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Nonlinear optomechanics
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 Non-linearity and radiation pressure
 Non-linear resonator: Optomechanically induced transparency
 Non-linear cavity: dc
 Non-linear cavity: ac?
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Quantum state transfer

† † † †ˆ ˆˆ ˆ ˆ ˆ( )( )cav mH a a b b g a a b bw w= + - + +h h h

We can prepare a cavity in pretty much any state (e.g. coupling to a qubit)

If the interaction is linear we can transfer this state to the 
mechanical resonator (state swap)

But it is difficult. Can we use non-linearity and start from a simple state?
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What is non-linear?

† † † †

0
ˆ ˆˆ ˆ ˆ ˆ( )cav mH a a b b g a a b bw w= + - +h h h

 Radiation pressure
 Mechanical resonator?
 Cavity?
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Non-linear radiation pressure

A. Nunnenkamp, K. Børkje, and S. M. Girvin
Phys. Rev. Lett. 107, 063602 (2011)

† † † †

0
ˆ ˆˆ ˆ ˆ ˆ( )cav mH a a b b g a a b bw w= + - +h h h

2

0 / mng wD = -

multiphoton resonances
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Strongly driven optomechanical 
cavity

J.D.P. Machado and YMB, Phys. Rev. A 94, 063835

Non-classical states

Phonon second-order correlation function for weak coupling and 
the initial state 1 ,phot phonb
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Duffing oscillator
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Driven harmonic oscillator: Resonance ( )cosx A tw q= +

A peak of the amplitude and a jump of the phase
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How to solve the Duffing oscillator
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Going to a rotating frame:
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How to solve the Duffing oscillator

Result for the “stationary” state

2 4cos 1/ 2; cos 3 / 8t tW = W =

Rotating wave approximation: average over the time
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Driven Duffing oscillator

Image by User:Kraaiennest, Wikimedia 
Commons
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Optomechanically induced 
transparency

From: Aspelmeyer, Kippenberg,
and Marquardt Rev. Mod. Phys.
86, 1391 (2014)

Cavity is strongly red-driven at cav mw w- (red-detuned)

Probe laser measures the transmission around the cavity resonance
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Non-linear OMIT

X. Zhou , F. Hocke, A. 
Schliesser, A. Marx, H. Huebl,
R. Gross, T. J. Kippenberg 
Nature Physics 9, 179 (2013)
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Non-linear OMIT

Duffing oscillator:

Does the shape of the transmission 
maximum repeat the 
response of the driven Duffing ocsillator? 

Not always, the phase dynamics is 
important.
V. Singh, O. Shevchuk, YMB, G. A. Steele, Phys. Rev. B 93, 
                                             245407 (2016)
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Non-linear OMIA

O. Shevchuk, V. Singh, G. A. Steele, YMB 

Phys. Rev. B 92, 195415 (2015)

Red-detuned drive

Overcoupled cavity
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Non-linear OMIA

O. Shevchuk, V. Singh, G. A. Steele, YMB 

Phys. Rev. B 92, 195415 (2015)
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Non-linear OMIA

24 / mgk k® ± G

Impedance 
matching

V. Singh,  S. J. Bosman, B. H. Schneider, YMB,
A. Castellanos-Gomez, G. A. Steele, Nature Nanotech. 
                                   9, 820 (2014)
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Superconductivity

Properties of superconductors:
 Absence of electrical resistance
 Magnetic field does not penetrate (Meissner effect)
 Specific heat exponential with temperature

Superconductivity – a state of matter realized at low temperatures

Mechanism of superconductivity: 
  Phonon-mediated attraction between electrons
  Electrons bound in Cooper pairs
  Cooper pairs form condensate characterized by a complex number 
  Excitations have a gap

ie jD
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Josephson effect

What happens if we bring in contact two superconductors with
different phases?

/ 2ie j-D / 2ie jD

Energy: must be proportional to the product

cosJE E j= -
“Penetration of Cooper pairs”

Electrostatic potential: only enters in the gauge invariant combination

Gauge invariance: the wave function in the presence of scalar
potential can only enter in the combination
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Josephson relation:

2eV

t

j¶
=

¶ h

Constant voltage V across the barrier rotates the 
phase difference
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Josephson effect

Phase-dependent energy means current in the ground state!

