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A Short Bio…

INFOTRON
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Outline

▪ Introduction

▪ What is a Field Programmable Gate Array (FPGA)?

▪ Essentials of FPGA Technology and FPGA Design
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Design Methodology & 
Design Tool Flow

Modern FPGA Design Curriculum

Essentials of FPGA 
Design

Designing with VHDL

Designing with Verilog

Advanced VHDL System Verilog

Timing Analysis & 
Design Constraints

Low-Cost Design Design Debug

Low-Power Design
Designing with

SmartFusion2

Advanced 

FPGA Design

Interface

Design

DSP

Design

Embedded

Design

Designing with HLS

Designing with OpenCL
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Today…
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FPGAs & Processors 

are meeting

the era of 

Programmable SoC



Power Matters 6



Power Matters

Design Cost
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More Intelligence in Every System
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Trend Data Center Infrastructure:
Cloud Computing
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Industry Mandates

Programmable Imperative
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FPGA Technology Overview
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What’s a FPGA?

Field Gate Array
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The GAP

PLDs

Highly 
configurable

Fast Design & 
Modification 

Time

No Complex 
Functions

FPGAs ASICs

Not 
Configurable

Expensive in 
Design Time

Support 
Complex 
Functions

FPGAs
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Where Do FPGAs Fit?

14
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What’s a FPGA?

A simplistic old definition:

▪ a high capacity programmable logic device

▪ An array of programmable basic logic cells surrounded by 
programmable interconnects

▪ Can be configured (programmed) by end-users (field-
programmable) to implement specific applications

▪ Capacity up to multi-millions logic gates and up to 500MHz 
core clock speed, supporting giga-sample per second data 
throughput rates

▪ Popular applications: prototyping, on-site hardware 
reconfiguration, DSP, logic emulation, network components, 
etc…
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FPGA Definition

Field Programmable Gate Array

A large number of logic gates in an IC 
array that can be connected 

(configured) electrically

The Four Components of an old FPGA
▪ The Configuration Element

▪ The Logic Module

▪ The Memory

▪ Control Circuits/Special Features
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A Simplistic Old Architecture

Generic FPGA Architecture

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?
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A More Modern Architecture
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FPGAs with Embedded Processors

▪ As you would expect…

▪ Processor
• With associated memory and 

peripherals

▪ FPGA Fabric
• Logic blocks, Memory blocks, 

Math blocks, etc.

▪ Transceiver and GPIO

19

Processor

FPGA Fabric

Peripherals

Memory

XCVR GPIO
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Processor, Memory & Peripherals

▪ Processor
• ARM: Single/Dual, FPU

• Interrupt, Debug, Cache

• Bus Interface

• Eco-system

▪ Memory
• Instruction and Data

• Usually SRAM (Flash from Microsemi)

• Cache (L2)

▪ Peripherals
• Internal: Timers, WDT, DMA, Security, etc

• External: UART, SPI, I2C, CAN, SDIO, USB, ENET, Flash Controller, 
DDR Controller, ADC, DAC

20

Processor

Peripherals

Memory
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FPGA Fabric

▪ Look-up Tables

▪ Interconnect

▪ Carry logic for counters

▪ Block memory
• Large, Small, Multi-port

▪ Math blocks
• DSP, Fixed/Floating point

▪ Interface to Processor 
Subsystem

21

Processor

FPGA Fabric

Peripherals

Memory
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Transceivers

▪ aka, Serializer Deserializer
• Low Level logic needed for high 

speed serial IOs

• Programmable PHY 

– Advanced features

– 6-10Gbps

– Adaptive Equalization, Pre-
Distortion, etc

– Testing: On-chip Eye

• Some also have hard MACs

– PCIe

22

Processor

FPGA Fabric

Peripherals

Memory

Transceivers
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GPIO, DDR Controllers

