Outline

】 Digital CMOS Design
\square Arithmetic Operators

Square root

An real number y using floating point representation
Find a real number x such as

$$
(x+\varepsilon)^{2}=y
$$

- Calculation cannot be implemented in hardware
- Need iterative operation

Square root

- Direct method \rightarrow digit-by-digit

- Indirect method \rightarrow resolve $x^{2}-y=0$

Pirouz Bazargan Sabet

Square root - direct

Find x such as $\quad x=\sqrt{y}$

$$
y=(-1)^{0} \times M \times 2^{E} \quad \text { With } \quad M \in[1,2[
$$

$$
\sqrt{y}=(-1)^{0} \times \sqrt{M} \times 2
$$

E odd?
$y=(-1)^{0} \times M^{\prime} \times 2^{2 E^{\prime}}$ With $M^{\prime} \in[1,4[$

$$
\begin{aligned}
& x=\sqrt{y}=(-1)^{0} \times \sqrt{M^{\prime}} \times 2^{E^{\prime}} \\
& x=(-1)^{0} \times X \times 2^{E^{\prime}} \text { With } \quad X \in[1,2[
\end{aligned}
$$

Square root - direct

Find x such as $x=\sqrt{y}$

$$
\begin{aligned}
& y=(-1)^{0} \times M^{\prime} \times 2^{2 E^{\prime}} \quad \text { With } \quad M^{\prime} \in[1,4[\\
& x=(-1)^{0} \times X \times 2^{E^{\prime}} \quad \text { With } \quad X \in[1,2[
\end{aligned}
$$

$$
X=\sum_{i=0}^{-n} x_{i} \times 2^{i}
$$

Iterate on i and evaluate x_{i}

Square root - direct

Square root

○ Direct method \rightarrow digit-by-digit
○ Indirect method \leftrightarrows resolve $x^{2}-y=0$

Pirouz Bazargan Sabet

Square root - indirect

Resolving a non linear equation

$$
f(x)=0
$$

Square root - indirect

Resolving a non linear equation $f(x)=0$

Taylor series in the neighborhood of x_{0} $f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\cdots$

$$
I^{\text {st }} \text { order: } \quad f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Square root - indirect

Resolving a non linear equation $f(x)=0$
Iterative resolution starting from an initial guess x_{0}

$$
\begin{aligned}
& f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
& f(x)=0 \quad f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)=0 \\
& x=\frac{-f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}+x_{0}
\end{aligned}
$$

Newton-Raphson method

Square root - indirect

$$
\text { Resolving } \quad x=\sqrt{y}
$$

Find a function f such as $f(x)=0$ for $x=\sqrt{y}$

$$
\begin{aligned}
& f(x)=x^{2}-y \\
& f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
& f(x) \approx\left(x_{0}^{2}-y\right)+2 x_{0}\left(x-x_{0}\right)
\end{aligned}
$$

$$
f(x)=0 \quad x=\frac{\left(y-x_{0}^{2}\right)}{2 x_{0}}+x_{0}
$$

$$
x=\frac{1}{2}\left(\frac{y}{x_{0}}+x_{0}\right)
$$

Square root - indirect

$$
\text { Resolving } \quad x=\sqrt{y}
$$

Each iteration $x_{i+1}=\frac{1}{2}\left(\frac{y}{x_{i}}+\frac{x_{i}}{x_{i}}\right)$
Hard to implement

Pirouz Bazargan Sabet

Square root - indirect

Resolving $\quad x=\sqrt{y}$
Find a function f such as $f(u)=0$ for $u=\frac{1}{\sqrt{y}}$

$$
f(u)=u^{-2}-y
$$

$$
f(u) \approx f\left(u_{0}\right)+f^{\prime}\left(u_{0}\right)\left(u-u_{0}\right)
$$

$$
f(u) \approx\left(u_{0}^{-2}-y\right)-2 u_{0}^{-3}\left(u-u_{0}\right)
$$

$$
f(u)=0 \quad u=\frac{\left(u_{0}^{-2}-y\right)}{2 u_{0}^{-3}}+u_{0} \quad u=\frac{1}{2} u_{0}\left(3-u_{0}^{2} y\right)
$$

Square root - indirect

$$
\text { Resolving } \quad x=\sqrt{y}
$$

Each iteration $u_{i+1}=\frac{1}{2} u_{i}\left(3-u_{i}^{2} y\right)!$

$$
u=\frac{1}{\sqrt{y}} \quad x=\sqrt{y}=\frac{y}{\sqrt{y}}=u \cdot y
$$

Square root - indirect

Resolving $\quad x=\sqrt{y} \quad u=\frac{1}{\sqrt{y}}$

$$
y=(-1)^{0} \times M \times 2^{E} \quad \text { with } \quad M \in[1,2[
$$

$$
\sqrt{y}=(-1)^{0} \times \sqrt{M} \times 2
$$

E odd?
$y=(-1)^{0} \times M^{\prime} \times 2^{2 E^{\prime}}$ with $M^{\prime} \in[1,4[$

$$
\begin{aligned}
& \sqrt{y}=(-1)^{0} \times \sqrt{M^{\prime}} \times 2^{E^{\prime}} \\
& \sqrt{y}=(-1)^{0} \times \frac{M^{\prime}}{\sqrt{M^{\prime}}} \times 2^{E^{\prime}}
\end{aligned}
$$

Square root - indirect

Initial guess
Resolving $\quad x=\sqrt{y} \quad u=\frac{1}{\sqrt{y}}$

