
Power Matters

The Era of SoC FPGAs

Nizar Abdallah, Ph.D.

Workshop on FPGA Design for Scientific Instrumentation and Computing
International Centre for Theoretical Physics

November 2017

Power Matters

Outline

▪ Introduction

▪ SoC FPGA Architectures: an Overview

▪ The Processor Part in SoC FPGAs

▪ Design Flow in SoC FPGAs

2

Power Matters

Design Methodology &
Design Tool Flow

Modern FPGA Design Curriculum

Essentials of FPGA
Design

Designing with VHDL

Designing with Verilog

Advanced VHDL System Verilog

Timing Analysis &
Design Constraints

Low-Cost Design Design Debug

Low-Power Design
Designing with

SmartFusion2

Advanced

FPGA Design

Interface

Design

DSP

Design

Embedded

Design

Designing with HLS

Designing with OpenCL

Power Matters

Today…

4

FPGAs & Processors

are meeting

the era of

Programmable SoC

Power Matters 5

Power Matters

Design Cost

6

Power Matters

More Intelligence in Every System

7

Power Matters

Trend Data Center Infrastructure:
Cloud Computing

8

Power Matters

Industry Mandates

Programmable Imperative

9

Power Matters

▪ SoC
• System on Chip

• CPU Core + Peripherals

• Programmable software

▪ FPGA
• Field Programmable Gate Array

• Plenty of I/O options

• Extremely parallel architecture

• Programmable hardware

▪ SoC FPGA
• SoC & FPGA on a single chip

• Connected through on-chip bus

SoC? FPGA? SoC FPGA?

10

Power Matters

▪ Reduce size => Reduce overall system cost

▪ Increase performance

▪ Lower power consumption

▪ Increase system reliability

▪ Need for special bus interface for a CPU

▪ Need for obscure amount of IOs

▪ Need for extra CPU power for your FPGA

▪ Need for extra FPGA speedup for your CPU functions

Why SoC FPGA (one more time)?

11

Power Matters

Altera

SoC FPGAs

Xilinx Zynq-7000

EPP

Microsemi

SmartFusion2

Processor ARM Cortex-A9 ARM Cortex-A9 ARM Cortex-M3

Processor Class Application

processor

Application

processor

Microcontroller

Single or Dual

Core

Single or Dual Dual Single

Processor Max.

Frequency

1.05 GHz 1.0 GHz 166 MHz

Available Today

12

▪ In addition to the processor, an SoC FPGA includes:
• A rich set of peripherals,

• On-chip memory,

• An FPGA-style logic array, and

• A lot of configurable I/Os

Power Matters

▪ Consider the following scenarios:

1. The existing design uses an FPGA and a separate
microprocessor?

2. The current generation uses a proprietary ASIC that
includes a microprocessor?

3. A microprocessor being used today, but would benefit from
a peripheral set more tailored to the application?

▪ What are the benefits in each case?

When does it make sense?

13

Architecture Matters

Power Matters

In Any Case…

14

Architecture Matters

Power Matters

▪ Design considerations & engineering trade-off decisions

▪ The selection criteria centers on the following areas:
• Existing ecosystem (legacy IPs, Software…)

• System performance

• System reliability

• System flexibility

• System cost

• Power consumption

• Continuity (product roadmap)

• Quality of the software solution (development tools)

Criteria for Choosing an SoC FPGA

15

Power Matters

▪ Industrial Example: Motor Control

▪ The processing must be complete within a given window in
time, every time

System Performance

16

Power Matters

▪ The processor performance

▪ The fabric performance

▪ The interconnect between fabric and processor

▪ Memory bandwidth

System Performance

17

Power Matters

System Performance
The interconnect between fabric and processor

18

FPGA Logic

SerDes Channels

SECDED

Memory Interface

Hardened

MCU

SEU-Free

Flash FPGA

Configuration

Memory

Encryption,

Error Detection

And Low Power

Control

SEU Protected

SRAM Blocks

Data transfer between the memory, FPGA fabric, processor, and peripherals

Power Matters

▪ Communication example

System Performance
The interconnect between fabric and processor

19

Power Matters

▪ Communication example: if needed, a low latency non-
blocking bridge for control access in the FPGA

System Performance
The interconnect between fabric and processor

20

Power Matters

▪ Hardware acceleration example: When the acceleration
results are needed by the processor

▪ In this case, in the other direction: Does the architecture
include an Accelerator Coherency Port (ACP)?

