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Southern Hemisphere climatological features

» SH circulation patterns
* Southern Annular Mode/Antarctic Oscillation
» Pacific-South American Patterns

» Rossby Wave Source and meridional propagation in the southern hemisphere
» South American Monsoon System
» Intraseasonal variability in South America

» Background

» Variability and leading patterns across seasons
» Association with wet spells




Southern Hemisphere climatology DJF

Seasonality of SH jets streams

Wind vector and isotachs at 200 hPa

MAM

JJA

- e e TR s s e s nn A e e s e g e AT L SRR SRR T
= S - P s agr s F e, T
. - I . H H ' ¥ .
e b L% I ) R B R
3 . 2 s P e LR
[ L 0 i

3 From ERA Atlas




Southern Hemisphere climatology

Southern Hemisphere Convergence Zones: SPCZ, SACZ & SICZ

4 From ERA Atlas



SH circulation patterns

Southern Annular Mode/Antarctic Oscillation

Leading EQOF (27%) shown as
reqression map of 700mb height (m)

Climate Prediction _C_enter§ -

Leading mode of Empirical Orthogonal Function (EOF)
analysis of monthly mean 700 hPa height during 1979-2000
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Southern Annular Mode/Antarctic Oscillation

} SH circulation patterns { . \
Unfiltered 10-90 days
23

Austral winter season.

« EOF1 as correlations between PC1
and geopotential height anomalies.

» Annular mode with barotropic
structure

» Leading mode across timescales (also
found on interannual time scales)




SH circulation patterns

Southern Annular Mode/Antarctic Oscillation

Only studying the DJF season:

« Composites of filtered OLR anomalies (Lanczos,
151 weights, 20-70 days) for negative and positive
SAM phases.

« Observed patterns similar to MJO progression, and
those associated to a negative SAM or a positive
SAM seem to be opposite.

« Different phases of the SAM also affect the

latitude along which cyclones form and propagate.

7 Carvalho et al. 2005
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} SH circulation Eatterns { \

Southern Annular Mode/Antarctic Oscillation

The relationship between the SAM (or AAO) index and MJO changes according to SH season
May-October November-April
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There is a significant contribution of the MJO to the SAM tendency (change over 1 day) on the
intraseasonal scale, especially for strong MJO episodes



SH circulation patterns

Pacific-South American (PSA) patterns

Austral winter season.

 PSA1 and PSA2 (EOF2 and
EOF3) were related to
tropical convection.

 Wave number 3

« The patterns appear in the
low frequency band (>10
days) and in the IS band
(10-90 days)

« Main periods around 36-40
days, but also around 17
days.

. (+)PSA1, (+)PSA2, (-)PSA1,
(-)PSA2, (+)PSA1
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SH circulation patterns Pacific-South American (PSA) patterns All seasons

c) PSA 1 pS|2OO
DJF only 2103

day —14 to —10

a) p8|2000 doy -14 to —-10

IS-filtered OLR (left) and 200
streamfunction (right) compo
positive - negative events for

Onset for a positive (negative)
is defined as the time when th
daily 500-hPa height PC is gre
(less) than 1.2 (-1.2) standar

deviations.

OLRA complete half a cycl
days ~MJO

Links PSA1-tropical conve
(MJO) and convection in
America.
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} Rossbx Wave Source { \

Rossby wave dispersion theory provides the basis for theories on how the tropics influence the extratropi

Vorticity equation in the upper troposphere, neglecting vertical advection, partitioning the horizontal
its rotational and divergent components and expressing each variable as the sum of a basic state com
a perturbation:
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Propagation of Rossby Waves

Forcing F includes divergence te
advection of vorticity by the di

F=—V.V, -V, Vi-0V.V,—V,.V{
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Rossby Wave Source

Extension of RWS to the subtropics
Fo=-V,V{-V,.V{

While the Rossby wave source given by the
divergence (or convergence) straddles the
equator, the Rossby wave source given by this
equation extends into the subtropical westerly
mean flow (from where waves can propagate
efficiently) due to:

» the vorticity advection by the anomalous
divergent flow in regions of strong mean
vorticity gradients, such as subtropical jets

« or to the advection of vorticity perturbations

to the subtropics by the climatological
divergent circulation in the tropics.

