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Background and motivation



Confucius (孔夫子) stood by a river:

"Everyting flows like this, without ceasing, 

day and night”.

Deborah:

"Everything flows if you wait long enough, 

even the mountains”.

About flow
Haraclitus:

"everything is in a state of flux".



Flow is everywhere!



Flow is remarkable, but sometimes dangerous!

In philipin
In Hawaii



How to judge whether a substance is liquid
or solid? 

teD 

If  < t, a substance is a liquid, otherwise, a solid! 

Time of relaxation

Time of observation

A fundamental number of rheology: 
Deborah number (De)



Some liquids flow easily, some not. 
How to quantify this?
Measure Viscosity by viscometers:

 Concentric Cylinder 

 Parallel-Plate Compression

 Capillary

 Beam Bending

 Fiber Elongation

 Sphere penetration

 Melt containerless levitation

 ……..



Viscosity is a crucial quantity of glass technology.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

-2

0

2

4

6

8

10

12

14  SiO2

 Basalt

 Anorthite

fining window

annealing

glass blowing

 

 

lo
g


 (
P

a
 s

)

Tg/T (K/K)

fiber drawing window



Viscosity determines
• Melting conditions

• Fining behaviour

• Working ranges

• Annealing range

• Upper temperature of use

• Devitrification rate

• Glass forming window

• Glass fiber drawing window

 Every step of industrial glass formation depends critically on the 
viscosity.

 The glass product relaxation depends on the nonequilibrium viscosity of 
the glass, which is a function of composition, temperature, and thermal 
history.



Viscosity is a key quantity of glass science.

It provides information on

•Glass dynamics

•Transport properties

•Glass structure

• Liquid fragility

•Thermodynamics

•Geology

•Crystallization

• ........

Angell plot



Viscosity of a melt varies with

 Temperature

 Time

 Deformation rate

 Pressure

 Composition

 Hydroxyl

 Crystallization

 Phase separation

 Inclusions

 .......



The non-Arrhenian behavior of liquids is 
described by liquid fragility.
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It is quantified by the kinetic liquid fragility index m.

• It is defined as the rate of 

the viscosity or relaxation 

liquid at Tg upon cooling.

• It is an important dynamic 

parameter of glass-forming 

liquids.



Connection between fragility index (m) and heat 
capacity jump (Cp) in glass
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Viscosity models



Vogel-Fulcher-Tamman (VFT) Model

)exp(
0

'
TT

A


where ∞ is the high temperature limit of 

viscosity, and A and T0 are constants. Or

0
loglog

TT
A
  

Vogel, Phys. Zeit. 22 (1921) 645; Fulcher, J. Am. Ceram. Soc. 8 (1925) 339

Tammann, Hesse, Z. Anorg. Allg. Chem. 156 (1926) 245

T0 = Tk? This is a debating problem. 



Adam-Gibbs (AG) Model (Entropy model )

)exp(
)(

'
TTS

B

c

where ∞ is the high temperature limit of viscosity, B

is constant, and Sc(T) is the configurational entropy 

as a function of temperature:

Adam and Gibbs, J. Chem. Phys. 43 (1965)139









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KT
TCTS pc ln)( This is a problem too.



Avramov-Milchev (AM) Model

F

T

Tg

AMB )(loglog  

where ∞ is the high temperature limit of viscosity, BAM

constant, and Tg the glass transition temperature, and F

is a measure of liquid fragility.

F=m/BAM, where m is the Angell fragility index

Avramov and Milchev, J. Non-Cryst. Solids 104 (1988) 253



Angell-Rao (AR) model
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Anorthite

This 4-parameters model with fits the data excellently and 
bears physical meaning.

Angell and Rao, JCP (1972)

𝑙𝑜𝑔𝜂 = 𝑙𝑜𝑔 𝜂∞ + 𝐴𝑒𝑥𝑝(
𝐵

𝑇
− 𝐶)



Other models

•Free volume model

•Doremus model

•Shoving model

•Sanditov model

•Parabolic model

• …….

See recent reviews:

M. I. Ojovan, Adv. Condensed Mat. Phys., 2008,

S.V. Nemilov, J. Non-Cryst. Solids, 2011

Q. Zheng, J.C. Mauro, J. Am. Ceram. Soc., 2017.



Derivation of our new model (MYEGA)

 
kT
Hf  exp3

 lnfNkSc

cTS

B3loglog  

 
T
C

T
K exploglog  

Topological degrees of freedom

A simple two-state system

The configurational entropy 

Adam-Gibbs expression

Mauro, Yue, Ellison, Gupta, Allan, PNAS 106 (2009) 19780



The viscosity-temperature relation for most liquids 
can be described by VFT and AM models, even 
better by MYEGA: 
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The new model is physically reasonable.
(Fitting results based on 1000 glasses)
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The new model is practically useful.
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The new model shows stronger ability to predict low T viscosity data 

from high T viscosity data than the other 3-parameter models.



Is there a universal log η∞ value?
Results on 946 Corning compositions

It is about -3!

