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Microwave cavities
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V – voltage
I – current
Q – charge
Φ – flux

Harmonic oscillator with the frequency
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Frequency in the microwave range: 1 GHz to 10 GHz 
(actually, even more narrow) 
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Microwave cavities
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Reflection/Transmission
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Adding a waveguide
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Losses
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Quantization
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Quantization
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Also reproduces the equations of motion
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Capacitive coupling
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Resonant terms: Radiation pressure
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Radiation pressure in 
optomechanics
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Cavity Mechanical 
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Radiation 
pressure
coupling
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Kippenberg's group website
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Coupling

† † † †

0
ˆ ˆˆ ˆ ˆ ˆ( )cav mH a a b b g a a b bw w= + - +h h h

, m cavk w wG = =

Dissipation rate in the cavity

Where is       ?
0g

Weak coupling Strong coupling

Driving and linearization:
0 cavg g n=

Sideband-resolved regime



Yaroslav M. Blanter ICTP, September 2017

Coupling

† † † †

int 0
ˆ ˆ ˆ ˆ( ) ( )( )H g a a b b g a a b b= - + ® - + +h h

Non-resonant? Depends how we drive.
0 cavg g n=

In the rotating frame: ; ;d cav mi t i t i t

cavn e a e b e
w w wµ µ µ

Red-detuned drive: d cav mw w w= -
† †

int
ˆ ˆ( )H g a b ab= - +h

Blue-detuned drive: d cav mw w w= +
† †

int
ˆ ˆ( )H g a b ab= - +h
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Cavity/circuit optomechanics

Verhagen et al, Nature 482, 63 (2012) Yuan et al, Nature Comms. 6, 8491 (2015)

Chan et al, Nature 478, 89 (2011) Singh et al, Nature Nanotech. 9, 820 (2014)
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Microwave optomechanics

What can we do with microwaves?

– The same things as with visible light

– The cavity frequency can be comparable to the mechanical 
   frequency

– Non-linearity (via Josephson effect)
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Static effects

If we only look at the mechanical resonator:
– Equilibrium position is shifted
– Frequency is renormalized 
– Damping coefficient is renormalized
– Non-linearity appears and can lead to instabilities

24 /gk k® ± G

Same with the cavity: frequency shift and renormalization of
the damping
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Superconducting microwave cavity

V. Singh,  S. J. Bosman, B. H. Schneider, YMB, A. Castellanos-Gomez, and G. A. 
Steele, Nature Nanotech. 9, 820 (2014)
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Optomechanically induced 
transparency

From: Aspelmeyer, Kippenberg,
and Marquardt Rev. Mod. Phys.
86 1391 (2014)

Cavity is strongly red-driven at cav mw w- (red-detuned)

Probe laser measures the transmission around the cavity resonance
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Optomechanically induced 
transparency
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Langevin equations for the creation/annihilation operators in the 
frame rotating with the drive:

Detuning and dissipation 
in the cavity

Input signal Quantum noise

Coupling Mechanical 
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Thermal noise
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Optomechanically induced 
transparency
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Transmission:
Drive Probe

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. 
Kippenberg, Science 330, 1520 (2010)
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Optomechanically induced 
transparency
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S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. 
Kippenberg, Science 330, 1520 (2010)

Result: Additional peak at the cavity resonance
Width: mechanical linewidth
Height:

Cooperativity:
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Optomechanically induced 
(transparency) reflection

Constructive interference 
between the two probes 
results in OMIT 

V. Singh,  S. J. Bosman, B. H. Schneider, YMB, A. Castellanos-Gomez, and G. A. 
Steele, Nature Nanotech. 9, 820 (2014)
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Parametric driving 
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OMIT with parametrically driven 
resonator 

D. Bottner, S. Hanai, M. Yuan,
YMB, G. A. Steele, in preparation

Parametric excitation of a
mechanical resonator
leads to the transmission of
light (microwaves) above 1
– amplification of light
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Quantum detection of mechanical 
oscillations

Can we see quantum effects in mechanical motion?

Issues:

1. Need low temperatures 
Bk T w= h

1T K= 100 GHzw ?
Either need to cool the mechanical resonator down or 
need to work with very high frequerncies

2. Need to decide what are the signatures of the quantum 
behavior and need a quantum detector to measure them
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Quantum detection of mechanical 
oscillations

A. D. O'Connell, M. Hofheinz, M. Ansmann, 
R. C. Bialczak, M. Lenander, E. Lucero, 
M. Neeley, D. Sank, H. Wang, M. Weides, 
J. Wenner, J. M. Martinis, A. N. Cleland
Nature 464, 697 (2010)

A mechanical resonator capacitively coupled

to a superconducting qubit 6 GHzf :

0.07n :
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Quantum detection of mechanical 
oscillations

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, 
M. S. Allman, K. Cicak, A. J. Sirois,
J. D. Whittaker, K. W. Lehnert, 
R. W. Simmonds
Nature 475, 359 (2011)

Cavity: 7.5 GHzcf :

10MHzf :Mechanical resonator: 

Sideband cooling
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Quantum behavior of mechanical 
resonator

S. Hong, R. Riedinger, I. Marinkovic, A. Wallucks, S. G. Hofer, R. A. Norte, 
M. Aspelmeyer, S. Gröblacher,  arXiv:1706.03777

Two-point correlation function:
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Signature of non-classical states:
(2) (0) 1g <

Generally:
(2)0 (0) 2g< <
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Quantum behavior of mechanical 
resonator

S. Hong, R. Riedinger, I. Marinkovic, A. Wallucks, S. G. Hofer, R. A. Norte, 
M. Aspelmeyer, S. Gröblacher,  arXiv:1706.03777

Signature of non-classical states:
(2) (0) 1g <
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