12




Rossbx Wave §ource ‘

Seasonality of RWS
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Fig. 4 Average climatological fields (1979—2007) of Rossby waves
source at 200 hPa (I x 10~ "' s7%) in a DJF, b MAM, ¢ JJA and
d SON. The light and dark shaded areas represent negative and
positive values, respectively
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\
Rossby wave meridional propagation 200 hPa, NCEP 1985-2015 monthly values on /6y

Southern Hemisphere seasonal conditions

TR,
u
on
SON
u
]
D N )

B B
14—1e-11 0e+00 1e-11 2e-11 3e-11 4de-11 Se-11 6e-11 7e-11 8e-11 9e-11 2 -5 -0 -5 0 5 10 15 20 25 30 35 40 45 50 Courtesy



Influence functions

Influence functions (IFs) identify the regions where the anomalous upper-level divergence has the largest i
on the circulation anomaly around a given point. That is, the IF for the target point with longitude and lati
(A,¢) is, at each point (A’,¢’), equal to the model response at (A,®) to an upper-level divergence located a

(N,9’).

Influence function Streamfunction — 200 hPa
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Influence function for the target point at the center of Resulting streamfunction at 200
the cyclonic anomaly associated with enhanced SACZ,
with the region of maximum values indicated by the

shaded ellipse
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} South America: regions for analxsis ‘
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Southeastern South America (SESA)
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16 From NASA’s Socioeconomic Data and Applications Center (SEDAC)
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South America: regions for analysis

One of the most highly populated regions in eas
South America

Major river basin: La Plata Basin

— One of the largest food and crop producer
world. Agriculture is the main economic.a

Parsons per km®

o the basin (soybean, maize and wheat are p
.- at large scale). Livestock and fishing are al
E : E;D important sources of food and income.

B 25 - 1000

Al e — 75 dams for hydropower generation
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17 From NASA’s Socioeconomic Data and Applications Center (SEDAC)



South American Monsoon System (SAMS)
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Smoothed daily climatology 1979 - 2008
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The South American monsoon system (SAMS) is
characterized by pronounced seasonality in the
rainfall with the wet season in the austral

summer and a dry season in the austral Winter.

Vera et al. 2006, Grimm 2011; Marengo et al. 2
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} South American Monsoon sttem ‘SAMSZ {
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South American Monsoon System (SAMS)

20

Main driver: differential heating between =
South America and the Atlantic Ocean 2
Expanse of South American landmass within §
tropical latitudes, the South Atlantic to the 3
east and the Andes to the west combine to g
create SAMS.
(d) JJA Precipitation and 200hPa winds

No reversal of the mean surface wind, 0.2
however, the seasonal reversal of the g
circulation over South America resemble "
those of a monsoon system when removing o §
the annual mean. .3

o3
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Main features: upper-level Bolivian High, the
Northeast trough, the low-level Gran-Chaco

I.OW and the SOUth Atlant]c Convergence Lone. Fig. 6.1 TRMM mean daily precipitation and 850 hPa winds in DJF (a) and JJA (b); TRMM
mean daily precipitation and 200 hPa winds in DJF (¢) and JJA (d)

Carvalho and
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IS variability in South America

21

Nogués-Paegle and Mo find in
REOF5 of 10-90-day filtered OLR
anomalies a dipole pattern in
South America: South America
SeeSaw (SASS) (5.8%)

Defining events using the PC5,
composites of OLR anomalies
showed that tropical convection
in the Pacific ocean might be
linked to the activity of the SASS
pattern.
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IS variability in South America
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(1999), and found that:

edge of upper-level troughs propagating into the region.

