits a cylindrical symmetry along the growth axis,
and the first excited states (p

x,y

) present two degener-
ate antisymmetric orbitals orthogonal to each other (see
Fig. S5 (h)). The orbital version of the SSH model con-
sidered in this work relies on the coupling of these p-
orbitals in a one dimensional lattice of micropillars ar-
ranged in a zigzag configuration (Fig. S5 (g)).
In zigzag chains, p

x

and p
y

orbitals are respectively
oriented along the diagonal and anti-diagonal axes
(see Fig. S5 (c) and (f)), and the hopping amplitude
between consecutive micropillars strongly depends on
the orientation of the axis linking these pillars21. The
coupling is typically an order of magnitude stronger for
orbitals oriented along the hopping direction than for
orbitals oriented perpendicular to the hopping21. We
define these di↵erent hopping strengths as longitudinal
(t

l

) and transverse (t
t

), respectively. Note that p
x

and
p
y

form independent sub-spaces, as the symmetry of
the orbitals prevents the coupling between adjacent
orthogonal orbitals. Consequently, if we consider the
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FIG. S3. (a) Integrated intensity, and (b) linewidth (black
squares) and blueshift (blue circles) of the emission from the
topological edge state as a function of the excitation power.
The lasing threshold is indicated by the dashed red line. Ex-
citation is provided by an elongated sport centered over the
edge of the chain, similar to that depicted in Fig. S2 (b).
(c)-(d) Normalized PL intensity as a function of energy and
longitudinal position along the chain for an excitation power
below (c) and above (d) the lasing threshold, corresponding
to data points indicated by blue squares in Panel (a). The
orbital band gap is indicated by horizontal dashed lines. The
inset shows a spatial image of the PL at the energy of the
edge state (the position of the micropillars is indicated by
blue circles).

(see section 1 of Supplementary information).

Lasing in the topological edge state

One interesting feature of polariton micropillars in the
strong-coupling regime is the ability to trigger lasing in
excited states, such as the topological edge states de-
scribed above. This is possible thanks to the driven-
dissipative nature of cavity polaritons: the steady-
state lasing is determined by the interplay of pump-
ing intensity, nonlinear polariton relaxation and emission
lifetime26–28. Both the relaxation rate and the lifetime
are strongly influenced by the photon-exciton detuning29,
that is, the energy di↵erence between the bare photon
and exciton modes that couple to form polaritons.

To achieve polariton lasing in the edge states of our or-
bital SSH chain, we select an exciton-photon detuning of
-9.4 meV (see Methods), which favours relaxation of po-
laritons in the p-band states. Figure S3 (a), presents the
spatially-integrated PL intensity at the energy of the edge
state as a function of the excitation power. A non-linear
increase of the intensity is observed at a threshold power
of P

th

= 32 mW, indicating the triggering of lasing in
the topological edge state. Simultaneously, the linewidth
of the emission collapses evidencing the increase of tem-
poral coherence characteristic of the lasing regime (blue
circles in Fig. S3 (b)). Energy resolved real-space im-
ages (Fig. S3 (d)) show that for P = 1.5P

th

the emission
from the edge state completely overcomes that of the bulk
bands. The inset shows that the localization of the edge
state is well preserved in the lasing regime. The observed
energy blueshift in Fig. S3 (d) with respect to (c) (and
reported in (b) for all excitation powers) arises from the
presence of a reservoir of excitons injected by the exci-
tation laser that rigidly shifts the whole band structure
under the excitation spot (dashed lines show the position
of the central gap of the P-bands).
The fact that the chain lases preferentially at the

edge state rather than at the bulk P-bands states can
be explained by the localized character of this mode.
Indeed, polaritons in band states can propagate away
from the excitation spot, reducing their lifetime and
precluding lasing in these modes in favor of the confined
edge mode.

Robustness of topological lasing

We now investigate the robustness of the topological
lasing mode against local deformations of the lattice. The
SSH Hamiltonian (Eq. 1) presents a chiral symmetry,
that is, it anticommutes with the �

z

Pauli matrix. The
main consequence of this is that the topological mode
appears in the middle of the gap. Since this symmetry
is preserved when considering disorder in the hopping
strengths, the energy and localization of the topological
mode are immune to this type of disorder (see section 2 of
Supplementary information). Therefore, the kind of local
perturbations to which this mode is most sensitive to are
changes of on-site energies, which break the chiral sym-
metry, especially in the first lattice site since the strong
localization of the wave-function (Fig. S2 (d)) mitigates
the e↵ect of energy perturbations in other sites.
To evaluate theoretically the e↵ect of such energy per-

turbation in the first pillar, we add an on-site energy term
U
1

a†
1

a
1

in the Hamiltonian presented in Eq. 1 (Fig. S4
(a)). By diagonalizing this perturbed Hamiltonian for
a chain of 20 pillars, we can evaluate the evolution of
the eigenergy and eigenfunction of the topological edge
mode in the p

y

sub-space as a function of U
1

(we used
t
l

= 1 meV and t
t

= 0.15 meV, which reproduce the ex-
perimentally observed P-bands and gap). The main ef-
fect of the perturbation U

1

is to modify the energy of
the edge mode in the gap, as depicted in Fig. S4 (b).
Remarkably, its spatial localization is hardly a↵ected:

Lasing in a topological 
edge state!Time-

reversal
Particle-
hole Chiral



mode returns into the gap, it appears localized at the
opposite boundary.

