Viscosity of glass-forming liquids

Yuanzheng Yue

Aalborg University, Denmark Wuhan University of Technology, China

Outline

- Background and motivation
- Viscosity models
- Iso-structural viscosity
- Non-Newtonian flow
- Fragile-to-strong transition

Background and motivation

About flow

Haraclitus:

"everything is in a state of flux".

Confucius (孔夫子) stood by a river: "Everyting flows like this, without ceasing, day and night".

Deborah:

"Everything flows if you wait long enough, even the mountains".

Flow is everywhere!

Flow is remarkable, but sometimes dangerous!

How to judge whether a substance is liquid or solid?

A fundamental number of rheology: Deborah number (D_e)

If τ < t, a substance is a liquid, otherwise, a solid!

Some liquids flow easily, some not. How to quantify this? Measure **Viscosity** by viscometers:

- Concentric Cylinder
- Parallel-Plate Compression
- Capillary
- Beam Bending
- Fiber Elongation
- Sphere penetration
- Melt containerless levitation
- **>**

Viscosity is a crucial quantity of glass technology.

Viscosity determines

- Melting conditions
- Fining behaviour
- Working ranges
- Annealing range
- Upper temperature of use
- Devitrification rate
- Glass forming window
- Glass fiber drawing window

➤ The glass product relaxation depends on the nonequilibrium viscosity of the glass, which is a function of composition, temperature, and thermal history.

Viscosity is a key quantity of glass science.

It provides information on

- Glass dynamics
- Transport properties
- Glass structure
- Liquid fragility
- Thermodynamics
- Geology
- Crystallization

•

Angell plot

Viscosity of a melt varies with

- Temperature
- > Time
- Deformation rate
- Pressure
- Composition
- Hydroxyl
- Crystallization
- Phase separation
- > Inclusions

The non-Arrhenian behavior of liquids is described by liquid fragility.

It is quantified by the kinetic liquid fragility index m.

$$m = \frac{d \log \eta}{d(T_{g}/T)}\bigg|_{T=T_{g}}$$

- It is defined as the rate of the viscosity or relaxation liquid at T_a upon cooling.
- It is an important dynamic parameter of glass-forming liquids.

Connection between fragility index (m) and heat capacity jump (ΔC_p) in glass

$$\Delta C_p = \frac{A}{T_g} \left(\frac{m}{m_0} - 1 \right)$$

Smedskjaer, et al. J. Phys. Chem. B, 2011

Viscosity models

Vogel-Fulcher-Tamman (VFT) Model

$$\eta = \eta_{\infty} \exp(\frac{A'}{T-T_0})$$

where η_{∞} is the high temperature limit of viscosity, and A and T_0 are constants. Or

$$\log \eta = \log \eta_{\infty} + \frac{A}{T - T_0}$$

 $T_0 = T_k$? This is a debating problem.

Vogel, *Phys. Zeit.* **22** (1921) 645; Fulcher, *J. Am. Ceram. Soc.* **8** (1925) 339 Tammann, Hesse, *Z. Anorg. Allg. Chem.* **156** (1926) 245

Adam-Gibbs (AG) Model (Entropy model)

$$\eta = \eta_{\infty} \exp(\frac{B'}{TS_c(T)})$$

where η_{∞} is the high temperature limit of viscosity, B is constant, and $S_c(T)$ is the configurational entropy as a function of temperature:

$$S_c(T) = \Delta C_p \ln\left(\frac{T}{T_K}\right)$$
 This is a problem too.

Avramov-Milchev (AM) Model

$$\log \eta = \log \eta_{\infty} + B_{AM} \left(\frac{T_g}{T}\right)^F$$

where η_{∞} is the high temperature limit of viscosity, B_{AM} constant, and $T_{\rm g}$ the glass transition temperature, and F is a measure of liquid fragility.

 $F=m/B_{\rm AM}$, where m is the Angell fragility index

Avramov and Milchev, J. Non-Cryst. Solids 104 (1988) 253

Angell-Rao (AR) model

Angell and Rao, JCP (1972)

This 4-parameters model with fits the data excellently and bears physical meaning.

Other models

- Free volume model
- Doremus model
- Shoving model
- Sanditov model
- Parabolic model

•

See recent reviews:

M. I. Ojovan, *Adv. Condensed Mat. Phys.*, 2008, S.V. Nemilov, *J. Non-Cryst. Solids*, 2011 Q. Zheng, J.C. Mauro, *J. Am. Ceram. Soc.*, 2017.

