Outline

- Digital CMOS design
 - Boolean algebra
 - ─ Basic digital CMOS gates
 - Combinational and sequential circuits
 - Coding Representation of numbers

How to implement Boolean functions in CMOS technology?

Which functionalities are available

N-MOS transistor

Pirouz Bazargan Sabet

Digital Design

N-MOS transistor

Pirouz Bazargan Sabet

Basic CMOS Gates

February 2010

Digital Design

P-MOS transistor

Pirouz Bazargan Sabet

Digital Design

Pirouz Bazargan Sabet

Basic CMOS Gates

February 2010

Digital Design

The electrical behavior of a MOS transistor is very complex

Design of a multi-million transistor circuit?

In a digital circuit a MOS transistor can be seen as a Switch

N-MOS

$$D = S$$
 when $G = 1$

P-MOS

$$D = S$$
 when $G = 0$

When driving, a MOS transistor can be seen as a Resistor

$$Resistance \propto \frac{L}{W} \qquad Conductance \propto \frac{W}{L}$$

For the same size, a P-MOS is twice more resistive than an N-MOS

The N-MOS and P-MOS are not exactly symmetrical

A N-MOS is a good transmitter of 0

A P-MOS is a good transmitter of 1

$$y = Not x$$

Dual CMOS gate

Pirouz Bazargan Sabet

Digital Design

$$y = \overline{x_1 \cdot x_2}$$

Pirouz Bazargan Sabet

Digital Design

Pirouz Bazargan Sabet

Digital Design

Design of a dual gate

The P-network must be the dual of the N-network

Series → Parallel Parallel → Series

Take care of the size of transistors

- To set the output to 0 a path has to be created through the N network
- A series of N-transistor must be conducting

$$\prod x_i = 1$$

Only negative (inverting) functions can be created

Implementing a Boolean function with a CMOS gate?

- The function must be inverting in regard of all the variables
- Put the function in the form of $f = \overline{g}$
- Design the N-network of g

Implementing a Boolean function with a CMOS gate?

- In the expression of g each '.' are two paths in series
- In the expression of g each '+' are two paths in parallel
- The P-network is the dual network of the N-network
- Avoid putting more than 3 transistors in series

Example:

$$f = \overline{a} + (b.c)$$

$$f = \overline{a} + (\overline{b+c})$$

$$f = \overline{a \cdot (b+c)}$$

$$g = a \cdot (b+c)$$

Some gates:

Inverter: $f = \overline{a}$

Nand: $f = \overline{a.b}$

Nor: $f = \overline{a+b}$

Some gates:

Multiplexer:

$$f = a.s + b.\overline{s}$$