System Performance
The interconnect between fabric and processor

21

Power Matters

▪ Memory controllers as important as Memory speed

▪ Do you have separate hard memory controllers?

▪ How smart is the memory controller?

System Performance
Memory bandwidth

22

17% Faster using a smarter

scheduling algorihthm

Power Matters

▪ Supporting ECC Memory for content protection
• On-Chip RAM

• External DDR Memory Controller

• L1 Cache & L2 Cache

• SPI Controller

• DMA Controller

• 10/100/1G Ethernet Controller

• USB 2.0 OTG Controller

• …

▪ Protection for shared memory
• Arm has the concept of “trust zone”

System Reliability

23

Power Matters

▪ Extending the flexibility to the system level

System Flexibility

24

Power Matters

▪ Extending the flexibility to the system level

System Flexibility

25

Power Matters

▪ Extending the flexibility to the system level

System Flexibility

26

Power Matters

▪ Design considerations & engineering trade-off decisions

▪ The selection criteria centers on the following areas:
• Existing ecosystem (legacy IPs, Software…)

• System performance

• System reliability

• System flexibility

• System cost

• Power consumption

• Continuity (product roadmap)

• Quality of the software solution (development tools)

Criteria for Choosing an SoC FPGA

27

Power Matters

Embedded Processors

ARM Architecture Fundamentals

28

Power Matters

SmartFusion2 Architecture

Power Matters

SmartFusion2 Device Layout

Power Matters

Brief History

▪ ARM (Advanced Risc Machine) Microprocessor was based
on the Berkeley/Stanford Risc concept

▪ Originally called Acorn Risc Machine because developed by
Acorn Computer in 1985

▪ Financial troubles initially plagued the Acorn company but
the ARM was rejuvenated by Apple, VLSI technology, and
Nippon Investment and Finance

Power Matters

ARM Ltd

▪ Founded in November 1990

▪ Designs the ARM range of RISC processor cores

▪ Licenses ARM core designs to semiconductor partners who
fabricate and sell to their customers

▪ Also develop technologies to assist with the design-in of the
ARM architecture

32

Power Matters

ARM Partnership Model

33

Power Matters

▪ Versions refer to the instruction set the ARM core executes

Architecture Revisions

Power Matters

▪ Hidden processor, debug the only visible port : JTAG/SWD

▪ Clocks and reset controllers + Interrupt controller

▪ On-chip interconnect bus architecture. For the vast majority
ARM based system, this is the standard AMBA interconnect

▪ Two buses:
• High perf system bus, AXI => Memory and other high speed devices

• Low perf peripheral bus, APB => collect data from peripherals

▪ Some amount of on-chip memory and interfaces to external
memory devices

▪ AMBA bus not exposed => not for external device interfaces

Inside An ARM Based System

35

Power Matters

▪ v4T => v5TE => v6 => v7

▪ Continuous upgrade; each time adding new features but
maintaining backward compatibility

▪ With v7, the concept of Architecture Profile: v7-A, v7-R, v7M

▪ Important difference between an architecture version and
the implementation that supports such architecture

▪ An architecture defines how a processor behaves; its
register set, instruction set, exception model, etc…

▪ The implementation behind can be significantly different but
binary compatible (e.g. number of pipelines)

Development of the ARM Architecture

36

Power Matters

▪ Application profile (ARMv7-A)
• Memory management support (MMU) => virtual mem for Linux

• Highest performance at low power

• Influenced by multi-tasking OS system requirements

• TrustZone for a safe extensible system

• Optional Large Physical Address and Virtualization extensions

▪ Real-time profile (ARMv7-R)
• Protected memory (MPU)

• Low latency and predictability ‘real time’ needs

• Tightly coupled memories for fast, deterministic access

• No virtual memory support, but extension like low-interrupt latency

▪ Microcontroller profile (ARMv7-M)
• Low gate count implementation

• Deterministic & predictable behavior a key priority => fixed mem map

• Deeply embedded use

ARM Architecture v7 Profiles

37

Power Matters

Data Sizes and Instruction Sets

▪ The ARM is a 32-bit “RISC” load-store architecture
• A 64-bit architecture in v8

• Most instructions execute in a single cycle, orthogonal register set

• Only memory accesses allowed are loads and stores

• Most internal registers are 32-bit wide and processed by 32-bit ALU

▪ When used in relation to the ARM:
• Byte means 8 bits

• Halfword means 16 bits (two bytes)

• Word means 32 bits (four bytes)

