

Overview of China Nuclear Waste Vitrification

Kai Xu

Stake Key Laboratory of Silicate Materials for Architectures (SMART)

Wuhan University of Technology (WHUT)

November 7, 2017

About Wuhan and WHUT

Wuhan city:

- At the intersection of Yangtze River.
- 2) Largest city in Central China.
- 3) 3500-year history.

Bird view of WHUT

WHUT:

- 1) Student: ~50,000; faculty: ~3,300.
- 2) Ranking in the world: ~400 (THE Ranking).
- 3) Best University in glass and ceramics (in China).

About SMART Lab

Faculty and student:

- Faculty: ~65.
- Post-doc.: ~10.
- Student: ~500, Intl. stud.: 15.

Glass

Research areas:

Faculty: ~20

Student: ~200

Silicate materials

Cement

Ceramics

Ex-president of **ICG**

World-renowned glass scientist **@ SMART**

PSU, US

Adjunct prof.

Background – growing of China nuclear power

Fastest-growing in the world.

Background – China nuclear waste management

Optional

High-level waste

Intermediate/low-level waste

Glass

Cement

A typical China Nuclear Waste

High Fe, Na, S, RE.

		(Oxides)	(Total oxides in VP)
(Oxides)	(Total oxides in VPC simulant)/(g \cdot L ⁻¹)	MnO_2	
Al_2O_3	9, 116	MoO ₃	
BaO	0, 010	Na_2O	
$\mathrm{Cr}_2\mathrm{O}_3$	1, 625	NiO	
Cs_2O	0. 695	$P_2 O_5$	
$\mathrm{Fe_2O_3}$	20, 513	SO ₃	
K_2O	1, 293		
La ₂ O ₃	15. 177	SrO	
		${ m TiO_2}$	
		V_2O_5	

(Oxides)	exides) (Total oxides in VPC simulant)/(g • L^{-1}					
MnO_2	0, 105					
MoO_3	1. 154					
Na ₂ O	46. 870					
NiO	3, 604					
$P_2 O_5$	0, 349					
SO_3	4, 418					
SrO	0. 180					
${ m TiO_2}$	n, d, 4)					
$V_2\mathrm{O}_5$	4, 612					
$Y_2 O_3$	0, 072					

Waste loading in BSi glass: 16%.

FeP glass immobilizing Re

 $xCeO_2-(100-x)(36Fe_2O_3-10B_2O_3-54P_2O_5)$ in mol%

Photos of FeP glasses containing different amounts of Ce

FeP glass immobilizing Re

- Monazite (CePO₄) formed, when X≥9.
- Monazite is a durable phase.

XRD patterns of FeP glasses

Fu Wang, et al. **J. of Non-Cryst. Solids**, 409 (2015) 76-82.

FeP glass immobilizing Re

- FePO₄ formed,
 when X≥18.
- FePO₄ is an undurable phase.

XRD patterns of FeP glasses

Fu Wang, et al. **J. of Non-Cryst. Solids**, 409 (2015) 76-82.

Glass-ceramics

Motivation

Barium borosilicate glass

(improve sulfate solubility)

Zirconolite, titanite phases

(improve TRUs solubility)

Meltingthermal treatment 1200°C-3h

 $T_{\rm q}$ <T< $T_{\rm c}$ -4h

Barium borosilicate glass-ceramics containing zirconolite, titanite phases

BaBSi glass-ceramics (Nd effect)

Composition of glass-ceramics (wt%)

Samples	SiO_2	B_2O_3	Na ₂ O	BaO	CaO	TiO_2	ZrO_2	Nd ₂ O ₃	
Nd-0	27.50	11.00	5.50	11.00	12.77	18.19	14.03	0	Γ
Nd-2	26.50	10.60	5.30	10.60	12.77	18.19	14.03	2	L
Nd-4	25.50	10.20	5.10	10.20	12.77	18.19	14.03	4	L
Nd-6	24.50	9.80	4.90	9.80	12.77	18.19	14.03	6	L
Nd-8	23.50	9.40	4.70	9.40	12.77	18.19	14.03	8	L
Nd-10	22.50	9.00	4.50	9.00	12.77	18.19	14.03	10	L
Nd-12	21.50	8.60	4.30	8.60	12.77	18.19	14.03	12	l

Photos of glass-ceramics

BaBSi glass-ceramics

XRD patterns with different contents of Nd₂O₃

Fluoride wastes from molten salt reactors

- MSR utilizes liquid molten fluoride salts as coolant, or even the fuel in the molten salt mixture.
- Reprocessing includes fluorination, distillation to separate uranium and other FPs from fluoride salts.

- Typical simulated fluoride wastes (mol%)
- 18.8LiF-23.8NaF-0.1MgF₂-57KF-0.3PF(SrF₂-SrF-CeF₃)
- 8.4CsF-8.3SrF₂-37.8SmF₃-29.7ZrF₄-15.8CeF₄

FeBP glass immobilizing fluorides

- Monazite formed when CeF₃ ≥20 wt%.
- No crystallization when $SrF_2 = 30$ wt%.

Phosphate glass encapsulated waste-form

(SrF₂ as simulant)

Works doing @ WHUT - ISG corrosion study

Works doing @ WHUT - ISG corrosion study

Assessment of PCT (surface area)

Works doing @ WHUT - ISG corrosion study

Assessment of PCT (surface area) – glass spheroidization

Uniform size of glass beads with smooth surface

Summary and outlooks

HLW generated from defense program is urgent to be vitrified, and a large amount of HLW will be produced from reprocessing of spent nuclear fuel soon.

R&D of China nuclear waste vitrification is in the preliminary stage, and is very needed, in order to construct our own vitrification facility.

Thanks for your attention and comments!

E-mail: kaixu@whut.edu.cn