Madden Julian Oscillations effect on winter season precipitation of Morocco

Noureddine Semane¹ and Fouad Gadouali²

- 1. Department of Hydraulic, climate and Environment, EHTP, Casablanca, Morocco
- 2. Morocco National Weather Service

Advanced School Tropical Extratropical Interactions on Intra-seasonal Time Scales ICTP, 16- 27 Oct 2017

Outline

- ➢ Introduction
- > Objectives
- ➢ MJO-NAO regimes connection
- Data and Methodology
- ≻ Results
- ➢ Summary

Introduction

- > Under the influence of the mid-latitude weather systems
- Heterogeneous landscape (e.g., Atlas mountains, Atlantic Ocean in the west, Mediterranean in North and Sahara desert in the south)
- During wintertime (DJF), mid-latitude storms are major source of precipitation
- The north Atlantic large-scale circulation has the strong influence on the weather and climate

Introduction

- > Under the influence of the mid-latitude weather systems
- Heterogeneous landscape (e.g., Atlas mountains, Atlantic Ocean in the west, Mediterranean in North and Sahara desert in the south)
- During wintertime (DJF), mid-latitude storms are major source of precipitation
- The north Atlantic large-scale circulation has the strong influence on the weather and climate

Objectives

- Rainfall mechanisms (migratory North Atlantic disturbances, frontal weather systems, Mediterranean storms)
- Mostly rainfall is modulated by North Atlantic Jet oscillation from north to south
- Inter-seasonal rainfall variability is largely controlled by tropical and extra-tropical oscillations
- > Dynamical characteristics of Tropical-extratropical oscillations
- Teleconnections between rainfall and Tropical-extratropical oscillations

North Atlantic Oscillation

NAO+

NAO-

- A stronger than normal subtropical high pressure and a deeper than usual Icelandic low
- Stronger westerly winds and storm activity across the Atlantic Ocean
- Wetter winter in north-west Europe, drier conditions in Morocco

Opposite!

Attribution to regimes

Attribution of daily anomalous circulation to one of the 4 North Atlantic regimes

Cassou, 2008

Table of contingency between the MJO and the NAE regimes

Anomalous percentage occurrence for a given regime as a function of lags in days . %100 value would mean that this regime occurs twice as frequently as its climatological mean

NAO+ regimes tend to be preceded by phase 3-4 of the MJO NAO- regimes tend to be preceded by phase 6-7 of the MJO S-Blocking tend to be present during phase 5 of the MJO

The time-scale of the MJO influence on the North Atlantic regimes is About ~10/12 days

What are the physical mechanisms of the MJO-NAO regimes connection?

<u>Method</u>: Lagged composites for phase 3 (NAO+ favored excitation) and phase 6 (NAO- favored excitation)

Averaged anomalies From lag 0 to lag +5

Precipitable water (color)/Divergent wind @300hpa

- Strong upper-level convergence on the Eastern Pacific and at the entrance of the Mean North Atlantic jet
- Dry conditions at the entrance of the jet

MJO Phase 6/NAO-

Cassou, 2008: Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation Nature, doi:10.1038/nature07286, 523-527):

- NAO+ regimes tend to be preceded by phase 3-4 of the MJO
- NAO- regimes tend to be preceded by phase 6-7 of the MJO
- •S-Blocking tend to be present during phase 5 of the MJO

The time-scale of the MJO influence on the North Atlantic regimes is about ~10/12 days

MJO Phase 3/NAO+

MJO triggers forced Rossby waves in the Pacific (Phase 2 and 3) propagating eastward towards the NAE region, modifying the background flow leading to NAO+ due to interaction with North Atlantic High frequency + intermediate transients (AWB).

Remote influence for NAO+ regimes

MJO Phase 6/NAO-

 Development in situ favored by previous Blocking conditions as part of the NAO+ -> S-BL -> NAO- most favored transition path

Response to direct forced Rossby wave initiated by MJO (Phase 6-7) in the eastern Pacific + associated enhanced moisture leading to NAOafter interaction with North Atlantic high frequency Transients (CWB).

Local development for NAO- regimes

Data and Methodology

- MJO index, Wheeler and Hendon 2004 http://www.bom.gov.au
- NAO index: <u>http://www.cpc.noaa.gov</u>
- MOI index: https://crudata.uea.ac.uk/cru/data/moi
- Rain gauges : Weather stations Tangier and Agadir
- Period: Winter (DJF) 1985-2014
- For each MJO phase the number of days in which weekly rainfall was above the upper tercile (67th percentile) is counted and divided by the total number of days in each phase to obtain the occurrence probability of exceeding the threshold

%100 value means that the event occurs twice as frequently as its climatological mean

For each MJO phase the number of days in which weekly Weak/Moderate/Strong NAO- was is counted and divided by the total number of days in each phase to obtain the occurrence probability of exceeding the threshold

Weak NAO- : NAO- index above the upper tercile Moderate: NAO- index between the lower and upper tercile Strong NAO- : NAO- index below the lower tercile

Correlations of the Mediterranean annual mean 500 hPa geopotential heigths with those of Algiers

(inside the dotted lines: statistically significant at the 95% level of confidence)

The MOI is defined by Palutikof et al. (1996) and Conte et al. (1989) as the normalized pressure difference between Algiers (36.4°N, 3.1°E) and Cairo (30.1°N, 31.4°E)

%100 value would mean that the event occurs twice as frequently as its climatological mean

For each MJO phase the number of days in which weekly Weak/Moderate/Strong MOI- was is counted and divided by the total number of days in each phase to obtain the occurrence probability of exceeding the threshold

Weak MOI- : MO- index above the upper tercile Moderate MOI-: MOI- index between the lower and upper tercile Strong MOI- : MOI- index below the lower tercile

The MOI is defined by Palutikof et al. (1996) and Conte et al. (1989) as the normalized pressure difference between Algiers (36.4°N, 3.1°E) and Cairo (30.1°N, 31.4°E)

The probabilities refer to the chance of weekly averages rainfall exceeding the upper tercile

AGADIR RR>Q67

Summary

- Similar results as Cassou Nature 2008 and Lin et al. JCLIM, 2009
- A particular weather type over the Euro-Mediterranean region relates to the MJO in phase 2.
- Using more rain gauges data to confirm the relationship between Phase 2 and the Euro-Mediterranean weather types