Materials Based Issues Within Vitrification Furnaces

Pranesh Sengupta Materials Science Division BARC, Mumbai

Achievements: 3. Indigenous development of vitrification technology

Metallic melter pot

Proven technology Induction heating 1000°C max.

Borosilicate glass

Ceramic melter pot

Proven technology Joule heating 1050°C max.

Borosilicate glass

Cold crucible

Demonstration stage Induction heating 1500°C max.

Immobilization of Nuclear Wastes

Their interactions with Vitrification furnaces

Inree Stages of Indian Nuclear Power Program

Operational: 22; Total: 6780 MW; Taraet: 20480 MW

Closed nuclear fuel cycle

Inert Host Matrix = Wasteform

Sodium borosilicate glass is not an universal host matrix for nuclear wastes!

We also need ALTERNATIVE WASTEFORMS! (Non Conventional Sodium Borosilicate glass matrix)

Wasteform Selection Criteria

Homogeneous Microstructure

Solubility limit, waste loading, uncontrolled crystallization

Available Technology

Processing temperature

Nuclear waste vitrification - The Background

HLW: conc. Acidic soln. containing 30-40 elements + NaOH (to reduce the corrosiveness of HLW) Initial Proposal: Synthesis Nepheline syenite glass Challenges: high temperature (~1400°C) operation

Solution: replace Al_2O_3 by B_2O_3 Processing temp. reduced from ~1400°C to ~950°C

ALTERNATIVE WASTEFORMS

Example 1: Sulphate containing waste

Usage: Legacy waste Immobilization

Challenge:

Sulphate – Silicate immiscibility Partitioning of Cs and Sr in water soluble Yellow phase.

Dallum Dulusincate matrix

Clues

•barite (BaSO₄) is one of the leach resistant phase

•barite is thermally more stable than many of the others and have been reported from granulite facies rocks

•Ba and S have been reported from natural glass

Why sulfate is not retained in borosilicate matrix?

Bond valence: measure of chemical bond strength = valence/coordination number. SO_4 bond valence = 6/4 = 1.5 valance unit Valance sum rule:

(i) Ba²⁺ can polymerize sulfate network with silicate network most effectively,

(ii) At 1000°C, barite is the most stable phase among the sulfates.

1 + 1.5 > 2; impossible	CaSO ₄	1400	0.20	-950.74
	SrSO ₄	1600	0.013	-973.69
	BaSO	1580	0.0002	-976 29

Possible options

Mineral/Ceramic	Elements from waste	Radiation durability (dpa)	Typical NR (g/cm ² day)	Structure	
Monazite: (Ce, La, Nd, Th)PO ₄	Ln, An	>10	10-7	Monoclinic, P21/n	
Zircon: ZrSiO ₄	Ln, An, Nb, Ta, Hf	0.3-0.4	$4 imes 10^{-7}$	Tetragonal I4/amd	
Zirconolite: CaZrTi ₂ O ₇	Ln, An, Nb, Sc, Y, Hf	0.2-0.3	4.5×10^{-6}	Monoclinic	
Pyrochlore: AB_2X_7Y (A = Ca, Na, REE, An, Zr, Ti; B = Ti, Zr, Th, U, Nb, Ta, Sn, Al, Fe; X = O, F; Y = O, OH, F)	Na, Y, Ln, An, Ti, Nb, Ta, W, Cl, I	0.3–0.4	$1.5 imes10^{-6}$	Cubic, Fd3m	
Zirconia: ZrO ₂	Zr, Ln, An	>10		Several polymorphs; the mineral form is baddeleyite, monoclinic P2/c	
Garnet: A ^{VIII} ₃ B ^{VI} ₂ [SiO ₄] ₃	Cr, Mn, Fe, Co, Ni	0.2		Cubic, Ia3d	
Hollandite: AB_8O_{16} (A = Na, K, Rb, Cs, Sr, Ba, Pb; B = Co, Ni, Fe, Cr, Si, Ti, Mn)	Na, K, Rb, Cs, Sr, Ba, Ra, Ti, Cr, Mn, Fe, Co, Ni, Mo, Pb, Bi, Ag		10^{-6}	Monoclinic, I4/m	
Perovskite: ABO ₃ CaTiO ₃	Nb, Fe, Ta, Ln, An, Na, Sr, Y	0.4–1	2.5×10^{-8}	Cubic, Im3	
Apatite: Me ₁₀ (XO ₄) ₆ Y ₂	Na, Sr, Ln, An, S, I, Y, Mn	0.24	$2 imes 10^{-7}$		
Britholite: Ca ₂ Ln ₈ (SiO ₄) ₆ O ₂		0.3-0.4	2.5×10^{-6}		
Murataite: $(Y, Na)_6(Zn, Fe)_5Ti_{12}O_{29}(O, F)_{10}F_4$	Na, Ca, Al, Ti, Mn, Fe, Ni, Ln, Ce, Nd, An	0.2	10 ⁻⁹	Cubic, F43m	
NZP: $NaZr_2(PO_4)_3$	Na, K, Rb, Cs, Sr, Ln, An, Fe				
TiC-Al ₂ O ₃ composite	¹⁴ C		10^{-6}	Cubic, $Fm3m$	

ALTERNATIVE WASTEFORMS

Example 2: Sr loaded glass pencils

Usage: Radioisotope Thermoelectric Generator (RTG) Bone Cancer Treatment

Challenge: High heat generation due to radioactive decay of Sr-90.