Derivation of our new model (MYEGA)

$$\log \eta = \log \eta_{\infty} + \frac{K}{T} \exp\left(\frac{C}{T}\right)$$

$$\log \eta = \log \eta_{\infty} + \frac{B_3}{TS_c} \text{ Adam-Gibbs expression}$$
 The configurational entropy
$$S_c = fNk \ln \Omega$$
 Topological degrees of freedom A simple two-state system
$$f = 3 \exp\left(-\frac{H}{kT}\right)$$

Mauro, Yue, Ellison, Gupta, Allan, PNAS 106 (2009) 19780

The viscosity-temperature relation for *most* liquids can be described by VFT and AM models, even better by MYEGA:

 $\eta \sim T$ relation for oxide, ionic and molecular liquids

The new model is physically reasonable. (Fitting results based on 1000 glasses)

New model:

- $S_{\rm c}$ converges at $T=\infty$
- $S_{\rm c} = 0$ at T = 0

- $\log \eta_{\infty}$: the narrowest distribution
- $\log \eta_{\infty}$ =-3: A universal value?

The new model is practically useful.

The new model shows stronger ability to predict low *T* viscosity data from high *T* viscosity data than the other 3-parameter models.

Is there a universal log η_{∞} value? Results on 946 Corning compositions

It is about -3!

Zheng, et al. Phys. Rev. B 2011

$T_{g,vis}$ (from viscosity) and $T_{g,DSC}$ (from DSC)

Y. Z. Yue, J. Non-Cryst. Solids 2008, 2009

Practical use of the MYEGA

Now, only two parameters, m and $T_{\rm g}$, remain. Meaning: the entire $\log \eta \sim T$ relation can be estimated just by DSC!

Be careful with the difference between $m_{\rm vis}$ and $m_{ m DSC}$

- $m_{\text{vis}} > m_{\text{DSC}}$
- m_{vis} m_{DSC} due to Arrhenian approximation of non-Arrhenius behavior
- $m_{\text{vis}} m_{\text{DSC}}$ increases as fragility increases

The entire viscosity-temperature curve can be determined by DSC!

$$\log \eta = -3 + 15 \frac{T_g}{T} \exp \left[\left(\frac{m}{15} - 1 \right) \left(\frac{T_g}{T} - 1 \right) \right]$$

Example

Based on the facts:

- T_g and m_{DSC} are measurable by DSC
- m_{DSC} can be converted to m_{vis} .
- $\log_{10} \eta_{\infty} = -3$
- T_g corresponds to 10^{12} Pa s

Advantages of the DSC method:

- It is simpler.
- Takes much less time than viscometry technique.
- Uses smaller samples.
- Measure both good and poor glass forming systems.

29

Derivation of VFT from MYEGA

$$\log \eta(T) = \log \eta_{\infty} + \frac{C}{T} \exp\left(\frac{K}{T}\right)$$
$$= \log \eta_{\infty} + \frac{C}{T \exp(-K/T)}$$

• In the high temperature limit, -K/T can be expanded in a Taylor series:

$$\log \eta(T) \approx \log \eta_{\infty} + \frac{C}{T\left(1 - \frac{K}{T}\right)}$$

$$= \log \eta_{\infty} + \frac{C}{T - K}$$

M.M. Smedskjaer, J.C. Mauro, Y.Z. Yue, J. Chem. Phys. 131, 244514 (2009).

Divergent at a finite *T*?

Using 20-million year-old amber, Zhao, et al. provided an implication against the existence of the divergence at a finite T.

Zhao, Simon, McKenna, Nature Comm, (2013)

See also Hecksher, et al., *Nature Phys.* (2008)

Iso-structural viscosity or nonequilibrium viscosity

Comparison between the measured η_{iso} data and the η_{iso} data calculated from models

Non-Newtonian flow (Shear rate dependence of viscosity) (Shear thinning)

Non-Newtonian shear flow of glass-forming liquids (soda lime silicate vs Li-Na metaphosphate)

$$\sigma = \eta_{\infty} + (\eta_{0} - \eta_{\infty})\dot{\varepsilon}_{g}(1 - \exp(-\frac{\dot{\varepsilon}}{\varepsilon_{g}})) \qquad \frac{\eta}{\eta_{0}} = \frac{\eta_{\infty}}{\eta_{0}} + (1 - \frac{\eta_{\infty}}{\eta_{0}})\frac{\dot{\varepsilon}_{g}}{\dot{\varepsilon}}[1 - \exp(-\frac{\dot{\varepsilon}}{\dot{\varepsilon}_{g}})]$$

It is attributed to orientation of structural units.

Y.Z. Yue and R. Brückner, <u>J. Non-Cryst. Solids</u> (1994)

Fragile-to-strong transition

(An abnormal liquid dynamic behaviour)

A normal liquid – a window glass!