▪ Most ARMs implement two instruction sets
• 32-bit ARM Instruction Set

• 16/32-bit Thumb Instruction Set => greater density

Power Matters

▪ The ARM has seven basic operating modes:
• Each mode has access to its own stack space and a different subset of

registers

• Some operations can only be carried out in privileged mode

• Supervisor (SVC) : entered on reset & when a SW Interrupt instruction is
executed

• FIQ : entered when a high priority (fast) interrupt is raised

• IRQ : entered when a low priority (normal) interrupt is raised

• Abort : used to handle memory access violations

• Undef : used to handle undefined instructions

• System : privileged mode using the same registers as user mode

• User : unprivileged mode under which most tasks run

Processor Modes (Cortex-A & R)
E

x
c
e

p
ti
o

n
 m

o
d

e
s

P
ri
v
ili

g
e
d

m
o
d
e
s

Power Matters

▪ Two modes
• Thread : Unprivileged, used for application code

• Handler : Privileged, used for exception handling

▪ When the system resets, it starts in Thread mode, and
automatically changes to Handler mode on an exception, returns
to Thread mode when the handler completes

▪ System can be configured to have both modes privileged

▪ System can be configured to have both modes operate on the
same stack

Processor Modes (Cortex-M)

Power Matters

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ IRQ SVC Undef Abort

User Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

FIQ IRQ SVC Undef Abort

r0

r1

r2

r3

r4

r5

r6

r7

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User IRQ SVC Undef Abort

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

FIQ ModeIRQ Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ SVC Undef Abort

r13 (sp)

r14 (lr)

Undef Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Abort

r13 (sp)

r14 (lr)

SVC Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ Undef Abort

r13 (sp)

r14 (lr)

Abort Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Undef

r13 (sp)

r14 (lr)

The ARM Register Set (Cortex-A & R)

Power Matters

Program Status Registers

▪ ALU Condition code flags (set & tested)
• N = Negative result from ALU

• Z = Zero result from ALU

• C = ALU operation Carried out

• V = ALU operation oVerflowed

▪ Sticky Overflow flag - Q flag
• Architecture 5TE/J only

• Indicates if saturation has occurred

▪ J bit
• Architecture 5TEJ only

• J = 1: Processor in Jazelle state

▪ GE[3:0] used by some SIMD instructions to
record multiple results

▪ Interrupt Disable bits.

• I = 1: Disables the IRQ.

• F = 1: Disables the FIQ.

▪ T Bit

• Architecture xT only

• T = 0: Processor in ARM state

• T = 1: Processor in Thumb state

▪ Mode bits

• Specify the processor mode

• Can be changed in privileged mode

2731

N Z C V Q

28 67

I F T mode

1623 815 5 4 024

J E A

919

GE[3:0]

Power Matters

Exception

▪ Internal
• Memory protection fault

▪ Synchronous
• SVC instruction

▪ External
• Bus error

▪ Asynchronous
• Timer interrupt

43

Power Matters

Vector Table

Exception Handling

• Save processor status

– Copies CPSR into SPSR_<mode>

– Stores the return address in LR_<mode>

• Change processor status for exception

– Mode field bits

– ARM or Thumb (T2) state

– Interrupt disable bits (if appropriate)

– Sets PC to vector address

• Execute exception handler

• Return to main application

– Restore CPSR from SPSR_<mode>

– Restore PC from LR_<mode>
Vector table can be at

0xFFFF0000 on ARM720T

and on ARM9/10 family devices

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

Power Matters

Security Extensions (TrustZone)

▪ Optional for v7-A

▪ Processor provides two worlds – “secure” and “normal”

▪ “monitor” mode acts as a gatekeeper for moving between
worlds

45

Normal Secure

Application(s) Trusted Services

Operating System Trusted OS

Secure Monitor

Power Matters

Virtualization Extensions

▪ Optional for v7-A

▪ Processor provides two worlds – “secure” and “normal”

▪ “monitor” mode acts as a gatekeeper for moving between
worlds

46

Normal Secure

Application(s) Trusted Services

Guest OS Trusted OS

Secure Monitor

Application(s)

Guest OS

Hypervisor

Power Matters

ARM Instruction Set

▪ Not all the details are here

▪ All the instructions are 32-bit long

▪ Most instructions can be conditionally executed

▪ Load/Store instruction set – no direct manipulation of
memory content

47

SUB r0, r1, #5

r0 = r1 – 5

Power Matters

ARM Instruction Set

▪ Not all the details are here

▪ All the instructions are 32-bit long

▪ Most instructions can be conditionally executed

▪ Load/Store instruction set – no direct manipulation of
memory content

48

ADD r2, r3, r3, LSL #2

r2 = r3 + (r3 * 4)