▪ GPIO
• Support for many, many IO 

standards

• Bank basis

• Programmable features

▪ DDR Controllers
• Range of standards

– LPDDR, DDR2/3, etc

• Advanced features

– PHY, Access Optimization, ECC, 
etc

23
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Software

▪ Define the system

▪ Program the Processor in 
“C” or Assembly
• Libraries

▪ Program the FPGA in HDL
• IP Blocks

▪ Simulate, Program and 
Debug

▪ Don’t forget to look at the 
software tools offered by 
the FPGA provider

24

ProcessorFPGA

Program

Simulate

Debug

System 

Definition
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Microsemi SmartFusion 2

25

FPGA 

Logic

SerDes 

Channels

SECDED

Memory 

Interface

ARM CPU

SEU-Free 

Flash FPGA

Configuration 

Memory

Encryption, 

Error Detection

And Low Power 

Control

SEU Protected 

SRAM Blocks

CPU 

Peripherals

NVM and 

SRAM 

Memory
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Major FPGA Vendors

SRAM-based FPGAs

▪ Xilinx

▪ Intel (form. Altera)

▪ Lattice Semiconductor

Flash & antifuse FPGAs

▪ Microsemi (form. Actel)



Power Matters

▪ The Interconnect Switch

XXX

FPGA Routing Technologies
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FPGA Routing Technologies

SRAM 

6T

Flash 

1T

Anti-fuse 

Reprogrammable

Best of Both Worlds

Reprogrammable

& Nonvolatile

Nonvolatile

Large Switch

expensive wires
Low Logic Utilization

typ 60%

Small Switch

cheap wires
High Logic Utilization

typ >85%

Smallest Switch

cheapest wires Highest 

Logic Utilization

typ >90%
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FPGA Routing Resources

▪ Flexible High-Performance Routing Hierarchy
• Ultra-fast Local Network

• Efficient Discrete Long-line Network (1, 2 and 4 Tiles Long)

• High-speed Very-long-line Network

• Eighteen Low-skew Global Networks

▪ Benefits
• Multiple Routing Path Alternatives for Low Congestion

• Short Corner-to-corner Delays

• Enables Rapid Timing Convergence
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FPGA Local and Long Line Networks

Long Line

1 VersaTile 

Long

LL L L L L

LL L L L L

LL L L L L

LL L L L L

LL L L L L

Long Line 

4 VersaTiles 

Long

Long Line 

2 VersaTiles 

Long

Local Lines connect VersaTile Outputs to 

nearest-neighbor VersaTiles, I/O Buffer, or 

Memory Block

Long Lines route longer 

distances and support  

higher fanout nets
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FPGA Very Long Line Network

16 Tiles

12 Tiles

24 Lines 24 Lines 24 Lines

32 Lines

32 Lines

32 Lines

Very Long Lines reach ±12 Tiles vertically and  ±16 Tiles horizontally (SmartFusion)
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FPGA Global Networks

▪ FPGA fabric contains multiple Global  Resources
• Chip-wide Global Networks and Quadrant Global Networks 
• Chip-wide Global Networks
• Can reach all Tiles (Ports, RAM, I/O, and CCC Tiles)
• Driven by Clock Conditioning Circuitry (CCC)

▪ Quadrant Global Networks
• Can Reach All Tiles Within the Quadrant
• Driven by Clock Conditioning Circuitry (CCC), usually in all 

Corners of the Die
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FPGA Global Network (SmartFusion)

▪ Left and Right CCCs Provide Access to 6 Chip-wide Global Networks

▪ CCCs in 4 Corners Provide Access to 12 Quadrant Global Networks 
(3 per Quadrant)

▪ Each Tile Has Access to 9 Global Resources

MSS 

PLL 

/CCC

3

3

3

3

3

CCC

3 3 3
3

6 6 6 6

6 6 6 6
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PLL* 

/ CCC

CCC

CCC

CCC

333

*PLL on A2F500
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Additional Resources