A normal liquid – a window glass!

$$\log \eta = -3 + 15 \frac{T_g}{T} \exp \left[\left(\frac{m}{15} - 1 \right) \left(\frac{T_g}{T} - 1 \right) \right]$$

An abnormal case – a metallic liquid!

An abnormal case – a metallic liquid! Its dynamics cannot be decribed by a 3-parameters model.

We recall a famous liquid – water, which shows an abnormal dynamic behaviour to – fragile-to-strong transition

Ito, Moynihan, Angell, Nature 1999

More metallic liquids similar to water, which exhibits Fragile-to-Strong (F-S) Transition

The data of these liquids cannot be described by a single model.

Zhang, Hu, Yue, Mauro, J. Chem. Phys. (2010) Way, Wadhwa, Busch, ACTA Mater. (2007)

More....

The extent of the F-S transition can be determined by:

$$f > 1$$
: F-S transition

f = m'/m

f = 1: no F-S transition

f < 1: never seen
 (unphysical?)</pre>

Zhang, Hu, Yue and Mauro, JCP (2010)

The calculated f values for different MGFLs

Composition	m'	m	f
Gd ₅₅ Al ₂₅ Co ₂₀	113	25	4.5
$Gd_{55}Al_{25}Ni_{10}Co_{10}$	133	25	5.3
Pr ₅₅ Ni ₂₅ Al ₂₀	156	19	8.2
Sm ₅₅ Al ₂₅ Co ₁₀ Ni ₁₀	130	37	3.5
$Sm_{50}Al_{30}Co_{20}$	136	29	4.7
$Sm_{55}Al_{25}Co_{10}Cu_{10}$	114	27	4.2
La ₅₅ Al ₂₅ Ni ₂₀	127	40	3.2
La ₅₅ Al ₂₅ Ni ₁₅ Cu ₅	130	34	3.8
La ₅₅ Al ₂₅ Ni ₅ Cu ₁₅	134	40	3.4
Al ₈₇ Co ₈ Ce ₅	114	34	3.3
Ce ₅₅ Al ₄₅	127	32	4.0
Water	98	22	4.5

The factor *f* confirms the existence of the F-S transition in the investigated MGFLs.

Question:

Is there a model that can describe the abnormal liquid dynamic behaviour?

Yes! But, to do so, the MYEGA has been generalized to the form:

$$\log \eta = \log \eta_{\infty} + \frac{1}{T \left[W_1 \exp \left(-\frac{C_1}{T} \right) + W_2 \exp \left(-\frac{C_2}{T} \right) \right]}$$
Fragile term Strong term

 C_1 and C_2 : two constraint onsets . W_1 and W_2 : normalized weighting factors. If $C_1 = C_2$, the equation reduces to that for normal liquids.

Zhang, Hu, Yue, Mauro, JCP (2010)

Two "phases" co-exists in the F-S crossover regime: Strong and fragile phases

Fragile phase (LDA):

- higher $T_{\rm g}$
- higher activation enthalpy
- higher entropy
- lower density

Strong phase (HDA):

- lower T_g , i.e., actual T_g of the mixed liquid
- lower activation enthalpy
- lower entropy
- higher density

The fragile phase is cooled, the F-S transition intervenes, mitigating the sharp increase in viscosity with decreasing *T*.

Non-montonic structural response to sub- T_g annealing measured by x-ray scattering

Annealing dependence of the structural unit size

Annealing dependence of the correlation length

Critical temperature for the dramatic decreases in R_c : $T_c \sim$ around 1.3 T_g

Schematic scenario of the structural evolution during fragile-to-strong transition

Containerless aerodynamic levitation (ADL) melting to avoid heterogeneous nucleation

Melting of Al₂O₃

- Extend the supercooled region
- Measure viscosity
- In-situ structural characterization

Forced oscillation and decay

Fragile-to-strong transition in aluminates

Fitted with

$$\log \eta = -3 + 15 \frac{T_g}{T} \exp \left[\left(\frac{m}{15} - 1 \right) \left(\frac{T_g}{T} - 1 \right) \right]$$
 (MYEGA)

The data can be described by the generalized MYEGA

$$log\eta = log\eta_0 + \frac{1}{T[W_1 \exp\left(\frac{-C_1}{T}\right) + W_2 \exp\left(\frac{-C_2}{T}\right)]} \qquad T_{f-s} = \frac{C_1 - C_2}{lnW_1 - lnW_2}$$

Parameter	Value
logη ₀ (Pa s)	-2.039
W_1	0.018
C_1	7324
W_2	1.68E-4
C ₂	1407

I would like to all my co-authors and collaborators.

Thank you for your attention!