This property was used to realize adiabatic pumping of
photons from one side of the lattice to the other. A conve-
nient platform for this feat is the ‘‘off-diagonal’’ version of
the AA model, which is described by the Hamiltonian

Hoffð!Þc n ¼ t½1þ " cosð2#bnþ!Þ&c nþ1

þ t½1þ " cosð2#bðn' 1Þ þ!Þ&c n'1: (2)

While thismodel embeds its quasiperiodicity in the hopping
term, it has topological characteristics similar to its previ-
ously discussed ‘‘diagonal’’ version [cf. Equation (1)]. The
pumping takes place when ! is adiabatically swept along
the propagation axis z.

In our implementation, we used waveguides written in
bulk glass using femtosecond laser microfabrication tech-
nology [21]. The spacing between the waveguides was
slowly modified along the propagation axis, thus realizing
a sweep of ! in Eq. (2) [see Fig. 3(a)]. The length of the
sample was 75 mm, which is in our case 20 tunneling
lengths, where the tunneling length is the characteristic
scale for hopping, namely, 2=t [23]. Figure 3(b) depicts the
spectrum of the system as a function of !. In order to
observe different stages of the pumping process, we fab-
ricated a set of 50 samples for which the light was allowed
to propagate shorter distances within the modulation.
Correspondingly, in the ith sample, ! is modulated from
0:35# to ½0:35þ 1:4ði=50Þ&#. For each sample, light was
injected to the rightmost site and the output intensity

distribution was measured. The collected results are sum-
marized in Fig. 3(c). The obtained intensity distributions
are stacked incrementally according to their propagation
distance, i.e., their final !. Thus, we reconstruct the light’s
trajectory along the full adiabatic process. It is evident that
the injected light was pumped adiabatically across the QC
from one boundary to the other [24].
We now turn to establish theoretically the topological

properties of QCs. We start by showing that the observed
boundary states are of topological origin by mapping the
AAmodel to the lattice version of the 2D IQHE [19]. In the
latter, electrons hop on a 2D rectangular lattice with
nearest-neighbor hopping amplitudes t and t0 in the pres-
ence of a perpendicular magnetic field, with b flux quanta
threading each rectangle. Assuming one coordinate to be
periodic and using the Landau gauge for the magnetic field,
the system can be described by the HamiltonianH c n;k ¼
tðc nþ1;k þ c n'1;kÞ þ 2t0 cosð2#bnþ kaÞc n;k, where k is
the momentum along the periodic coordinate with lattice
spacing a and n is the location in real space along the
second coordinate. The energy spectrum of H is gapped,
and each gap is associated with a quantized Hall conduc-
tance $H ¼ %e2=h, with % an integer [25] known as the
Chern number [26]. The inclusion of disorder and distor-
tions in the Hamiltonian does not alter $H, as long as the
corresponding gap is maintained open [25–27]. Because of
the fact that the energy gap must be closed in order for $H

to change its value, it can be used to classify different
phases of the IQHE. Phases with different $H are said to
be topologically distinct.

FIG. 3 (color online). Experimental observation of adiabatic pumping via topologically protected boundary states in a photonic
quasicrystal. (a) An illustration of the adiabatically modulated photonic quasicrystal, constructed by slowly varying the spacing
between the waveguides along the propagation axis z. Consequently, the injected light experiences an adiabatically modulated
Hamiltonian, Hoff½!ðzÞ&, as it propagates and is pumped across the sample. (b) The spectrum of the model as a function of the phase !
for t ¼ 40=75, " ¼ 0:6, b ¼ ð

ffiffiffi
5

p
þ 1Þ=2, and n ¼ 1 . . . 21. In the experiment, ! was scanned between 0:35# and 1:75#, marked by

arrows (and red dots). The insets depict the spatial density of a boundary eigenstate as a function of the position at three different stages
of the evolution: At ! ¼ 0:35#, the eigenstate is localized on the right boundary. At ! ¼ #, it is delocalized across the system, while
at ! ¼ 1:75# the state is again localized, but on the left boundary. (c) Experimental results: Light was injected into the rightmost
waveguide (site 1) at z ¼ 0 (! ¼ 0:35#). The measured intensity distributions as a function of the position are presented at different
stages of the adiabatic evolution, i.e., different propagation distances. It is evident that along the adiabatic evolution the light crossed
the lattice from right to left.
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Topological Pumps: Propagating Waveguides

Remember that we 
exchange z and t

So pumping in time is now pumping in space

Spacing between waveguides 
controls hopping

Kraus et al, PRL, 109, 106402 (2012) [NB before the cold atom experiments]
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consider a family of 1D systems parametrized by a mo-
mentum in a fictitious orthogonal dimension. This mo-
mentum is known as the ‘pump parameter’ and it acts
as an auxiliary dimension, thus mapping the 1D pump
to the 2D QH system and to its characterization by a 1st

Chern number2,6. The topological bulk response of the
1D pump matches that of the 2D QH e↵ect: varying the
pump parameter e↵ectively generates an electro-motive
force that pushes charge across the physical dimension,
where an integer number of charges is pumped per cycle
in accordance with the 1st Chern number2,5. Recently,
the quantized bulk response of 1D topological pumps has
been demonstrated in cold atom experiments9,10 and its
corresponding boundary states were addressed in pho-
tonic coupled-waveguide arrays6,8.