Altera Arria Web Page

Altera Arria Development Kits

Microsemi SmartFusion2 Web Page

Microsemi SmartFusion2 Development Kits

Xilinx Zynq Web Page

Xilinx Zynq Development Kits

All Programmable Planet

Warren’s APP Blog (SerDes)

34

http://www.altera.com/devices/fpga/arria-fpgas/arria-v/arrv-index.jsp
http://www.altera.com/products/devkits/arria-index.jsp
http://www.actel.com/fpga/SmartFusion2/
http://www.actel.com/products/hardware/devkits_boards/smartfusion2_dev.aspx
http://www.xilinx.com/content/xilinx/en/products/silicon-devices/soc/zynq-7000.html
http://www.xilinx.com/products/boards_kits/zynq-7000.htm
http://www.programmableplanet.com
http://www.programmableplanet.com/author.asp?section_id=2141&doc_id=258614


Design Methodology
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Motivations

▪ Accelerated time-to-market and reduce life-cycle
• Flexibility needs
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Motivations

▪ High integration
• Basic: memory, logic, I/Os… plus

• More: PLL, DSP, Micro-controller, Flash, SerDes, clock oscillator…
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Motivations

▪ Design skills: One person cannot do it all

• Ideal team: System level, DSP algorithms, 
SW/HW co-design, HDL modeling, Design 
methodology, Project management, Board level, 
Signal integrity, High-speed I/Os
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Motivation

$700 million.
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ARM

Cortex-M3





SYSTEM DESIGNER’S DREAM
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First Step in System Design

41
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Design Principles

▪ Hierarchy
• Divide & conquer

• Simplification of the problem

▪ Regularity
• Divide into identical building blocks

• Simplifies the assemblage verification

▪ Modularity
• Robust definition of all components (entity)

• Allows easy interfacing

▪ Locality
• Ensuring that interaction among modules remains local

• Makes designs more predictable and re-useable
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▪ Top-Down design methodology in 5 steps

Team Design Methodology

1- Specifications

2- Partitioning

3- Partial Implementation

4- Assemblage

5- Implementation



Power Matters

Step 1: Specifications

▪ Put down the circuit concept
• Easy verification

• A reference manual for communication

• How?

▪ Put down the requirements
• Timing budget

• Power budget

• Area budget

• Financial budget
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Step 2A: Partitioning

▪ Divide and conquer strategy
• Driven by technology, teams, availability (IPs), etc…

SOFTWARE HARDWARE
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Step 2B: Partitioning

▪ Divide and conquer strategy
• Driven by technology, teams, availability (IPs), etc…
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Step 3: Partial Implementation

Configurators

RTL   IPs

Structural

RTL
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Step 4: Assemblage

▪ Hierarchical way

▪ Start from the lowest level

▪ Includes mixed-level description

▪ Final product validation is now possible
• Compare to original specifications

• Simulate

• On-board verification
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Step 5: Full Design Implementation

▪ Simplified FPGA design implementation flow

Design

Entry

Logic 

Synthesis

P&R

(Layout)
Programming

Verification
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Step 6: Validation

▪ Simulation

• Bus Functional Model (BFM)

• Mixed language HDL  simulation

▪ Hardware Prototype for system validation



Timing Analysis & Design Constraints
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“Every circuit is considered 
guilty until proven innocent”

Barto's Law
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Detecting problems 
as early as 

possible

Timing Golden Rule
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▪ Timing Driven Synthesis

▪ Timing Driven Optimization

▪ Timing Driven Floor-Planner

▪ Timing Driven Place & Route

Timing in the Design Flow
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▪ Simulators
• Circuit-Level

• Timing

• Switch-Level

• Logic-Level

▪ Verifiers (Pattern Independent)
• Static Timing Analysis

Simulators versus Verifiers
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▪ 4 types of basic timing paths in a synthesized digital design:
• Input to registers

• Registers to output

• Input to output

• Registers to registers

Timing Paths
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▪ These basic timing paths can apply to:
• A module within an ASIC/FPGA

