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(1) Mid-Latitude Response to Tropical Forcing: Can we use ideas from stationary wave
theory?
(2) Changes in mid-latitude instabilities due to Tropical Forcing
(3) Possible ways in which the tropics may respond to mid-latitudes

(4) Are tropical and midlatitude fluctuations sometimes coupled ?
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2-day pulse at 0°N,135°E 2-day pulse at 0°N, 120°W
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FIG. 3. Ensemble mean v300 response in CAM3 to a 2-day pulse of heat at 0°N, 135°E (a) 3, (b) 6, and (c) 9 days after the pulse begins.
(d)~(f) As in (a)~(c), but for a pulse at 0°N, 120°W.

Ensemble mean v300 response in CAM3 to a 2-day pulse of heat at 0°N,135°E (a) 3, (b) 6, and
(c) 9 days after the pulse begins. (d) — (f) as in (a) — (c), but for a pulse at 0°N, 120°W.

Grant Branstator, 2014: Long-Lived Response of the Midlatitude Circulation and Storm Tracks to Pulses of
Tropical Heating. ]. Climate, 27, 8809+8826«
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Vertical structure of
extratropical
response to tropical
forcing - ENSO
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Tropical Forcing

Tropical heating gives rise to rising motion, since the adiabatic cooling term
balances the diabatic heating.

waeg l(po) 0
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For mid-level rising heating, you expect divergence (D > 0) aloft (200 hPa) and

convergence (D<0) below (850 hPa). This response has the form of the first baroclinic
mode.



Two Dimensional Tropical Convection
4

OLR<O0

rising motion (convection)
w<<0

“First Baroclinic Mode”
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The Rossby Wave Source*:
One level vorticity equation model for upper levels

The non-linear vorticity equation can be approximated as:

2—+\7‘§ §,=—C, D+F=S+F
5

where v is the full horizontal velocity, C = total vorticity: Ca = VZI/J + f

D = divergence, F is friction and S is the Rossy Wave Source.
(Vertical advection and twisting terms are ignored since vertical velocity is expected to be small)

BUT: For equatorial forcing, the absolute vorticity is small, and often occurs in regions
of background Easterlies™ (e.g. in the western Pacific where Q is large).

So how can S act as a source for mid-latitude Rossby waves?

*Sardeshmukh, P. D., and B. J. Hoskins, 1988: The Generation of Global Rotational Flow by Steady
Idealized Tropical Divergence. J. Atmos. Sci., 45, 1228-1251.

Advanced School on Tropical-Extratropical
Interactions on Intraseasonal Time Scales 10
2017



*Detour: Why do Background Easterlies Prevent Rossby wave propagation?

Barotropic Linear Wave Theory in Mercator Coordinates
Assume wave propagates eastward with zonal wavenumber k. What are the
allowed meridional wavenumbers [ ?

W ~ ol tkery=on)

[
a)=UM_/))M(k2 lz)
U, =U/cos(¢) /3’M=§—y(§+f)

Stationary Waves (w=0)

U, k

2 2
B, \k™+I
Easterlies = | is imaginary = waves are damped

[J <(0=]?><( inthey-direction (NO PROPAGATION)
M Hoskins B. J., and D. Karoly, 1981: The Steady Linear Response
Advanced School of' T? Vel Exﬁr ttrsrc*)nmc'fcsag)here to Thermal and Orographic Forclmg
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The Rossby Wave Source (continued)

The answer is that to describe mid-latitude Rossby waves, we can solve only for the
rotational component of the flow*, and must specify the divergent component as
part of the tropical forcing. This leads to a new Rossby Wave Source:

0
—+V

or 7
§S=-v -Vg,-E, D

V|6, ==V, VE, -E, D+F=S+F

*Rotational component: Vw = _8_1/) 8_1/}) ;ﬂ — V2¢ D=Vv =0

Divergent component:  V_ = ox 8)() £, =0 D=V-v_=V’y



§+'“=S

ot

Traditional Source: Divergence x Vorticity

=-V-(v,£)=-D&-v, V&

- |

Additional Source: Vorticity Advection by the Divergent flow

1228 JOURNAL OF THE ATMOSPHERIC SCIENCES VoL. 45, No. 7

The Generation of Global Rotational Flow by Steady Idealized Tropical Divergence

PRASHANT D. SARDESHMUKH
European Centre for Medium-range Weather Forecasts, Reading, United Kingdom

BRIAN J. HOSKINS
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Contour lines
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The role of mid-latitude barotropic instability
(Simmons et al., 1983)

Low frequency fluctuations which derive their kinetic energy from barotropic
instability of the mean flow.

- Climatological 300 hPa flow has fastest growing barotropic mode of period
about 45 days, and e-folding time of ~6.8 days.

- With an e-folding time of the order of a week or more for the most unstable
normal mode, it might be thought that this barotropic instability would be of
much less importance than baroclinic instability.

- However, this e-folding time defines the growth of a global, low-frequency
mode. Locally in space and time, episodes of rapid growth may occur.

- This mode may play a large role in the response to MJO heating, which has time
scales similar to the mode itself.

Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic Wave Propagation and
Instability, and Atmospheric Teleconnection Patterns. J. Atmos. Sci., 40, 1363-1392.
Advanced School on Tropical-Extratropical
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Streamfunction of the
most unstable mode at
selected days within one
half cycle of most rapidly
growing mode: Period of
45 days with e-folding
time of < 7 days.