Power Matters

ARM Instruction Set

▪ Not all the details are here

▪ All the instructions are 32-bit long

▪ Most instructions can be conditionally executed

▪ Load/Store instruction set – no direct manipulation of
memory content

49

ANDS r4, r4, #0x20

r4 = r4 & 0x20

Power Matters

ARM Instruction Set

▪ Not all the details are here

▪ All the instructions are 32-bit long

▪ Most instructions can be conditionally executed

▪ Load/Store instruction set – no direct manipulation of
memory content

50

ADDEQ r5, r5, r6

if (EQ) r5 = r5 + r6

Power Matters

ARM Instruction Set

▪ Not all the details are here

▪ All the instructions are 32-bit long

▪ Most instructions can be conditionally executed

▪ Load/Store instruction set – no direct manipulation of
memory content

51

B <Label>

PC-relative branch

Power Matters

ARM Instruction Set

▪ Not all the details are here

▪ All the instructions are 32-bit long

▪ Most instructions can be conditionally executed

▪ Load/Store instruction set – no direct manipulation of
memory content

52

LDR r0, [r1]

r0 = *r1

Power Matters

ARM Instruction Set

▪ Not all the details are here

▪ All the instructions are 32-bit long

▪ Most instructions can be conditionally executed

▪ Load/Store instruction set – no direct manipulation of
memory content

53

STRNEB r2, [r3, r4]

if (NE) *(r3 + r4) = r2

Power Matters

Thumb Instruction Set

▪ All instructions are 16-bit

▪ About 17% improvement in code density at the expense of
performance

54

ARM

Thumb

32-bit

16-bit

Thumb-2

Thumb-2

32-bit

16-bit

Power Matters

▪ When the processor is executing in ARM state:
• All instructions are 32 bits wide

• All instructions must be word aligned

• Therefore the pc value is stored in bits [31:2] with bits [1:0] undefined
(as instruction cannot be halfword or byte aligned)

▪ When the processor is executing in Thumb state:
• All instructions are 16 bits wide

• All instructions must be halfword aligned

• Therefore the pc value is stored in bits [31:1] with bit [0] undefined (as
instruction cannot be byte aligned)

Program Counter (r15)

Power Matters

▪ ARM instructions can be made to execute conditionally by post-fixing them with the
appropriate condition code field.

• This improves code density and performance by reducing the number of forward
branch instructions.

CMP r3,#0 CMP r3,#0

BEQ skip ADDNE r0,r1,r2

ADD r0,r1,r2

skip

▪ By default, data processing instructions do not affect the condition code flags but
the flags can be optionally set by using “S”. CMP does not need “S”.

loop

…

SUBS r1,r1,#1

BNE loop if Z flag clear then branch

decrement r1 and set flags

Conditional Execution and Flags

Power Matters

Condition Codes

Not equal

Unsigned higher or same

Unsigned lower

Minus

Equal

Overflow

No overflow

Unsigned higher

Unsigned lower or same

Positive or Zero

Less than

Greater than

Less than or equal

Always

Greater or equal

EQ

NE

CS/HS

CC/LO

PL

VS

HI

LS

GE

LT

GT

LE

AL

MI

VC

Suffix Description

Z=0

C=1

C=0

Z=1

Flags tested

N=1

N=0

V=1

V=0

C=1 & Z=0

C=0 or Z=1

N=V

N!=V

Z=0 & N=V

Z=1 or N=!V

▪ The possible condition codes are listed below
• Note AL is the default and does not need to be specified

Power Matters

Conditional execution examples

if (r0 == 0)

{

r1 = r1 + 1;

}

else

{

r2 = r2 + 1;

}

C source code

▪ 5 instructions

▪ 5 words

▪ 5 or 6 cycles

▪ 3 instructions

▪ 3 words

▪ 3 cycles

CMP r0, #0

BNE else

ADD r1, r1, #1

B end

else

ADD r2, r2, #1

end

...

ARM instructions

unconditional

CMP r0, #0

ADDEQ r1, r1, #1

ADDNE r2, r2, #1

...

conditional

Power Matters

Data Processing Instructions

▪ Consist of :

• Arithmetic: ADD ADC SUB SBC RSB RSC

• Logical: AND ORR EOR BIC

• Comparisons: CMP CMN TST TEQ

• Data movement: MOV MVN

▪ These instructions only work on registers, NOT memory.