• A whole ASIC/FPGA

• A system with multiple chips

Timing Paths
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▪ Maximum or minimum limits placed on timing paths
• Input to registers: External Setup / Hold

• Registers to output: Maximum / Minimum Clock-to-Out

• Input to output: Maximum / Minimum Delay

• Registers to registers: Maximum Clock Frequency

▪ Other exceptions: False Paths, Multi-Cycle Paths

▪ Usually expressed in ns or ps

▪ First understanding flip-flop timing parameters

What are Timing Constraints?
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▪ The level of d is sampled on the rising edge of clk

▪ q holds the sampled value until the next clk rising edge

▪ The level of d must be stable for some amount of time before and after 
the sampling clock edge

CLK

D Q

INFER: process (CLK) begin

if (CLK’event and CLK =‘1’) then

Q  <= D;

end if ;

end process INFER;

Flip-Flop Timing: Overview



Power Matters

▪ Clock Parameters
• Clock cycle time (tCYC), minimum

• Clock pulse width high (tCH), minimum

• Clock pulse width low (tCL), minimum

CLK

D Q

Flip-Flop Timing: Clock Requirements
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▪ Input Setup (tS)

• The minimum time that the D input must be stable before the active (rising or 
falling) edge of the clock

CLK

D Q

Flip-Flop Timing: Input Setup
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▪ Input Hold (tH)

• The minimum time that the D input must be stable after the active edge of the 
clock

CLK

D Q

Flip-Flop Timing: Input Hold
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▪ Setup and Hold define a minimum window around the active clock edge 
during which D must be stable

▪ tS or tH may be negative, but tS + tH > 0

CLK

D Q

Flip-Flop Timing: Stability Requirements
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▪ Clock-to-out (tCO) a.k.a. Clock-to-Q

• The time delay from the active edge of the flip-flop’s clock input to the resulting 
change in the Q output

▪ Specified minimum and maximum times

CLK

D Q

Flip-Flop Timing: Clock-to-Out
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▪ Constraining FPGA Designs with SDC

Constraining Designs @ Board-Level

Source: Mentor Graphics Corporation ©, 2002

set_multicycle_path

set_false_path

set_output_delay

set_input_delay
create_clock
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▪ Design Environment: Corner Analysis
• Operating conditions (Process / Voltage / Temperature)

Worst: to fix the setup violations
Typical: mostly ignored
Best: to fix the hold violations

▪ Timing Assertions (Design-level)
• Clock Characteristics

• Arrival Time at Each Input Port

• Required Time at Each Output Port

▪ Timing Exceptions
• False Paths

• Minimum / Maximum Path Delay

• Multi-cycle Paths

Constraining Designs
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▪ Create Clock: reg-to-reg requirement

regA regB

D Din1

clk

Clk at

regA

Clk at

regB

setup

hold

Single-cycle timing relationship

Timing Analysis: Setup/Hold Check
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▪ Arrival/Required

Ck

0

Slack = Required_time – Arrival_time (Violation if < 0)

20

FF2:D Arrival Time

FF2FF1

CK

D

CPCP

FF2:D Required Time

slack

40
FF2:CP

FF1:CP – FF2:D

20

CK-FF2:CP

15

= 30

= 33

= +3

-STP

2

35

FF1:CP

10
CK–FF1:CP

10

Setup Check
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▪ Arrival/Required

CK
0

Slack = ArrivalTime – RequiredTime (Violation if < 0)

20

FF2:D Arrival Time from CK

FF2:D Required Time from CK

slack

FF2:CP

= 19

= 16

= +3

15

FF1:CP

5

FF2FF1

CK

D

CPCP

1

0

FF1:CP-FF2:D                

105

FF1:CP

FF2:CP 1

4

Hold Check



Power Matters

▪ set_multicycle_path: reg-to-reg exception

regA regB

D Din1

clk

Clk at

regA

Clk at

regB

setup

multi-cycle timing relationship

Timing Analysis: Multi-cycle
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▪ Captures External Setup/Hold Requirements

