Outline

\square Digital CMOS design

- Boolean algebra
- Basic digital CMOS gates
(Combinational and sequential circuits
Q Coding - Representation of numbers
LiP

Representing Numbers

How values can be coded?

In a digital circuit each signal can take 2 values $(0,1)$ (Boolean world)

A vector of n bits can represent up to 2^{n} values

Representing Numbers

How values can be coded ?

What is the meaning of 01000110 ?

The character ' F '
The character ' Φ '
The number 46
The number 70
The number 123
Any symbol in a set where the Card $=256$

Representing Numbers

How values can be coded ?
by itself a code has no signification

Representing Numbers

How values can be coded ?

arithmetic: dealing with numbers
How can I represent a number?
Natural numbers
Relative numbers
Rational numbers
Real numbers

Representing Numbers

How can I represent a Natural number?

I need at least n bits for a Natural ranging from 0 to $2^{n}-1$
Standards

Pirouz Bazargan Sabet

Representing Numbers

How can I represent a Natural number?

Natural Binary Code :
The bits represent the successive powers of 2

Representing Numbers

How can I represent a Natural number?

Binary Coded Decimal :

The bits represent the successive powers of 2
The quartets represent the successive powers of 10

Representing Numbers

How can I represent a Natural number?

Binary Coded Decimal - Unpacked :

The bits represent the successive powers of 2
The bytes represent the successive powers of 10
In each byte the 4 Msb are 0

Representing Numbers

How can I represent a Relative number ?

$\underline{\text { Sign + Value }}$
The bits represent the successive powers of 2
The Msb represents the sign (1 means negative)

Pirouz Bazargan Sabet

Representing Numbers

How can I represent a Relative number ?

Sign+Value :

LiP

Representing Numbers

How can I represent a Relative number ?

2's complemented

The bits represent the successive powers of 2
The Msb represents $-2^{\mathrm{n}-1}$

Representing Numbers

How can I represent a Relative number ?

2's complemented :

$$
11000110=2^{1}+2^{2}+2^{6}-2^{7}=-58
$$

Representing Numbers

How can I represent a Relative number ?
2's complemented :

$$
01000110=2^{1}+2^{2}+2^{6}=70
$$

$$
2_{7}^{7}=2^{0}+2^{1}+2^{2}+2^{3}+2^{4}+2^{5}+2^{6}+1
$$

$$
2^{7}=2^{0+2}+2^{3+2}+2^{+2}+2^{5+2}+1+70
$$

$10111010 \quad-70=2^{0} \quad+2^{3}+2^{4}+2^{5} \quad+1-2^{7}$
Li

$$
-70=2^{1} \quad+2^{3}+2^{4}+2^{5} \quad-2^{7}
$$

Representing Numbers

How can I represent a Real number?

Range
Precision

Representing Numbers

How can I represent a Real number?

2's complement Fixed Point :
The bits represents the successive powers of 2

Representing Numbers

How can I represent a Real number?

Wide range
High precision

Floating Point
LiP

Representing Numbers

How can I represent a Real number?

Normalized scientific representation

$$
\mathrm{R}=(-1)^{\mathrm{S}} \times \mathrm{M} \times 10^{\mathrm{E}}
$$

$\mathrm{S}:$ Sign (1 if negative)
M : Mantissa $(\in[1,10[)$ in radix 10
E : Exponent (Relative number)

Representing Numbers

	$\mathrm{R}=(-1)^{\mathrm{S}} \times \mathrm{M} \times 2^{\mathrm{E}}$	
	Single Precision 32 bits	Double Precision 64 bits
$\mathrm{S}:$ Sign (1 if negative)	1 bit	1 bit
$\mathrm{M}:$ Mantissa $(\in[1,2[)$	23 bits	52 bits
$\mathrm{E}:$ Exponent	8 bits	11 bits

Pirouz Bazargan Sabet

Representing Numbers

$$
R=(-1)^{S} \times M \times 2^{E}
$$

Single precision :

Representing Numbers

$$
R=(-1)^{S} \times M \times 2^{E}
$$

Single precision : Special cases

LiP

Representing Numbers

$$
\mathrm{R}=(-1)^{\mathrm{S}} \times \mathrm{M} \times 2^{\mathrm{E}}
$$

Single precision : Range and precision

$$
\mathrm{R} \in]-2^{128}, 2^{128}[
$$

Precision $=2^{-23+E}$

Representing Numbers

$$
R=(-1)^{S} \times M \times 2^{E}
$$

Single precision : Special cases