Interestingly, a 2D topological pump can be subject
to two pump parameters such that it corresponds to a
4D QH system7. In its simplest form, the 4D QH sys-
tem can be understood as a direct sum of two 2D QH
systems in disjoint planes7,33,34. Correspondingly, the
2D topological pump can manifest as a direct sum of
two 1D pumps in orthogonal axes7. Here, we consider
‘o↵-diagonal’ pumps where the hopping amplitudes are
modulated as a function of pump parameters6,8, i.e., we
study a 2D tight-binding model of particles that hop on
a lattice described by the Hamiltonian (see Fig. 1a)

H =
X

x,y

t
x

(�
x

)c†
x,y

c
x+1,y

+ t
y

(�
y

)c†
x,y

c
x,y+1

+ h.c. , (1)

where c
x,y

is the annihilation operator of a particle at
site (x, y); t

i

(�
i

) = t̃
i

+ l
i

cos(2⇡b
i

i + �
i

) are modulated
hopping amplitudes in the i = x, y directions with bare
hopping t̃

i

and modulation amplitudes l
i

. The modula-
tion frequencies b

i

can be mapped in 4D to two magnetic
fields threading the x � v and y � w planes. The pump
parameters �

x

and �
y

correspond to momenta in the v�
and w�directions, i.e., they can be understood as a dy-
namically generated electric field perturbations in these
directions, respectively. Considering that the pump pa-
rameters correspond to additional e↵ective dimensions,
we can characterize spectral bands of the 2D pump with
nontrivial 2nd Chern numbers that manifest in a quan-
tized bulk response with a 4D symmetry7.

In this work, we realize such a 2D topological pump
using photonic coupled waveguide arrays (see Figs. 1b).
Each waveguide array is constructed to emulate the 2D
pump model [Eq. (1)] with b

x

= 1/3, b
y

= 1/3, and with 7
rows and 13 columns. The inter-waveguide separation is
taken such that the evanescent coupling between nearest-
neighboring waveguides is modulated according to the
hopping amplitudes of Eq. (1), with �

x

= �
y

= 1.06/cm
and t̃

x

= t̃
y

= 1.94/cm (at 1550nm wavelength). Nev-
ertheless, the evanescent coupling is a function of both
separation and wavelength (see Methods). Therefore, the
resulting structure has coupling between waveguides be-
yond its nearest neighbors and the emulated model is not
a pure direct sum of two disjoint 1D pumps. Despite this
deformation, the calculated spectrum for the device man-

b

Figure 1. The two-dimensional topological pump and
its corresponding band structure. a, A schematic di-
agram of the lattice model [Eq. (1)] with a 3 ⇥ 3 unit cell
(b

x

= 1/3, b
y

= 1/3) having three di↵erent hopping ampli-
tudes, in each direction (solid, dashed, dotted lines), that can
be modulated using the pump parameters �

x

and �

y

. We
assume here periodic boundary conditions. b, An illustra-
tion of the 2D array of evanescently-coupled waveguides used
in the experiment with z-dependent waveguide spacings and
7 ⇥ 13 dimensions. Light is injected into the input facet of
the device, it pumps across it during its propagation (due
to the topological nature of the 2D pump), and is collected
on the other side using a CCD camera. c, Calculated band
structure for a similar device consisting of a 70⇥ 70 array of
coupled waveguides taken along the path �

x

= �

y

(the larger
dimensions are chosen for clarity of presentation), at wave-
length 1550nm. Bulk modes are shown in gray, edge modes
in red and orange, and corner modes in black. Insets show
representative wavefunctions for each type of mode. Due to
the long-range hopping in the device, when the various edge-
modes of the 2D pump are degenerate they can hybridize to
form a right-angle wedge. Similarly, the corner modes vanish
into the bulk bands along their pump-path and generally hy-
bridize with bulk modes. We perform pumping experiments
to study the properties of these topological boundary states,
where �

i

are scanned between 0.477⇡ and 2.19⇡ in pump-
parameter space (marked by vertical dashed lines and arrow
marking the direction of the pumping), see Figs. 2 and 3.
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Figure 2. Images of the output facet of the waveguide

arrays after z = 15cm of propagation showing edge-to-

edge pumping. a,b A device with no pumping correspond-
ing to a model with �

x

= �

y

= 0.477⇡ [cf. Fig. 1]. Light that
is injected at the center of the left or bottom edges excites
the topological edge bands and spreads out along the edge,
correspondingly. In c and d pumping of �

x

(from 0.477⇡ to
2.19⇡, while �

y

is held constant at 0.477⇡) causes the light to
be pumped from the left edge to the right, whereas no such
pumping is observed when light is injected at the bottom-
center. However, when both �

x

and �

y

are simultaneously
pumped (from 0.477⇡ to 2.19⇡), we observe that light injected
at the left-center (in e) and bottom-center (in f) pump from
left-to-right and bottom-to-top, respectively. The fact that
some light resides in the bulk arises from imperfect coupling
to edge states as well as deviations from perfect adiabaticity.
In each case, the yellow-dashed circle indicates the site of in-
jection at the input facet, z = 0, and the red arrows indicate
the direction of photon pumping. Taken together, these re-
sults demonstrate that edge bands exist in the structure and
appear on opposite sides of the device as a function of the
pump parameters, in accordance with the density-type bulk
response of the 2D topological pump, which is implied by 4D
Hall-type band structure of the system.

z, as depicted in Fig. 1b. The pump parameters are var-
ied within the range [0.477⇡, 2.19⇡] because the boundary
states of the 1D-pump reside at these values (a full pump-
ing cycle is not necessary to observe edge pumping from
one side of the system to the other). We fabricate sepa-
rate arrays of waveguides that correspond to two scenar-
ios: (1) pumping only in the x-direction by adiabatically
changing �

x

as a function of z; and (2) pumping in both
the x and y directions by adiabatically varying �

x

and �
y

simultaneously. In case (1), we see that when light is in-
jected at the left edge, it is pumped to the right edge (see
Fig. 2c). However, when it is injected at the bottom, it
is not pumped to the top due to a lack of pumping of �

y

(see Fig. 2d). In case (2), we observe that the edge states

pump both from left to right (Fig. 2e) and bottom to top
(Fig. 2f). These results show that an electro-motive force
applied in the v- and/or w-directions implies pumping
from one 3D (v, w, y)-hyperplane to the opposite one in
the x-direction, and/or from one 3D (v, w, x)-hyperplane
to the opposite one in the y-direction as implied by the
presence of a non-zero 4D 2nd Chern number.

Figure 3. Images of the output facet of the waveguide

arrays after z = 15cm of propagation showing corner-

to-corner pumping. The devices are the same as those
used in Fig. 2. The yellow-dashed circle indicates the site of
injection at the input facet, z = 0, and the red arrows mark
the direction of pumping. In a, there is no pumping, and
therefore light stays confined to the corner state. In b, light
is largely pumped from the bottom-left corner to the bottom-
right corner via �

x

. When both �

x

and �

y

are pumped (in c),
the corner state is pumped from bottom-left to top-right. The
corner state passes through the bulk band remains localized
since it is a long-lived resonance while not in the band gap,
see Methods.

We now examine the pumping of states that reside at
the corners of the structures described above. We inject
light in the bottom-corner waveguide of each of the three
devices. The corner mode can be directly excited as well
as pumped along the bottom edge, in conjunction with
it being the boundary mode of the 1D pump that crosses
edge-to-edge, see Figs. 3a,b. Interestingly, when we scan
�
x

and �
y

simultaneously, the corner mode is pumped
largely all the way to the top-right corner of the sample,
see Fig. 3c. In both cases, the corner mode that we excite

In cold atom experiments, probed 
bulk response, here probed edge 
states —> very complementary!
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Topological Superconductors?

A nonlinear cavity under parametric driving can have a Hamiltonian of the form:

Hcavity = i��(2)
�
��â2 � �â†2

�

Aligning cavities to form a lattice, the momentum-space Hamiltonian takes

Hlattice =
1
2

�

k

�
�̂†

k �̂�k

� �
A(k) B(k)

B(�k)� A(�k)t

��
�̂k

�̂†
�k

�
,

This reminds us of BdG in topological superconductors…. 

… but actually very different physics, e.g. no limit to occupancy of a state means there 
can be instabilities. Need new topological classification for bosons!

i.e. can inject two photons at a time

Peano, et al., Nature Comm. 7, 10779 (2016) & PRX, 6, 041026, (2016) 

Can exploit 
instabilities to make 

non-reciprocal 
travelling-wave 

parametric amplifiers?

Also see Bardyn, et al., PRL 109, 253606 (2012) for proposal linked to Kitaev chain with parametric driving & strong interactions  
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Probing topology with photons
Most straightforward: pump at the edge of the system to see topological edge states 

Hafezi, et al., Nat. Photonics 7, 1001 (2013).

zero—at which point the band gap closes—the Chern number is 2
(indicating the presence of two anti-clockwise edge states, as confirmed
by calculations). The R dependence of the group velocity is shown in
Fig. 2c, where we plot the group velocity of the topologically protected
edge state at kx 5p/a versus R. The maximum calculated group velo-
city is at R 5 10.3mm.