Input Delay Constraints

A

D

Q1

Q4

ENB

Register

A

D

Q1

Q4

ENB

Register

MyDesign

A

D

Q1

Q4

ENB

Register

A

D

Q1

Q4

ENB

Register

Clock

Generator
CK

IN

SDC: set_input_delay 2.0    -clock   CK   {IN}

Option “-min”  for hold check

Option “-max” for setup check

2.0

ns
CK

3.0ns
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Design Methodology: Timing Closure Loop

Enter synthesis

constraints via SDC

Place and Route

Improve 

results
Results

OK

Static Timing Analysis

PASS FAIL

Modify clock constraints

Modify I/O constraints

Set max delay

Add False paths

Add Multicycle paths

If timing closure

Not achieved in p/r

Back annotated

Timing Simulation

clock I/O false paths multicycle
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▪ Study over the Least Common Multiplier 

common 
period

Clock-Domain-Crossing (CDC)
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▪ Today’s systems have a multitude of components working 
with different clock-domains running at varying speeds

▪ Examples range from the small mobile phone chips to huge 
graphics or microprocessors that interface with a variety of 
busses and I/Os

▪ Signals that cross the clock-domain boundaries can be 
typically classified into two types: 

- Synchronous
- Asynchronous

▪ Synchronous crossings are those where the receiving 
domain has a phase/frequency relationship with the sending 
domain

Clock-Domain-Crossing Analysis
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▪ Synchronous crossings are those where the receiving 
domain has a phase/frequency relationship with the sending 
domain

▪ These crossings are timed and verified robustly that they 
meet the timing requirements

Synchronous Clock-Domain-Crossing
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▪ Asynchronous crossings are those where there is no 
relationship between the sending and receiving clocks

▪ These clocks originate from different clock generators or 
derivatives of those

▪ As a result, timing cannot be accurately verified since the 
order of clock edges cannot be guaranteed

Asynchronous Clock-Domain-Crossing
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▪ Metastbility refers to signals that do not assume stable 0 or 1 
states for some duration of time at some point during normal 
operation of a design

▪ In a multi-clock design, metastability cannot be avoided but 
the detrimental effects of metastability can be neutralized

Metastability
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Metastability
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▪ Typical usages of signals flowing from one asynchronous 
domain ClkA to another domain ClkB can be categorized 
into the following types:

1. Reset signals

2. Single-bit Data signals

3. Multi-bit Data signals

4. Synchronized Control signals

Metastability
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▪ The metastability occurrences can be predicted by using the 
mean time between failures (MTBF) formula

▪ Where C1 and C2 are constants that depend on the technology 
used to build the flip-flop; tMET is the duration of the metastable 
output; and fclk and fdata are the frequencies of the synchronous 
clock and the asynchronous input, respectively

Mean Time Between Failures
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▪ Reset signals are used to reset the logic in the receiving 
domain during chip-reset phase or whenever interrupts such 
as software resets or aborts happen in the sending domain

▪ Single-bit data signals are typically used to convey some 
sort of status to the receiving domain; for example, to 
convey that the sending domain is busy or to gate the 
receiving domain clock

▪ Before usage in the receiving domain, both these kind of 
signals need to be synchronized (usually with a double-flop 
synchronizer)

▪ Synchronization is sufficient because these signals are 
intended to transition intermittently and be stable the rest of 
the time

Synchronization, Control & Data Paths
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▪ On the other hand, multi-bit data transfer is used to transfer 
buses of data signals between domains

▪ If each of these bits is individually synchronized, the outputs 
of the synchronizers lose their correlation due to the 
metastability problem

▪ Hence, some sort of common control mechanism is required 
to 

(i) let the receiving domain know that the transmitted 
multi-bit data is valid and 