2eV

t

j¶
=

¶ h

Let us calculate the work needed to increase the phase difference
of the junction from 0 to φ:
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We can consider phase as ''coordinate” of a particle and quantize it .
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Josephson junction as  
inductor
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Linear regime: cI I j= 2
c

e
I I V=&
h

Inductance:
2

c

e
L I=
h



Yaroslav M. Blanter ICTP, September 2017

SQUID

SQUID – Superconducting Quantum Interference Device

F1j 2j
( )0 1 2sin sinI I j j= +

1 2 0 02 / ; /n c ej j p p- = F F F = h

Flux 
quantum

sincI I j=

( )0 02 cos /cI I p= F F High sensitivity to magnetic flux 
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Inductive coupling

SQUID – Superconducting Quantum Interference Device

( )0 02 cos /cI I p= F F – depends on the position

0

0

4 ( )
cos

e x
L I

pF
=

Fh

X. Zhou, A. Mizel, Phys. Rev. Lett. 97, 267201 (2006)
E. Buks, M. P. Blencowe, Phys. Rev. B 74, 174504 (2006)
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Non-linear cavity

S. Etaki, F. Konschelle, H. Yamaguchi, 
YMB, H. S. J. van der Zant, 
Nature Comm. 4, 1803 (2013)
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Classical SQUID: experiment

Harmonic oscillator response 
at

f = 2 MHz and Q = 18 000

S. Etaki,M. Poot, I. Mahboob, K. Onomitsu, H. Yamaguchi,
H. S. J. van der Zant, Nature Physics 4, 785 (2008)
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Self-sustained oscillations

S. Etaki, F. Konschelle, H. Yamaguchi, 
YMB, H. S. J. van der Zant, 
Nature Comm. 4, 1803 (2013)
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Lorentz force backaction

F1 1, Ij
2 2, Ij

1 2I I I= +

1 2 0 2 1( ) / 2 ( ) /(2 )a Blax L I I j j pF = F + + - = F -

Motion Inductive coupling

Josephson junctions:
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Lorentz force

M. Poot, S. Etaki, I. Mahboob, K. Onomitsu, H. Yamaguchi, YMB, 
H. S. J. van der Zant, Phys. Rev. Lett. 105, 207203 (2010)
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Back-action and self-sustained 
oscillations
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For self-sustained oscillations we need Q < 0

Overdamped:
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Renormalizes the quality
factor and may yield
self-oscillations
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Quantization of a non-linear cavity

Can not quantuize the interaction generally

SQUID becomes a Kerr cavity: † † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ
cavH a a Ka a aaw= +h

Cavity operated at dc or the frequency of the cavity is comparable to
the mechanical frequency: Beam-splitter + cross-Kerr

O. Shevchuk, G. A. Steele, YMB Phys. Rev. B 96, 014508 (2017)

( )† † † †

int
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ

bs CKH g a b ab g a ab b= + +h h

Disappears for a symmetric SQUID
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Cavity operated close to the resonance: radiation pressure + cross-Kerr

O. Shevchuk, G. A. Steele, YMB Phys. Rev. B 96, 014508 (2017)

( )† † † †

int
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ

rp CKH g a a b b g a ab b= + +h h

What should we expect for such non-linear cavity?

Quantization of a non-linear cavity
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Mechanical subbands

We drive a cavity at resonance

Signal (ac voltage)

w
0w0 mw w-

0 mw w+

Duffing

Lorentzian
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Quantum state transfer

B. Yurke and D. Stoler, Phys.Rev.Lett. 57, 13 (1986)

( )† †ˆ ˆ ˆ ˆ ˆ
p

H a a K a aw= +h

What is an evolution of a quantum state in a non-linear cavity?

Initially: coherent state 2
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Quantum state transfer

B. Yurke and D. Stoler, Phys.Rev.Lett. 57, 13 (1986)
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Periodic: the same for t and 2 /t Kp+

After a quarter of a period: A cat state
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