To demonstrate these edge states experimentally, we launch a beam
with an elliptic profile of wavelength 633 nm such that it is incident on
the top row of waveguides in an array with helix radius R 5 8mm. The
position of the input beam is indicated by the ellipse in Fig. 1a. The
light distribution emerging from the output facet is presented in
Fig. 3a–d, with the shape and position of the input beam indicated
by a yellow ellipse. In Fig. 3a, the beam emerges at the upper-right
corner of the lattice, having moved along the upper edge. When we
move the position of the input beam horizontally to the right, the
output beam moves down along the vertical right edge, as shown in
Fig. 3b. The beam emerging from the lattice remains confined to the
edge, not spreading into the bulk and without any backscattering.
Moving the position of the input beam further rightward makes the
output beam move farther down along the side edge, as shown in
Fig. 3c and d. Clearly, the input beam has moved along the top edge,
encountered the corner, and then continued moving downward along
the right edge. We show this behaviour in beam-propagation-method
(BPM) simulations30, solving equation (1) (see Supplementary Video 1).
The central observation of these experimental results is that the corner
(which is in essence a strong defect) does not backscatter light. Indeed,
no optical intensity is evident along the top edge at the output facet, after
having backscattered from the corner. Furthermore, no scattering into
the bulk of the array is observed (owing to the presence of a bulk band-
gap). These observations provide strong evidence of topological protec-
tion of the edge state.

Further evidence follows from the fact that light stays confined to
the side edge of the array as it propagates downwards. This edge is in
the armchair geometry, which, for straight waveguides (R 5 0) does
not allow edge confinement at all (that is, no edge states). However,
when R . 0, edge state dispersion calculations reveal that a confined
edge state emerges. This is essential for the topological protection
because it prevents transport into the bulk of the lattice.

We now experimentally examine the behaviour of the topological
edge states as the helix radius, R, is varied. We find that the group
velocity reaches a maximum and then returns to zero as R is increased,
in accordance with Fig. 2c. To investigate this, we fabricate a series of
honeycomb lattices of helical waveguides with increasing values of R,
cut in a triangular shape (Fig. 4a). We first examine light propagation
in the lattice with non-helical waveguides (that is, R 5 0; Fig. 4b).
Launching a beam into the waveguide at the upper-left corner of the
triangle (circled) excites two types of eigenstates: (1) bulk states extend-
ing to the corner, and (2) edge states that meet at the corner. As the light
propagates in the array, the excited bulk states lead to some degree of
spreading into the bulk (the excitation of these bulk modes can be
eliminated by engineering the beam to only overlap with eigenstates
confined to the edge). In contrast, the edge states do not spread into the
bulk, and, because the edge states are all degenerate (Fig. 2a), they do
not cause spreading along the edges either (that is, zero group velocity).
Figure 4b shows the intensity at the output facet highlighting this effect:
while some light has diffracted into the bulk, the majority remains at
the corner waveguide. This is also shown in simulations (where the
animation evolves by sweeping through the z coordinate from z 5 0 cm
to z 5 10 cm); see Supplementary Video 2.

When the helical waveguides have clockwise rotation, the edge
states are no longer degenerate. In fact, the lattice now has a set of
edge states that propagate only clockwise on the circumference of the
triangle. Light at the corner no longer remains there, and moves along
the edge. Figure 4b–j shows the output facet of the lattice for increasing
radius R. For R 5 8mm, the wave packet wraps around the corner of
the triangle and moves along the opposite edge (Fig. 4f) (the corres-
ponding simulation is shown in Supplementary Video 3; the loss of
intensity over the course of propagation is due to bending/radiation
losses). Importantly, the light is not backscattered even when it hits the
acute corner, owing to the lack of a counter-propagating edge state.
This is a key example of topological protection against scattering. For
R 5 12mm, the wavepacket moves along the edge, but with a slower
group velocity. This is consistent with the prediction that the group
velocity of the edge state reaches a maximum at R 5 10.3mm and
thereafter decreases with increasing radius. The experiments suggest
that the maximal group velocity is achieved between 6mm and 10mm,
while the theoretical result (10.3mm) is well within experimental error,
given that this is a prediction from coupled-mode theory. Exact simu-
lations confirm the experimental result.

By R 5 16mm, bending losses are large, leading to leakage of optical
power into scattering modes (accounting for the large background
signal). The bending losses for R 5 4mm, 8mm, 12mm and 16mm were
found to be, respectively, 0.03 dB cm21, 0.5 dB cm21, 1.7 dB cm21 and
3 dB cm21. Recall that each lattice has propagation length z 5 10 cm.
The large background signal prevents us from experimenting with
larger R, where we would expect two anti-clockwise-propagating edge
states, as discussed earlier. As shown in Fig. 4j, the group velocity of the
wavepacket approaches zero and therefore the optical power remains
at the corner waveguide. These observations clearly demonstrate the
presence of one-way edge states on the boundary of the photonic
lattice that behave according to theory. Note that for different initial
beams—the elliptical beam of Fig. 3, and the single-waveguide excita-
tion of Fig. 4—the topological edge state behaves exactly as the model
predicts, providing experimental proof of the existence of the topo-
logical edge state.