(ii) let the receiving domain capture that data only when it 
is stable

▪ This is often accomplished via handshake based 
synchronized control signals or via FIFO based 
synchronization

Synchronization, Control & Data Paths
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Synchronization, Control & Data Paths

▪ This kind of transfer has to be designed very carefully
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Synchronization, Control & Data Paths

▪ MUX synchronizer
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Synchronization, Control & Data Paths

▪ The MUX synchronizer has a critical 
requirement for all input in terms of 
the domains and functionality:

• The select input of the MUX comes from the destination domain 
(domain into which the signal is being synchronized)

• One of the MUX inputs is coming from the destination domain—that is, 
the holding loop

• The MUX inputs can be source, destination, or user-specified static 
signals

• The logic between the MUX synchronizer and the destination flop is 
driven by the destination domain or static signals
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Convergence in the Crossover Path

▪ Clock domain crossover 
paths are false paths for 
timing tools

▪ Any logic in this path 
must be carefully crafted 
and verified, because the 
logic can cause glitches 
and create functional 
errors downstream

89
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Other Challenges in Verification of CDC

▪ Adding CDC verification in the early design stages verifies 
and validates the unverified portion of the design

90
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Questions ?
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Why Power Management?

▪ “When I talk to companies, power is the number one 
problem they have to solve.” – Lip-Bu Tan, Cadence 

▪ “Now, power is also becoming a system problem. You have 
to start at the top.” – Wally Rhines, Mentor Graphics

▪ “The world faces one mega-issue, which is power. 
Electronics could help cut power consumption by 20-30%.” –
Aart de Geus, Synopsys
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Why Power Management? (cont.)

Battery life Environmental concerns

Cooling Cost System Reliability
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Why Power Management? (cont.)

▪19 % of total electricity worldwide consumed by electrical 

lightening

▪5 to 25% of power wasted by standby TV, PC, games, 

printers!!!

▪80% of IT power wasted (globally 100 Million MWH)
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Why Power Management? (cont.)

▪ Low Voltage 
 Leakage + Noise

▪ Technology Shrink 
 Variability + Design Complexity

▪ High Density & High Frequency 
 High Temperature + EM
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Why Power Management? (cont.)

96

Source: Chip Design Trends Newsletter, John 

Blyler, April 2007

Sample 
size

19,720
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 What Power-related issues did you encounter on last project?

(*) source: Synopsys 2008

97

Why Power Management? (cont.)

97
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Why Power Management? (cont.)

Voltage Drop Electromigration

Power Consumption

Static & 

Dynamic 

Power 

Dissipation
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Power Closure Challenges*

10X

10%

System Level

Power Optimization

Architecture selection

Voltage scaling

Clock frequency scaling

Power Analysis based on

Estimated gate counts

Estimated activity

RTL Design

Module clock gating

Voltage island isolation

Defined clocks and registers

Estimated gate counts

Realistic activity

Floor Planning

Voltage islands

Power gating

Physical Synthesis

Threshold voltage scaling

Advanced clock gating

Gate-level optimization

Actual gate counts

Realistic activity

Wireloads or global routing

Final libraries

Place & Route

Power-aware placement

Clock tree optimization

I/O configuration

Actual gate counts

Realistic activity

Detailed routing

Final libraries

(*) Adapted from Synopsys
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Power Closure Challenges 

▪ Power metrics –what and when is it important?

▪ Power analysis accuracy and consistency

▪ Need for a combination of spatial and temporal information

▪ Good power vectors difficult to generate

▪ Power models complexity
• IPs, operating modes, Temperature dependence of leakage

▪ Design & requirement complexity
• Power, timing, area, cost, reliability
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Power Optimization: System

Technique Dynamic Static

Clock optimization 

Parallelism / Pipelining  (2-3x) X

Energy efficient SW & FW  

Voltage & frequency scaling  

 System level power breakdown

 Chip level power specification

 Hardware and firmware algorithm partition
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Power Optimization: RTL

