

Nanomechanics

Yaroslav M. Blanter

Kavli Institute of Nanoscience, Delft University of Technology

Coupling
Detection
Doubly-clamped beams
Graphene and 2D materials

Yaroslav M. Blanter

Mechanical oscillator

Driven harmonic oscillator:

$$\ddot{x} + \frac{\omega_0}{Q}\dot{x} + \omega_0^2 x = \frac{F}{M}\cos\omega t$$

 $x = A\cos\left(\omega t + \theta\right)$

A peak of the amplitude and a jump of the phase

Yaroslav M. Blanter

Mechanical oscillator

More advanced oscillator:

$$\ddot{x} + \frac{\omega_0}{Q(x)}\dot{x} + \omega_0^2 x + f(x) = \frac{F(x,t)}{M}$$

 $x \neq A\cos\left(\omega t + \theta\right)$

Nano- or optomechanical system:

$$\ddot{x} + \frac{\omega_0}{Q(x)}\dot{x} + \omega_0^2 x + f(x) = \frac{F(x, y, t)}{M}$$

and another equation for evolution of y – the degree of freedom to which the mechanical oscillator is coupled

Yaroslav M. Blanter

Coupling

Mechanical resonators can be coupled to:

- Charge: capacitive coupling
- EM radiation: radiation pressure coupling
- Spin
- Magnetic flux: inductive coupling
- Other mechanical resonators

Yaroslav M. Blanter

Capacitive coupling

Electrostatic energy: In the simplest form $= \frac{C[z]V}{2}$

2C[z]

Couples phonons to charge due to the Coulomb-induced force

(Other mechanisms of coupling to the charge: e.g. piezoelectric coupling)

Yaroslav M. Blanter

Capacitive coupling

Graphene resonator on a hole over a backgate

T. Miao, S. Yeom, P. Wang, B. Standley, M. Bockrath, Nano Lett. **14**, 2982 (2014)

Yaroslav M. Blanter

Radiation pressure coupling

Movable mirror Static mirror

Kippenberg's group website

Radiation pressure:

$$H = \hbar \omega_{cav}(x)n + \frac{M \omega_m x^2}{2}$$
Cavity
Cavity
Mechanical
resonator
Yaroslav M. Blanter

Other mechanisms of interaction with radiation: e.g optical phonons in bulk solids

Radiation pressure coupling

S. Hong, R. Riedinger, I. Marinkovic, A. Wallucks, S. G. Hofer, R. A. Norte, M. Aspelmeyer, S. Gröblacher, arXiv:1706.03777

Yaroslav M. Blanter

Coupling to spin

Two magnets exert mechanical force on each other, dependent on their orientation

A magnet on a cantilever can sense a spin

Magnetic resonance force microscopy

Yaroslav M. Blanter

D. Rugar, R. Budakian, H. J. Mamin, B. W. Chui, Nature **430**, 329 (2004)

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin Nature Physics **7**, 879 (2011)

Yaroslav M. Blanter

TUDelft

Technische Universiteit Delft

Coherent spin driving

Spin state depends on the strain; piezoelectric substrate driven

A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, P. Maletinsky Nature Physics **11**, 820 (2015)

Yaroslav M. Blanter

Inductive coupling

Inductance: can depend on the position of a mechanical resonator

$$\Phi = LI \Longrightarrow -\dot{\Phi} = V = L\dot{I}$$
 $E = \frac{L(x)I^2}{2}$

See Lecture 3

Yaroslav M. Blanter

Persistent currents

Interference is affected by Aharonov-Bohm flux

$$\hat{H} = \frac{\hbar^2}{2m} \left(\vec{\hat{p}} - \frac{e}{c}\vec{A}\right)^2 \Longrightarrow$$

$$\hat{H} = \frac{\hbar^2}{2mR^2} \left(-i\frac{\partial}{\partial\phi} - \frac{\Phi}{\Phi_0} \right)^2$$

•

$$\Psi(\phi) \propto e^{iN\phi} \Longrightarrow$$
$$E = \frac{\hbar^2}{2mR^2} \left(N - \frac{\Phi}{\Phi_0} \right)^2$$

Energy levels vs. flux

ICTP, September 2017

Yaroslav M. Blanter

Measurements of persistent currents

Amplitude clean, single ring:

 $\frac{e\hbar}{mR^2}$

Amplitude disordered:

 $I = \frac{\partial E}{\partial \Phi} = \sum_{\text{filled}} \frac{\partial E_i}{\partial \Phi}$

$$I = \sum_{l} I_{l} \sin \frac{2\pi l \Phi}{\Phi_{0}}, I_{l} = -\frac{4e\delta}{\pi^{2}\hbar}$$

Difficult to measure!