To demonstrate the z dependence of the wavepacket as it propagates
along the edge, we turn to a combination of experimental results and

a b

c d

Figure 3 | Light emerging from the output facet of the waveguide array as
the input beam is moved rightwards, along the top edge of the waveguide
array. The yellow ellipse at the top of each panel shows the position of the input
beam (which is at the top of the array, see Fig. 1a), which is moved progressively
to the right in a–d. The beam propagates along the top edge of the array (which
is in the zig-zag configuration), hits the corner, and clearly moves down the
vertical edge (which is in the armchair configuration). Note that the wavepacket
shows no evidence of backscattering or bulk scattering due to its impact with
the corner of the lattice. This scattering of the edge state is prevented by
topological protection.

RESEARCH LETTER

1 9 8 | N A T U R E | V O L 4 9 6 | 1 1 A P R I L 2 0 1 3

Macmillan Publishers Limited. All rights reserved©2013

zero—at which point the band gap closes—the Chern number is 2
(indicating the presence of two anti-clockwise edge states, as confirmed
by calculations). The R dependence of the group velocity is shown in
Fig. 2c, where we plot the group velocity of the topologically protected
edge state at kx 5p/a versus R. The maximum calculated group velo-
city is at R 5 10.3mm.

To demonstrate these edge states experimentally, we launch a beam
with an elliptic profile of wavelength 633 nm such that it is incident on
the top row of waveguides in an array with helix radius R 5 8mm. The
position of the input beam is indicated by the ellipse in Fig. 1a. The
light distribution emerging from the output facet is presented in
Fig. 3a–d, with the shape and position of the input beam indicated
by a yellow ellipse. In Fig. 3a, the beam emerges at the upper-right
corner of the lattice, having moved along the upper edge. When we
move the position of the input beam horizontally to the right, the
output beam moves down along the vertical right edge, as shown in
Fig. 3b. The beam emerging from the lattice remains confined to the
edge, not spreading into the bulk and without any backscattering.
Moving the position of the input beam further rightward makes the
output beam move farther down along the side edge, as shown in
Fig. 3c and d. Clearly, the input beam has moved along the top edge,
encountered the corner, and then continued moving downward along
the right edge. We show this behaviour in beam-propagation-method
(BPM) simulations30, solving equation (1) (see Supplementary Video 1).
The central observation of these experimental results is that the corner
(which is in essence a strong defect) does not backscatter light. Indeed,
no optical intensity is evident along the top edge at the output facet, after
having backscattered from the corner. Furthermore, no scattering into
the bulk of the array is observed (owing to the presence of a bulk band-
gap). These observations provide strong evidence of topological protec-
tion of the edge state.

Further evidence follows from the fact that light stays confined to
the side edge of the array as it propagates downwards. This edge is in
the armchair geometry, which, for straight waveguides (R 5 0) does
not allow edge confinement at all (that is, no edge states). However,
when R . 0, edge state dispersion calculations reveal that a confined
edge state emerges. This is essential for the topological protection
because it prevents transport into the bulk of the lattice.

We now experimentally examine the behaviour of the topological
edge states as the helix radius, R, is varied. We find that the group
velocity reaches a maximum and then returns to zero as R is increased,
in accordance with Fig. 2c. To investigate this, we fabricate a series of
honeycomb lattices of helical waveguides with increasing values of R,
cut in a triangular shape (Fig. 4a). We first examine light propagation
in the lattice with non-helical waveguides (that is, R 5 0; Fig. 4b).
Launching a beam into the waveguide at the upper-left corner of the
triangle (circled) excites two types of eigenstates: (1) bulk states extend-
ing to the corner, and (2) edge states that meet at the corner. As the light
propagates in the array, the excited bulk states lead to some degree of
spreading into the bulk (the excitation of these bulk modes can be
eliminated by engineering the beam to only overlap with eigenstates
confined to the edge). In contrast, the edge states do not spread into the
bulk, and, because the edge states are all degenerate (Fig. 2a), they do
not cause spreading along the edges either (that is, zero group velocity).
Figure 4b shows the intensity at the output facet highlighting this effect:
while some light has diffracted into the bulk, the majority remains at
the corner waveguide. This is also shown in simulations (where the
animation evolves by sweeping through the z coordinate from z 5 0 cm
to z 5 10 cm); see Supplementary Video 2.

When the helical waveguides have clockwise rotation, the edge
states are no longer degenerate. In fact, the lattice now has a set of
edge states that propagate only clockwise on the circumference of the
triangle. Light at the corner no longer remains there, and moves along
the edge. Figure 4b–j shows the output facet of the lattice for increasing
radius R. For R 5 8mm, the wave packet wraps around the corner of
the triangle and moves along the opposite edge (Fig. 4f) (the corres-
ponding simulation is shown in Supplementary Video 3; the loss of
intensity over the course of propagation is due to bending/radiation
losses). Importantly, the light is not backscattered even when it hits the
acute corner, owing to the lack of a counter-propagating edge state.
This is a key example of topological protection against scattering. For
R 5 12mm, the wavepacket moves along the edge, but with a slower
group velocity. This is consistent with the prediction that the group
velocity of the edge state reaches a maximum at R 5 10.3mm and
thereafter decreases with increasing radius. The experiments suggest
that the maximal group velocity is achieved between 6mm and 10mm,
while the theoretical result (10.3mm) is well within experimental error,
given that this is a prediction from coupled-mode theory. Exact simu-
lations confirm the experimental result.