Streamfunction composites showed
the path of Rossby wave energy
having an effect on the SACZ from
the midlatitudes of the Southern
Hemisphere

4 200 hPa streamfunction, wind and OLR
associated to 2-30-day filtered OLR in SACZ

200 hPa streamfunction associated to 2-30-
day filtered OLR in SACZ, day -4

SH SUMMER

The sub-monthly (2-30 days) scale was also studied by Liebmann et al
Episodes of enhanced convection within the SACZ occur at the leadin
The disturbances are nearly equivalent barotropic west of South
America but tilt westward with height in the region of the SACZ




IS variability in South America
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Van der Wiel et al 2015 also studied the (<20 days) scale: SH SUMMER

Barotropic RW dynamics can create elongated NW-SE-oriente
vorticity anomalies and equatorward propagation that lead to
convection.
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IS variability in South America
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» Weakened SACZ

Intensified Low-Level
Jet (SALLJ) poleward
progression

Impacts:

Higher frequency of extreme daily
rainfall events at the subtropics

(Liebmann et al. 2004)
(Gonzalez et al. 2007)

& Low-level jet anomaly

SH SUMMER

» Intensified SACZ

Inhibited Low-Level
Jet (SALLJ) poleward
progression

Impacts:

Higher frequency of heat waves and
extreme daily temperature events
at the subtropics

(Cerne and Vera, 2011)

Courtes



IS variability in South America May-Sep (extended Winter)

Methodology

* Period of study: 2 of May - 29 September 1979-2006.

* OLR taken from NOAA satellite estimates (Liebmann & Smith 1996).
Anomalies computed respect to seasonal cycle (smooth climatological |
day). ‘

* OLR was filtered on IS timescales applying a 101-weighted Lanczos
(Duchon 1979) band-pass filter, with cut-off periods 10 and 90 days.

« EOF analysis applied in eastern South America, using the covariance
matrix.
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« Linear lagged regressions scaled to 1 standard deviation to study the
evolution of OLR and circulation anomalies related to the growth of a
positive phase of the EOF1 (using PC1 as time series).
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The leading pattern of variability during Winter is a monopole. The main EOF1 of 10-90 FOLR (negati
periods of variability of the PC1 are around 17 and 30-40 days. geen)

The region of maximum variability may be associated to the position where
cold fronts become stationary during Winter.
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Linear lagged regressions between PC1 and OLR and 250 hPa geop. height
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} IS variabilitx in South America {

Intraseasonal variability of OLR activity
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Mean OLR (contours, 240 and 220 Wm2), and standard deviation of 10-90-day filtered OLR anomalies
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} Leading EOFs according to season: Seasonal IntraSeasonal ‘SIS} Patterns ‘

D.!F (16.2%) MAM (13.7%) JJA (22.3%)
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EOF1 of 10-90-day filtered OLR anomalies according to season

Dipole patterns are observed except during the austral Winter season (JJA), when the SACZ i

Positive (or wet) phase is defined when convection is favored in SESA region and inhibit

28



IS variabilitx in South America ‘ \

Impact of SIS activity on intense rainfall spells
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Take-home messages

The leading patterns identified in the Southern Hemisphere circulation and which have an influence on
intraseasonal time scales are the Southern Annular Mode/Antarctic Oscillation and the two Pacific-
South American Patterns (wave trains).

Meridional propagation conditions of Rossby wave trains change across seasons. A forbidden region for
meridional propagation located south of Australia and in the western Pacific ocean is observed during
JJA (austral winter). A smaller forbidden region is observed over New Zealand in MAM and SON.

There is a pronounced seasonality of rainfall in tropical South America produced by the South American
Monsoon System, with main features the SACZ, the northeast trough, upper-level Bolivian high and low-
level Chaco low.

Intraseasonal variability of convection/rainfall in South America is associated with a dipole pattern in
the summer (wet) season, and a monopole in winter. The activity of both patterns is related to the
propagation of Rossby wave trains along the Pacific ocean and into South America, which show different
seasonal features.

The activity of the SIS patterns (leading EOF of 10-90 OLR’) is related to the occurrence of intense wet
spells in the SESA region.
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