A. C. Bleszynski-Jayich et al, Science **326**, 272 (2009)

Experiments to date have produced a number of confusing results in apparent contradiction with theory and even among the experiments themselves (2, 3). These conflicts have remained without a clear resolution for nearly 20 years, suggesting that our understanding of how to measure and/or calculate the ground-state properties of as simple a system as an isolated metal ring may be incomplete.

Yaroslav M. Blanter

Yaroslav M. Blanter

Measurements of persistent currents

A. C. Bleszynski-Jayich, W. E. Shanks,
B. Peaudecerf, E. Ginossar,
F. von Oppen, L. Glazman,
J. G. E. Harris
Science **326**, 272 (2009)

Currents produce tork and shift the cantilever frequency

 $au = \mu \times B$

Good agreement with the theory predictions

Coherent two-mode manipulation

Technische Universiteit Delft

T. Faust, J. Rieger, M. J. Seitner, P. Krenn, J. P. Kotthaus, E. M. Weig, PRL **109**, 037205 (2012)

T. Faust, J. Rieger, M. J. Seitner, J. P. Kotthaus, E. M. Weig, Nature Physics **9**, 485 (2013)

Yaroslav M. Blanter

Mass detection

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, M. L. Roukes, Nano Letters **6**, 583 (2006)

Resonant frequency: 133 MHz Size: 2300 x 150 x 70 nm Mass sensitivity: 100 zg

Yaroslav M. Blanter

Single-molecule detection

M. S. Hanay, S. Kelber, A. K. Naik, D. Chi, S. Hentz, E. C. Bullard, E. Colinet, L. Duraffourg, M. L. Roukes, Nature Nanotech. **7**, 602 (2012)

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold Nature Nanotech. **7**, 301 (2012) – 1 yg resolution

Yaroslav M. Blanter

Yaros

nature physics

Real-space tailoring of the electron-phonon coupling in ultraclean nanotube mechanical resonators

A. Benyamini^{1†}, A. Hamo^{1†}, S. Viola Kusminskiy², F. von Oppen² and S. Ilani¹*

Figure 1 | A carbon nanotube mechanical resonator coupled to localized ultraclean quantum dots. **a**, Scanning electron micrograph of a device similar to the one measured, with an 880-nm-long nanotube suspended 125 nm above five gates with a periodicity of 150 nm. Scale bar, 100 nm. **b**, Measurement layout: d.c. gate voltages, V_{g1} to V_{g5} , locally dope the nanotube with electrons (red) or holes (blue). Mechanical motion is actuated by a radiofrequency signal on gate 4 (frequency *f*) leading to a high-frequency modulation of the current, which is down-mixed to low frequencies using a weak probe signal of frequency $f + \delta f$ applied at the source. **c**, The mixing current, which is the current measured at frequency δf , has components that are in-phase (M_x) and out-of-phase (M_y) with the drive; both are plotted as function of the drive frequency (blue and green, respectively). Also shown is the derivative dM_x/df (purple). **d**, Top: conductance, *G*, of a dot above gate 3 as a function of V_{g3} . Bottom: corresponding mixing signal, M_y (colour map), measured for the first mechanical mode, as a function of V_{g3} and *f*. Dashed red line is a fit to a theory including only the static electron-phonon coupling, capturing the frequency step across a Coulomb blockade peak. The dashed black line includes also the dynamical coupling (Supplementary Information 1). Their difference at the centre of the Coulomb peak, Δf_1 , gives the dynamic frequency softening. **e**, Similar measurement for the second mechanical mode with a dot above gate 4. All measurements in this article are done at an electron temperature of T = 16 K as determined from the Coulomb peaks in the conductance.

Technische Universiteit Delft

Double-clamped beam

G. Steele, A. K. Hüttel, B. Witkamp, S. Sapmaz . YMB. L. Gurevich, M. Poot, H. B. Meerwaldt, H. S. J. van der Zant, PRB 67, 235414 (2003) Science **325**, 1103 (2009) L R B C[z]G