By R 5 16mm, bending losses are large, leading to leakage of optical
power into scattering modes (accounting for the large background
signal). The bending losses for R 5 4mm, 8mm, 12mm and 16mm were
found to be, respectively, 0.03 dB cm21, 0.5 dB cm21, 1.7 dB cm21 and
3 dB cm21. Recall that each lattice has propagation length z 5 10 cm.
The large background signal prevents us from experimenting with
larger R, where we would expect two anti-clockwise-propagating edge
states, as discussed earlier. As shown in Fig. 4j, the group velocity of the
wavepacket approaches zero and therefore the optical power remains
at the corner waveguide. These observations clearly demonstrate the
presence of one-way edge states on the boundary of the photonic
lattice that behave according to theory. Note that for different initial
beams—the elliptical beam of Fig. 3, and the single-waveguide excita-
tion of Fig. 4—the topological edge state behaves exactly as the model
predicts, providing experimental proof of the existence of the topo-
logical edge state.

To demonstrate the z dependence of the wavepacket as it propagates
along the edge, we turn to a combination of experimental results and
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c d

Figure 3 | Light emerging from the output facet of the waveguide array as
the input beam is moved rightwards, along the top edge of the waveguide
array. The yellow ellipse at the top of each panel shows the position of the input
beam (which is at the top of the array, see Fig. 1a), which is moved progressively
to the right in a–d. The beam propagates along the top edge of the array (which
is in the zig-zag configuration), hits the corner, and clearly moves down the
vertical edge (which is in the armchair configuration). Note that the wavepacket
shows no evidence of backscattering or bulk scattering due to its impact with
the corner of the lattice. This scattering of the edge state is prevented by
topological protection.
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Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design
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Antenna A

Antenna B

CES waveguide

Metal wall

Scatterer of
variable length l

Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.
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Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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Probing topology with photons

function of α shows a fractal structure known as
Hofstadter’s butterfly. In the following, we shall assume
that the magnetic flux has a rational α ¼ p=q value with
coprime integers p and q; in this case, we have q energy
bands of dispersion EiðkÞ, whose nontrivial topology is
apparent as the local Berry curvature ΩiðkÞ and the global
Chern number 2πCi ¼

R
MBZ d

2kΩiðkÞ are nonzero for
each of them, where the last integral is over the magnetic
Brillouin zone (MBZ) defined by ½−π=q; π=q% × ½−π; π%.
As we are considering a driven-dissipative photonic

lattice, we have to include the effect of pumping and losses
[1]. Losses are assumed to be local and uniform for all lattice
sites at a rate γ. The pumping field is taken to be mono-
chromatic with frequency ω0 and a spatial amplitude profile
fm;n. In the linear optics case under consideration here,
photons are noninteracting, so exact results are obtained
by the mean-field equations for the expectation values
am;nðtÞ ¼ hâm;nðtÞi. In the steady state, these evolve accord-
ing to the harmonic law am;nðtÞ ¼ am;ne−iω0t with time-
independent amplitudes am;n satisfying the linear system

J½amþ1;n þ am−1;n þ e−i2παmam;nþ1 þ ei2παmam;n−1%
þ ½ω0 þ iγ − Fn%am;n ¼ fm;n; (2)

which can be numerically solved on a finite lattice. In the
following, we shall assume that only the central site (0,0) is
pumped: fm;n ¼ fδm;0δn;0.
This physics is illustrated in Fig. 1 starting from theF¼0

case with no external force: In Figs. 1(a) and 1(b), the
pump frequency is chosen within the lowest magnetic band
of α ¼ 1=5. As the loss rate γ is increased from γ ¼ 0.01J
(a) to γ ¼ 0.02J (b), photons are able to travel over shorter
distances before decaying, so the photon intensity distri-
bution gets more and more spatially localized in the
vicinity of the pumped site: Rather than a hindrance, the
lossy nature of the system is here a useful tool to suppress
spurious effects due to the lattice edges. The exponential
localization effect is even more dramatic when the fre-
quency falls within a band gap [Fig. 1(c)], and the bands are
excited in a nonresonant way.
Measuring topological quantities.—The situation

becomes more interesting once we turn on the synthetic
electric field F ≠ 0 directed along the negative y direction:
From Fig. 1(d), it is apparent that the photon intensity
distribution is no longer centered at the pump position but
is significantly shifted in the leftward direction transverse
to the applied force. Examples of the dependence of the
transverse displacement of the center of mass hxi≡
½
P

m;nmjam;nj2%=½
P

m;njam;nj2% on the applied force F are
displayed in Fig. 1(e), where we plot hxi as a function of F
for a pump frequency within the lowest energy band of
α ¼ 1=5 and two different loss values γ=J ¼ 0.05 and 0.08.
The displacement hxi grows linearly for small F; for the
parameters in the figure, this linear regime extends up
to jFj≲ 0.02J.