Zheng, et al. Phys. Rev. B 2011



Tg,vis (from viscosity) and Tg,DSC (from DSC) 

Y. Z. Yue, J. Non-Cryst. Solids 2008, 2009
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Practical use of the MYEGA
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η∞ ≈ 10-3 Pa s

For inorganic systems
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Now, only two parameters, m and Tg, remain. Meaning: the 
entire log~T relation can be estimated just by DSC!



Be careful with the difference between mvis and mDSC

• mvis > mDSC

• mvis - mDSC due to Arrhenian approximation 
of non-Arrhenius behavior

• mvis – mDSC increases as fragility increases

    000 1 mmfmmmm DSCDSCvis 

A model:

28

mvis = 1.289(mDSC-m0)+m0

Zheng, Mauro, Yue, J. Non-Cryst. Solids. 2017



The entire viscosity-temperature curve can be
determined by DSC!

Advantages of the DSC method: 

• It is simpler. 

• Takes much less time than 

viscometry technique.

• Uses smaller samples.

• Measure both good and poor 

glass forming systems.

Example Based on the facts:

• Tg and mDSC are measurable by DSC

• mDSC can be converted to mvis.

• log10=-3
• Tg corresponds to 1012 Pa s

29



































 11

15
exp153log

T

Tm

T

T gg




Derivation of VFT from MYEGA

• In the high temperature limit, -K/T can be expanded in a Taylor series:

M.M. Smedskjaer, J.C. Mauro, Y.Z. Yue, J. Chem. Phys. 131, 244514 (2009).



Divergent at a finite T ?

Zhao, Simon, McKenna, Nature Comm, (2013)

Using 20-million year-old amber, Zhao, et al. provided an 
implication against the existence of the divergence at a finite T. 

MYEGA

VFT

Parobolic form

See also Hecksher, et al., Nature Phys. (2008) 



Iso-structural viscosity or non-
equilibrium viscosity



Comparison between the measured iso data 
and the iso data calculated from models
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Non-Newtonian flow
(Shear rate dependence of viscosity)

(Shear thinning)
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It is attributed to orientation of structural units.



Fragile-to-strong transition
(An abnormal liquid dynamic behaviour)



A normal liquid – a window glass!
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A normal liquid – a window glass!
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An abnormal case – a metallic liquid!
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An abnormal case – a metallic liquid!
Its dynamics cannot be decribed by a 3-parameters model.
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We recall a famous liquid – water, which shows an 
abnormal dynamic behaviour to
– fragile-to-strong transition
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More  metallic liquids similar to water, which 
exhibits Fragile-to-Strong (F-S) Transition
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The data of these liquids cannot be described by a single model.

Zhang, Hu, Yue, Mauro, J. Chem. Phys. (2010)

Way, Wadhwa, Busch, ACTA Mater. (2007)



f = m'/m
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can be determined by:

f > 1: F-S transition

f = 1: no F-S transition

f < 1: never seen           

(unphysical?)

More….

Zhang, Hu, Yue and Mauro, JCP (2010)



The factor f confirms the existence of the F-S transition in the 

investigated MGFLs.

The calculated f values for different MGFLs



Is there a model that can describe the 
abnormal liquid dynamic behaviour?

Question:



Yes! But, to do so, the MYEGA has been generalized to 
the form:
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If C1 = C2, the equation 

reduces to that for 

normal liquids.

Fragile term Strong term

Zhang, Hu, Yue, Mauro, JCP (2010)



Two “phases” co-exists in the F-S crossover 
regime: Strong and fragile phases
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Fragile phase (LDA): 

• higher Tg

• higher activation enthalpy

• higher entropy

• lower density

Strong phase (HDA):

• lower Tg, i.e., actual Tg of the 

mixed liquid

• lower activation enthalpy

• lower entropy

• higher density

The fragile phase is cooled, the 

F-S transition intervenes, 

mitigating the sharp increase in 

viscosity with decreasing T.



Non-montonic structural response to sub-Tg
annealing measured by x-ray scattering

Annealing dependence 
of the structural unit size 

Annealing dependence 
of the correlation length

Critical temperature for the dramatic decreases in Rc: Tc ~ around 1.3Tg

Total structural factors PDF



Schematic scenario of the structural evolution 
during fragile-to-strong transition

Zhou, et al. J. Chem. Phys. (2015)



Containerless aerodynamic levitation (ADL) melting
to avoid heterogeneous nucleation
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• Measure viscosity 
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Fragile-to-strong transition in aluminates
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The data can be described by the generalized MYEGA

Parameter Value

log0 (Pa s) -2.039

W1 0.018

C1 7324

W2 1.68E-4

C2 1407

𝑙𝑜𝑔𝜂 = 𝑙𝑜𝑔𝜂0 +
1

𝑇[𝑊1 exp
−𝐶1
𝑇 +𝑊2exp(

−𝐶2
𝑇 )]

𝑇𝑓−𝑠 =
𝐶1 − 𝐶2

𝑙𝑛𝑊1 − 𝑙𝑛𝑊2
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