Technique Dynamic Static

Module clock gating 

Bus & State encoding 

Voltage & Frequency scaling  

Retiming 

Power gating and sleep devices

Voltage and power islands  

 Power constraints and per IP power specification

 RTL and IP power optimization

 power coverage
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Power Optimization: Physical Design

Technique Dynamic Static

Clock optimization 

Activity aware P&R 

I/O optimization 

Voltage & Frequency scaling  

Input state aware leakage 

 power coverage



Power Matters

Architecture

Technology

Microsemi Power Management

FPGA 

Power 

Management

Design Techniques
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Microsemi Power Management: Technology

▪ Actel Flash FPGAs > 1000 times less static power

▪ Actel Flash FPGAs competitive for dynamic power

▪ RTAX-SL 50% lower standby current at 125 degree C

0
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Actel IGLOO AGL600

Xilinx Spartan-3AN XC35400AN

Altera Cyclone-III EP3C5
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Microsemi Power Management: Architecture

▪ Low power macros

▪ Segmented clocks

▪ Low-power modes

▪ Multi-Voltage
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Microsemi Power Management: Architecture

▪ Low power macros: memory
• Width Cascading: 

No extra logic, 
Better performance

• Depth Cascading: 
Extra decoding & muxing logic, 
Lower performance & higher area

▪ Synplicity uses depth

▪ > 50% power saving

▪ Low-power option in SmartGen

1K X 4 1K X 4

WADDR

RADDR

WD

WADDR

RADDR

WD

512 X 8

512 X 8

REN

REN

WADDR
RADDR

WD

WADDR RADDR

WD
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Microsemi Power Management: Architecture

▪ Low power macros: arithmetic

▪ SmartGen Ripple adder 
• Power (-25%) Performance (-27%)

▪ SmartGen Brent-Kung and Sklansky adders 
• Power (-6 to -18%) Comparable performance

▪ Experiment: Multipliers
• Low-power multiplier with clock and signal gating

• We could save up to 50% in idle mode

• Project on hold
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Microsemi Power Management: Design 
Techniques

▪ Know your system power and temperature profile
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Microsemi Power Management: Analysis Tools

▪ Know your tools: Power Analysis

Design Flow

Power Calculators SmartPowerDatasheet
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SmartPower: Power Analysis

▪ Average Analysis: Power budget for
• Package Selection

• Heat Dissipation

▪ Scenario Analysis: Capturing multi-functional power modes

▪ Glitch Analysis: Detecting power waste

▪ I/O Timing & Power Advisor

▪ Time Based Analysis: Peak power for
• Power Supply Specification

• Hot spot

• Voltage drop
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User Design 

After Layout

Power Analysis

Report

SmartPower

Signals

Activity

Operating

Conditions

SmartPower: High Level Flow
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▪ Impact of Temperature: 
• High on Static, Limited on Dynamic Power

▪ Impact of Process: 
• High on Static, Moderate on Dynamic

▪ Impact of Voltage: 
• High on Static, High on Dynamic

▪ Impact of Radiation:
• For RTAX-S, very small rise in ICC at 100Krad.

• For RT-A3P, the TID reports show that this is also true for TID < 
40Krad

SmartPower: Operating Conditions
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 Impact of Voltage on Static Power

AGL600 Static ICC versus Voltage

Reducing the voltage from 1.5V to 1.2V = 70 % static 
power saving
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SmartPower: Operating Conditions (cont.)
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 Impact of Voltage on Dynamic Power

Power=C.V^2.Freq

Reducing the voltage from 1.5V to 1.2V = 40 % 
dynamic power saving
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SmartPower: Operating Conditions (cont.)
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SmartPower: Signals Activity

▪ Through simulation data (VCD file)
• Recommended flow

• Simulation quality very important

▪ Actel’s vectorless estimator
• Clock constraints imported from SmartTime

▪ Default annotation for data and clocks
• Two fixed values per clock domain: Clock frequency, data toggle rate

• Convenient and fast - no simulation required – but inaccurate

▪ User specified net by net
• Only useful to rectify specific nets activity
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VCD/Default
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SmartPower: Signals Activity (cont.)