We now proceed to relate the slope of this linear
dependence to the topological properties of the band; a
single band description is legitimate, provided the pump
frequency ω0 falls within (or close to) an energy band and
γ is smaller than the band gap separating from the next
bands. In the linear regime, this gives the simple relation
between the displacement and the Berry curvature (a full
proof of (3) as well as its extension to more complex—e.g.,
honeycomb—lattices is given in Supplemental Material
[37])

hxi ¼ F

R
MBZ γΩðkÞnðkÞ2R

MBZ nðkÞ
; (3)

where nðkÞ ¼ ½ðω0 − EðkÞÞ2 þ γ2%−1 is the (normalized)
population distribution within the band under considera-
tion; EðkÞ andΩðkÞ are the energy dispersion and the local
Berry curvature, respectively, of the corresponding band.

FIG. 1 (color online). (a)–(d) Photon amplitude distribution
jam;nj on a 41 × 41 square lattice with α ¼ 1=5. The central sites
are pumped. The force F is zero for (a)–(c) and F ¼ 0.1J for (d).
In (a),(b),(d), the pump frequency is tuned to ω0=J ¼ −2.95
within the lowest energy band; in (c), it is tuned to ω0=J ¼ −2.85
within a band gap. The loss rate is γ ¼ 0.01J for (a),(c),(d) and
γ ¼ 0.02J for (b). The bright regions have higher intensity than
the dark regions. (e) Displacement hxi as a function of F, in units
of J, for a pump frequency ω0=J ¼ −2.95 with α ¼ 1=5. The
solid (blue) line is for γ=J ¼ 0.05, and the dashed (green) line is
for γ=J ¼ 0.08.
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parameters in the figure, this linear regime extends up
to jFj≲ 0.02J.

We now proceed to relate the slope of this linear
dependence to the topological properties of the band; a
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γ is smaller than the band gap separating from the next
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• Excite the system with a frequency of a bulk band 
• Measure center-of-mass shift of the photonic steady-state 
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Preparing and probing Chern bands with cold atoms 5

is related to the quantities ⌫
(�)

ch

, which converge towards the Chern num-
ber of the bands � when taking the thermodynamic limit L

x,y

! 1. The

Chern number ⌫(�)
ch

is an integer, obtained by averaging the Berry curvature
⌦
�

(k) over the FBZ [Eq. (1.7)]; it is a topological invariant, meaning that

⌫
(�)

ch

remains a constant as long as the spectral gaps to other bands do not
vanish, see Refs. [10, 11]. As announced above, any contribution from the
band velocity cancels under the homogeneous-population condition (1.5), as
a direct consequence of Eq. (1.4).

The following Sections 1.2.2-1.2.3 discuss two di↵erent physical realiza-
tions that revealed the Chern numbers ⌫

(�)

ch

in experiments, through the
homogeneous population of energy bands [Fig. 1.2]. These Sections aim to
clarify the link between the quantum Hall e↵ect [10, 11, 5], as observed
in electronic systems since the 1980’s, and the Chern-number measurement
recently performed with ultracold bosonic atoms [15].

Filled band of fermions Thermal gas

Figure 1.2 Two realizations of uniformly populated energy bands, suitable
to reveal the Chern number in experiments. (left) Considering fermions at
zero temperature, the band is perfectly filled by setting the Fermi energy
within the spectral gap. (right) A system of bosons uniformly populate the
band when the temperature is large compared to the bandwidth Wband,
but small compared to the gap.

1.2.2 Fermions, the quantum Hall e↵ect and the TKNN formula

The first situation that we consider is a 2D non-interacting polarized Fermi
gas at zero temperature [Fig. 1.2]. Setting the Fermi energy E

F

within a
spectral gap naturally leads to a perfect filling of the bands E

�

<E
F

located
below the gap: the average number of particles in a state u

�

(k), Eq. (1.5),
is exactly ⇢(�) =N (�)/N

states

= 1 for E
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<E
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. Setting the latter condition
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in solid state:
measurements of 

currents and voltages

Hall bar

electrons fill bands up to Fermi level

With photons: Proposal: 
Ozawa & Carusotto, PRL, 112, 133902, (2014)
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•How can we engineer topology for photons?  
•  Quantum Hall systems 
•  Quantum spin Hall systems 
•  SSH Model & Topological Pumps 
•  Gapless topology: Dirac & Weyl points 
•  Topological superconductors? 

•How can we probe topology with photons? 

• Future perspectives

Lecture 4



Future Perspectives

• Topological phases of fermions have been classified: what about bosons? 

• Topological protection useful for quantum information? 

• Practical photonics devices with topological protection? e.g. optical isolator? 



{ { {{

e.g. combine synthetic gauge fields 
& photon blockade?

See e.g. Kapit, et al PRX (2014)

See e.g. review of Carusotto et al, RMP (2013)

• Can we reach new topological phases of matter, e.g. in higher dimensions? 

• What happens when the photonic material is weakly or strongly nonlinear? 

• How to prepare a fractional quantum Hall state of light? 

Future Perspectives
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Topological Phases of Matter with Photons
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