1372

JOURNAL OF THE ATMOSPHERIC SCIENCES

_ FI1G. 11. The streamfunction of the most unstable normal mode at selected days within one-half cycle
of its oscillation. The contour interval is arbitrary.
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12-day mean Z response from barotropic
model forced by 48-day MJO cycle, with
Rossby Wave Source included. Contour interval
of 30 m

Ferranti, L., T. N. Palmer, F. Molteni and E. Klinker, 1990: Tropical-extratropical interaction associated
with the 30-60 Day Oscillation and Its Impact on Medium and Extended Range Prediction. J. Atmos. Sci.,

47,2177-2199. Advanced School on Tropical-Extratropical
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Tropical-extratropical interactions related to upper-level troughs at low latitudes

Meteosat infrared image of a tropical plume over northwest Africa at 00 UTC 31 March 2002.
Superimposed streamlines and isotachs on the 345-K isentropic level (dashed contours at 40, 50, 60,
and 70 ms™1) from the ECMWF TOGA analysis. The 345-K level is close to 200 hPa in the Tropics.

Streamlines indicate extratropical wave incursion into the Tropics.

Knippertz, P., 2007: Tropical- extratroplc/gélnr'gceer ctions relﬁc&glcgqéj)gg%rohegaql troughs at low latitudes. Dyn. Atmos.

Ocean. 43, 36-62. Interactions on Intraseasonal Time Scales 21
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Momentum flux due to fluctuations with time scale less than 10 days

2—10day uv 200 ERAI DJFM 1980-2014
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Intra-seasonal covariance between momentum flux and diabatic heating Q

(a) DJFM ISCov(uv,Q) Clim
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Daily boreal winter (01Dec — 16Mar) intra-seasonal covariance between 200 hPa high-pass momentum flux and
low-pass layer integrated (700 — 300 hPa) diabatic heating Q, averaged over all winters 1980/81 — 2014/15 (left
panel), and for 1989/90 winter (right panel). Interval is 100 (Wm<2)(m?2s2). Map projections are orthographic with
equatorial aspect. The central longitude is 180°E.
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Interaction between equatorward propagting waves and heating on a single day

(a) v(200) & Heot(7OO 300)  (b) uv(200) & Heat(700-300)

v’ contours
Q shading contours

Q shading
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Left panel: High-pass meridional wind on 19Feb2013 (contours) and low-pass layer integrated (700 —
300 hPa) diabatic heating Q (shading). Right panel: Product of high-pass meridional and zonal wind
(contours) and low-pass layer integrated (700 — 300 hPa) diabatic heating Q (shading). High-pass
filter retains period less than 10 days, and the low-pass filter retains periods greater than 20 days.
Interval is 10 m s in the left paneIA‘i‘@C)C M2y i thelrs gﬁﬁt‘fé?@‘c%eahng in (Wm-2). Map

nterac ons on Intraseaso
projections are orthographic with equatorial aspect; The central longitude is 180°E.
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Tropical and Midlatitude intra-seasonal fluctuations are intrinsically linked?
(Straus and Lindzen, 2000)

» Studies of baroclinic instability on the sphere with realistic basic states
indicate that the shorter waves (zonal wavenumber 8—15) are most
unstable,and that these waves saturate relatively quickly.

» The more slowly growing longer waves are able to achieve higher
amplitudes, particularly in the upper troposphere (Gall 1976a,b;
Simmons and Hoskins 1978, Straus 1981).

» Theoretically expect phase speed ¢ to be in the range of 1 - 10 m/sec, so

that steering levels are close to the ground. c=w/k (w is frequency, k
is dimensional wavenumber).

> Phase speeds of 1 - 10 m/sec for k corresponding to zonal wave 1*
have frequencies which strong overlap with MJO frequencies !!
*(zonal wave m=1 corresponds to k = a / cos(lat) )

» Thus long wave (m = 1) instabilities with phase speeds ~ 1 - 10 m/sec
have same space and time scales as MJO circulation fluctuations.



Tropical and Midlatitude intra-seasonal fluctuations are intrinsically linked?
(continued)

» Study the coherence between eastward propagating planetary waves in the
zonal wind field u between different latitudes and levels

» Coherence measures the degree to which two time series have a similar
phase relationship over a wide range of frequencies (here those frequencies

corresponding to phase speeds of 1-10 m/sec for zonal wave 1)

Advanced School on Tropical-Extratropical
Interactions on Intraseasonal Time Scales
2017
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Squared coherence (contours) and phase (arrows) of eastward propagating fluctuations for zonal
wavenumber m = 1 with respect to a base point of 32°N and 300 hPa, as a function of latitude and
pressure level.

Arrows pointing to the right indicate no phase shift, arrows pointing in the first quadrant mean that the
indicated point leads the base point (wave ridge to the east of the base point), etc. The length of the
arrows is proportional to the squared coherence.

Straus, D. M., and R. S.Lindzen, 2000: Planetary-Scale Baroclinic Instability and the MJO. J. Atmos. Sci., 57, 3609-3626.
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Some Basic Mechanisms for Tropical-Extratropical Interactions

(1) Mid-Latitude Response to Tropical Forcing: Can we use ideas from stationary wave
theory? Tropics Force the Extratropics

(2) Changes in mid-latitude instabilities due to Tropical Forcing: Tropical forcing can
excite mid-latitude barotropic instabilities.

(3) Possible ways in which the tropics may respond to mid-latitudes: Extratropical
disturbances can lead to tropical heating.

(4) Are tropical and midlatitude fluctuations sometimes coupled ? There are
mechanisms for directly coupling the tropics and extratropics.
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