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1 Time-of-flight experiments

1.1 Classical version

Liouville’s theorem implies that a phase-space element of volume d3rod®py centered on (g, pg) is conserved along the
classical trajectories. For the situation considered here, the particles undergo ballistic flight for ¢t > 0: f(r,p,t) =
fo(r(t),po,t) with 7(t) = 7o + B¢, p(t) = po the classical trajectory evolving from (79, po). The spatial density reads

Nag (7, t) = /dSPO fo(x(t),po) = /d3ro/d3po fo(ro,po)d (7”0 + %t - T(t))

For long times, the terms o ¢ in the ¢ function dominate. We can then approximate
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If Arg and Apq are the initial sizes of the position and momentum distributions, respectively, the asymptotic regime is
reached when Apot/M > Arg.

1.2 Quantum version

The momentum distribution is given by
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the modulus square of the Fourier transform 1[)0(k) of 1.
To compute the time evolution, we express the initial wave function before release in the plane wave basis,
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The evolution is due to the free particle Hamiltonian, leading to
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For long enough times, the phase factor determines the integral. It oscillates very rapidly, thus averaging the integral
to zero, except near the points of stationary phase k; = Mu;/ht (i = x,y, z). The stationary phase approximation then

yields
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This result becomes exact as t — oo, where the integral over the oscillating exponential tends to a § function. Taking
the modulus squared gives the desired result.



2 BEC in a harmonic trap
2.1

Order-of-magnitude estimates for a cloud of N atoms, of typical size R, in a spherical trap of frequency w :
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Kinetic energy negligible if R < Na and interaction energy negligible if R > Na. The potential energy can never be
neglected: Both kinetic and interaction contributions would favor R — oo, and the potential energy is necessary to
balance them and keep the equilibrium size finite.

2.3

For strong repulsive interactions [y = &% > 1, equivalent to saying that the cloud size >> healing length (check!)], w
can neglect the kinetic energy. The equ1hbr1um density profile is determined by the balance between the potential and
interaction energy terms,
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The Thomas-Fermi radius (edge of the cloud where n = 0) is Rpp = QMHZE , and the peak density is ng, = %

For the normalization condition, one finds the chemical potential :
hw
pre = - (15)()2/5 > hw.
Note the scaling with atom number wrr x N 2/5 and Ry o< N'/5. The condition for strong repulsive interactions,

R <« Na, amounts to y = =2 > 1.
The various contrlbutlon to the energy are
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3 BEC hydrodynamics
3.1
Separating real and imaginary part, we get
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The first equation looks like a continuity equation, if we identify v, = %V@ with the fluid velocity field. Taking the
gradient of the second equation, one finds
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These equations look like the continuity and Euler equations describing a perfect fluid with density n and velocity

field vy, with an “extra”, purely quantum term —%A\/\/Eﬁ in the pressure. Note that the pressure for a uniform

weakly-interacting Bose gas is P = gn?/2, so that VP/n = gVn. The absence of viscosity indicates that the flow of a
fluid in a BEC state will be dissipation-free, or equivalently superfluid.



3.2

We start from the hydrodynamic equations above, and linearize them around the equilibrium solution. This gives after
some algebra
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We decompose dn, 66 in normal modes appropriate for a uniform medium, i.e. plane waves,
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where the dispersion relation Ej is common to both modes. This gives the two eigenmode equations
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with ex = h2k?/(2M) the free particle dispersion relation.

Er = ek (ex + 2gn0)

For low-energy Ej < gng, the excitations are sound waves with linear dispersion relation) Ey & ficsk. The speed of
sound is ¢, = /%7 . For “high energies” Ej > gno, the excitations behave as free particles but for a k-independent
energy shift, Ep ~ ex + gnyg.

4 Bose-Hubbard model for U — 0

Using the multinomial formula, we rewrite the N-particle wavefunction as
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The probability p(n;) is found by taking the expectation value of the projector on the subspace spanned by Fock states
with exactly n; particles at site i. This is
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where we used the multinomial formula again and Stirling’s formula to simplify the factorials. The probability p(n;)
can thus be rewritten as

p(n;) ~ e~

up to small corrections ~ 1/N,1/N, that vanish in the thermodynamic limit N, N5 — oo. This is a Poisson distribution,
with mean value 7 and standard deviation /7.

5 Approximate ground state of the Bose-Hubbard model

5.1
The average filling is given by

7 = ng — sin*(f) cos(2x). (4)

For x = /4, the atomic filling is thus commensurate with the lattice with ny atoms per site on average.



5.2 Commensurate filling 7 = n,
5.2.1
The free energy is

W =Gj=0+ %Sin2 (9) — % sin? (26) (2n0 + 1+ 2+/ng(ng + 1) cos(¢4 — gb_)) , (5)

where z = 6 is the number of nearest neighbors in 3D and where Gj—¢ is the purely local free energy for vanishing
tunneling and ng atoms per site.

5.2.2

Minimizing with respect to the phases ¢4 yields immediately cos(¢ — ¢_) = 1. In order to minimize the kinetic
energy, one wants to delocalize the wave function over the largest possible domain, with a phase as uniform as possible
(this is true as well for arbitrary filling fractions). Taking this into account, the free energy simplifies to
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where the coefficient A(ng) = (/7o + v/no + 1)?. The variational free energy is minimized with respect to 6 when

U

(1) cos(26) = ST (o)

or (2) sin(20) =0.
The first solution exists if the ratio U/zJ is lower than a critical value,

U<U,=2JA(ng) = 2J (2n0 +1+ 2\/nO(T+1)) . (7)
and it has the lowest free energy.

5.2.3

The lowest energy solution for U < U, corresponds to an order parameter
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with a condensate fraction f. = |a|?/ng. When U becomes larger than the critical value U,, only the second solution is
possible, with free energy Gy—o and o = f. = 0.