Couples phonons to charge due to the Coulomb-induced force

L. P. Kouwenhoven, H. S. J. van der Zant

Size: 500 nm Frequency: 140 MHz

ICTP, September 2017

Yaroslav M. Blanter

Technische Universiteit Delft

Backaction in a double-clamped beam

H. B. Meerwaldt, G. Labadze, B. H. Schneider, A. Taspinar, YMB, H. S. J. van der Zant, and G. A. Steele, PRB **86**, 115454 (2012)

$$M\ddot{x} + \frac{M\omega_0}{Q}\dot{x} + M\omega_0^2 x = F[x]$$

$$F = \frac{1}{2}\frac{d}{dx}C_g(x)\left(V_g - V_{CNT}(x)\right)^2$$

$$F[x] = -\Delta kx - \beta x^2 - \alpha x^3$$

The beam is stretched by the gate voltage, and this shifts the frequency (optical spring effect) Yaroslay M. Blanter ICTP, September 2017

Coulomb blockade

Conditions that current is not flowing:

(a) $S_{n+1} > eV_L$ (b) $S_n < eV_L$ (c) $S_{n+1} > 0$ (d) $S_n < 0$ n = 0 n = 1 V_G

Yaroslav M. Blanter

Frequency softening by Coulomb effects

H. B. Meerwaldt, G. Labadze, B. H. Schneider, A. Taspinar, YMB, H. S. J. van der Zant, and G. A. Steele, PRB **86**, 115454 (2012)

$$\Delta \omega_0 \propto 1 - \frac{C_{tot}}{C_g} - \frac{e}{C_g} \frac{\partial \langle N \rangle}{\partial V_g}$$

(zero bias)

Yaroslav M. Blanter

Frequency softening by Coulomb rechnische Universiteit Delft

Yaroslav M. Blanter

Technische Universiteit Delft

Coulomb-induced nonlinearity

$$F[x] = -\Delta kx - \beta x^2 - \alpha x^3$$

ICTP, September 2017

Yaroslav M. Blanter

Coulomb-induced damping

$$\frac{\omega_0}{Q} = \frac{\omega_0}{Q_0} + \frac{F_{stoch}V_g}{mC_g} \frac{1}{\Gamma_{tot}} \frac{dC_g}{dx} \frac{\partial \langle N \rangle}{\partial V_g}$$

O. Usmani, YMB, and Yu. V.Nazarov, PRB **75**, 195312 (2007) F. Pistolesi, YMB, and I. Martin, PRB **78**, 085127 (2008)

Yaroslav M. Blanter

Backaction in SET coupled to a resonator

Strain in graphene

Deformation of a graphene sheet acts at electrons as pseudomagnetic field in the Dirac equation

$$A_{x} = t\beta(u_{xx} - u_{yy});$$

$$A_{y} = -2t\beta u_{xy}; \ \beta \approx 3$$

Deformation caused by uniform load:

$$h(r) = \frac{h_0}{R^4} \left(R^2 - r^2 \right)^2$$

Deformation caused by local load:

$$h(r) = \frac{h_0}{R^2} \left(\frac{1}{2} \left(R^2 - r^2 \right) - r^2 \ln \frac{R}{r} \right)$$

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\$

H. Suzuura, T. Ando Phys. Rev. B **65**, 235412 F. Guinea, M. I. Katsnelson, M. A. H. Vozmediano Phys. Rev. B **77**, 075422 (2008)

 $\left(\frac{\pi}{r}\right)$ Uniform load Local load (center) Dirac equation: with added gauge fields $\vec{\sigma}(v_F \vec{p} + \vec{A})\Psi(\vec{r}) = E\Psi(\vec{r})$ K.-J.Kim, YMB, K.-H.Ahn

Phys. Rev. B 84, 081401 (2011) ICTP, Sei

Piezoconductivity in graphene

Deformation:

- Creates strain: pseudomagnetic gauge fields
- Creates density redistribution; the profile needs in
- principle to be calculated self-consistently

M. Fogler, F. Guinea, M. I. Katsnelson Phys. Rev. Lett. **101**, 226804 (2008)

Local shift of the Dirac cones: Predicted metal-insulator transition at certain deformation graphene layer Gate a) k_{v} A. ICTP, September 2017

Yaroslav M. Blanter

Technische Universiteit Delft

Piezoconductivity in graphene

M. V. Medvedyeva and YMB Phys. Rev. B **83**, 045426 (2011)

Yaroslav M. Blanter

Strain engineering in MoS2

Wrinkles: large strain difference

Yaroslav M. Blanter

A. Castellanos-Gomez, R. Roldán, E. Cappelluti,
M. Buschema, F. Guinea, H. S. J. van der Zant,
G. A. Steele, Nano Lett. 13, 5361 (2013)

Strain engineering in MoS2

A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buschema, F. Guinea, H. S. J. van der Zant, G. A. Steele, Nano Lett. 13, 5361 (2013)

Yaroslav M. Blanter