▪ Actel’s vectorless estimator
• Goal: Improve accuracy in the absence of simulation data (VCD)

• Input: Probabilities and transition densities on primary inputs

• Output: Switching activities on each pin

Vless/VCD
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+20 to -40% of VCD
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SmartPower: Signal Activities (cont.)

▪ Monitor the simulation coverage
• If coverage < 95%, must revisit VCD flow
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SmartPower: Modes and Scenarios

▪ Mode definition
• To save a set of parameters defining the power of a design

• To record specific operating conditions and activities

• Predefined Modes: Flash*Freeze, Sleep, Stand-by (Fusion Only)

▪ Scenario definition
• To combine different modes for power estimation

• Predefined scenarios
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▪ SmartPower Modes and Scenarios Pane

SmartPower: Modes and Scenarios (cont.)
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▪ Hazard or spurious transition definition: Due to delay 
mismatch among re-convergent paths.

▪ Wasted power represents 15%-20% of the global power

▪ Strongly dependent on circuit topology and test vectors

▪ Automatic glitch filtering when smaller than a given 
threshold, defined by family, and characterized by Spice

▪ A hazard report is accessible from SmartPower menu

SmartPower: Glitch Analysis
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SmartPower: I/O Advisor

▪ Modification of I/O attributes
• Output load

• Output drive and slew

▪ Algorithm to optimize power while meeting timing constraints 
– for output drive and slew
• Positive slack – selects attributes with least power but still maintain 

positive slack

• Negative slack – selects attributes to minimize negative slack

• No slack – selects attributes with least power 

▪ Silicon family support
• G3 derivatives (8.6 release)
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SmartPower: I/O Advisor (cont.)

▪ Introduction page

▪ Individual steps optional
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SmartPower: I/O Advisor (cont.)

▪ Output load page
• Change current output load to reduce power
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SmartPower: I/O Advisor (cont.)

Output drive and slew page
• User can change “current” output drive and slew

• I/O Advisor provides “suggestion” for better power consumption while 
meeting timing constraints
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Power during M1/WFI is higher

than when not in WFI !!!

SmartPower: Time Based Analysis

 Using Cycle Accurate Analysis to debug a simulation time 
window



Power Matters

SmartPower: Time Based Analysis (cont.)

 Verifying that the Gated Clock solved the problem

When in WFI mode we are now consuming only 13 mw.

This is to compare with 32.5 mW when in Burst Mode

Power in the core during WFI is less than

2 mw. it was 16 mW without gated clock
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PDPR: Global Routing Optimization

128

Sample 
size

115

Survey end users at DAC Suite 2006 

Source Sequence Design inc.
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PDPR: Global Routing Optimization

▪ For designs without memories on IGLOO 1.2V devices
• 65% of total power (Nets); 12% (Gates); 13% (I/Os)

129129



Power Matters

PDPR: Global Routing Optimization

▪ Reducing the global network segments (spines) during 
placement

▪ From 7 spines and 60 ribs to 2 spines and 26 ribs.

130130
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PDPR: Global Routing Optimization

▪ 12% average (28% max) reduction in overall dynamic power

▪ 18% average (37% max) reduction in net power

▪ 1% performance loss

131131
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▪ Area minimization with sequential optimization

▪ 6.7% average timing improvement

▪ 13% average power saving

PDPR: Power-Driven Re-Synthesis
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Conclusion: Best Design Practices

▪ Architectural exploration has great impact

▪ Write power friendly RTL

▪ Clock reduction scheme is very important

▪ Power-efficient memory selection is key

▪ Low-power arithmetic macros can be helpful

▪ Develop accurate power vectors

▪ Verify power early and often

▪ Run “power regressions” throughout – RTL to tapeout

133133
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Questions ?