Anorume reluspar (CaAl₂Sl₂ O_8)

~1000 ppm Sr in

 $(Ca_{1-x}Zr_{1-x}Nd_{2x}Ti_2O_7)$

Long term perior mance assessments

Structural modification of the vitreous state

Ion Beam Analysis

WOT

irradiation by $\sim 20 \ \mu m$ width proton beam beam fluence of $6.75 \times 10^{17} \ protons/cm^2$

Microstructure of the glass/alloy 690 interface

48 hours, 950°C, SUPERNI 690 & BBS

Microstructure – pot failure correlation

Composition	Ni	Cr	Fe	Mn	Al	Si
As received material	60.72	28,79	9.78	0.16	0.12	0.41
172.80 ks	66.74	21.63	10.83	0.00	0.24	0.66
345.60 ks	73.48	15.00	11.02	0.00	0.19	0.33
518.40 ks	75.28	14.11	10.22	0.00	0.05	0.39
691.20 ks	75.51	13.68	10,27	0.06	0.07	0.41

Feasible solutions

(i) Development of diffusion barrier coatings

(ii) Development of an alternative alloy with higher corrosion resistance

Alloy 693 (Alloy 690 + $2.5wt\% Al_2O_3$)

(iii) Improve the glass compositions

Diffusion partier coaling on inconer 090

. . .

100-200 nm

Diffusion profile analysis

Rutherford Backscattering Spectroscopy: depth<500 nm, 2MeV ⁴He, 0.5 mm φ, Si

Composite coating: NI-YSZ

Composite coating: NI-YSZ

Metallurgical challenge: Capabilities to coat large scale job specimens is yet to be achieved.

Intermetallic coating: Ni aluminide

Pack aluminization process: 15mm x 10mmx 5mm Alloy 690 coupons were embedded in pack mixture (Al powder, Al_2O_3 powder, NH_4Cl) and annealed at 1273K for 10 hours in Ar atmosphere.

Metallurgical challenge: Capabilities to coat large scale job specimens is yet to be achieved.

Alternative Alloy: Alloy 693

Element (wt	Cr	Fe	Al	Cu	Si	Mn	S	С	Nb	Ti	N	Ni
%)												
SUPERNI 690	27.0-	7.0-1	0.50	0.50	0.5	0.5	0.01	0.05	-			Bal.
	31.0	1.0	max	max	max	max	max	max				
SUPERNI	27.0	2.5	2.5	-	-	-	-	-	0.5	-	-	Bal.
690M (G3327)												
(minimum)												
(maximum)	31.0	6.0	4.0	0.5	0.5	1.0	0.01	0.15	2.5	1.0	-	Bal.
(product)	29.32	3.96	3.19	< 0.02	0.04	0.09	< 0.002	0.097	1.86	0.42	130 ppm	Bal.
XRF analyses	29.63	3.08	3.68	-	-	0.29	-	-	2.65	0.34	-	Bal.

Alloy 693: Microstructure

Distribution of intragranular $M_6 C$ and N b C, and intergranular $M_{23}C_6$ type precipitates within matrix.

Uniform distribution of fine ordered Ni_3Al type precipitates within austenitic matrix of as-received SUPERNI 690M sample. Inset shows SAD pattern of Ni_3Al type phase (faint spots) along with the austenite matrix

Metallurgical challenge: Plant scale implementation of laboratory scale solution annealing treatment procedure does not yield same result.

U4Z661 160.0KV AZOK ZUUN

Distributions of M_6C and fine grained ordered Ni_3AI type precipitates within austenitic matrix. Cleaner matrix with some M_6C type precipitates and planar arrangement of dislocations. Inset shows SAD pattern of austenite matrix (fcc).

Selection of suitable glass sample(s)

Structural analyses: Nuclear Magnetic Resonance (NMR) – ²⁹Si^{, 11}B, ²⁷Al

Fig. 5. ²⁹Si MAS NMR patterns for sodium barium borosilicate base glass samples loaded with (a) 0 mol% SO_4^{2-} , (b) 2 mol% SO_4^{2-} , and

Fig. 6. ¹¹B MAS NMR patterns for sodium barium borosilicate base glass samples loaded with (a) 0 mol% SO_4^{2-} , (b) 2 mol% SO_4^{2-} , and

BO4

-100

-100

-100

-150

-150

-150

Diffusion study using Pulsed Laser Deposition technique

Rutheriord back-scattering spectroscopy: basics

Suitable for short elemental depth profiling (diffusion profiles upto several tens of nm) appropriate to characterize small diffusivities typical of any cations within ordered/disordered aluminosilicate network.

Non-destructive technique; determines absolute concentrations without any standard.

The energy after scattering is determined by:

1. by the masses of the particle and target atom, 2. stopping

$$\frac{d\sigma}{d\Omega} \propto \left[\frac{Z_{Ion}Z_{Probe}}{E_{Ion}}\right]^2 \qquad k = \left[\frac{\sqrt{M_{Probe}^2 - M_{Ion}^2(\sin\theta)^2} + M_{Ion}\cos(\theta)}{M_{Ion} + M_{Probe}}\right]^2$$

Sr-diffusivity within calcium aluminosilicate glass

Concluding Remarks

Nuclear Energy is an inevitable option for 'domestic energy mix' is going to be there for most of the IAEA Member countries. With more innovative nucler fuel designs and upgradation of reprocessing technologies coming in the challenges of nucler waste immobilisation is going to be more tough.

Basic Principles of Natural Sciences and Physical Sciences should be blended extensively used for addressing materials based challenges in nuclear waste immobilization.

However, for faster implementation of the program active participations from members of IAEA community is highly encouraged.