▪ Syntax:

<Operation>{<cond>}{S} Rd, Rn, Operand2

– Comparisons set flags only - they do not specify Rd

– Data movement does not specify Rn

▪ Second operand is sent to the ALU via barrel shifter.

Power Matters

Register, optionally with shift operation

• Shift value can be either:

– 5 bit unsigned integer

– Specified in bottom byte of another
register.

• Used for multiplication by constant

Immediate value

• 8 bit number, with a range of 0-255.

– Rotated right through even number of
positions

• Allows increased range of 32-bit
constants to be loaded directly into
registers

Result

Operand 1

Barrel
Shifter

Operand 2

ALU

Using a Barrel Shifter:The 2nd Operand

Power Matters

Data Processing Exercise

1. How would you load the two’s complement
representation of -1 into Register 3 using one
instruction?

2. Implement an ABS (absolute value) function for a
registered value using only two instructions.

3. Multiply a number by 35, guaranteeing that it
executes in 2 core clock cycles.

Power Matters

Data Processing Solutions

1. MOVN r6, #0

2. MOVS r7,r7 ; set the flags

RSBMIr7,r7,#0 ; if neg, r7=0-r7

3. ADD r9,r8,r8,LSL #2 ; r9=r8*5

RSB r10,r9,r9,LSL #3 ; r10=r9*7

Power Matters

The Instruction Pipeline

63

Power Matters

▪ The ARM7TDMI uses a 3 stage pipeline in order to increase
the speed of the flow of instructions to the processor
• Allows several operations to be performed simultaneously, rather than

serially

▪ The PC points to the instruction being fetched, not executed
• Debug tools will hide this from you

• This is now part of the ARM Architecture and applies to all processors

The Instruction Pipeline

64

Power Matters

▪ All operations here are on registers (single cycle execution)

▪ In this example it takes 6 clock cycles to execute 6 instructions

▪ Clock cycles per Instruction (CPI) = 1

Optimal Pipelining

65

Power Matters

▪ Breaking the pipeline

▪ Note that the core is executing in ARM state

Branch Pipelining Example

66

Power Matters

AMBA

67

Power Matters

Example ARM-based System

16 bit RAM

8 bit ROM

32 bit RAM

ARM
Core

I/OPeripherals

Interrupt

Controller

nFIQnIRQ

Power Matters

High Performance

ARM processor

High-bandwidth

on-chip RAM

High

Bandwidth

External

Memory

Interface

DMA

Bus Master

APB

Bridge

Timer

Keypad

UART

PIO

AHB

APB

High Performance

Pipelined

Burst Support

Multiple Bus Masters

Low Power

Non-pipelined

Simple Interface

An Example AMBA System

Power Matters

HWDATA

Arbiter

Decoder

Master

#1

Master

#3

Master

#2

Slave

#1

Slave

#4

Slave

#3

Slave

#2

Address/Control

Write Data

Read Data

HADDR

HWDATA

HRDATA

HADDR

HRDATA

AHB Structure

Power Matters

▪ Each layer is an independent single master AHB system

▪ A multi-layer AHB with M masters and S slaves is structured
as M X 1:S multiplexers plus S X M:1 slave multiplexers all
connected to separate arbitration and decoding logic

▪ Multiple masters can talk to multiple slaves concurrently, as
long as no two masters don't try to access the same slave at
the same time
(e.g. a DMA controller
moving data from a
receiver into a memory
region, while the
processor continues to
execute code in a
different memory region)

▪ Became AHB-Lite

Multi-layer AHB and AHB-Lite

71

Power Matters

▪ With modern SoC, the system fabric poses a critical
performance bottleneck. The reasons for this include:

▪ AHB is transfer-oriented:
• address submitted => a single data item written to or read from the

selected slave

• All transfers initiated by the master. If the slave cannot respond
immediately to a transfer request the master will be stalled

• Each master can have only one outstanding transaction

▪ Sequential accesses (bursts) consist of consecutive
transfers which indicate their relationship by asserting
HTRANS/HBURST accordingly

▪ Although AHB systems are multiplexed and thus have
independent read and write data busses, they cannot
operate in full-duplex mode.

Multi-layer AHB and AHB-Lite

72

Power Matters

▪ Up to five channels (write address, write data, write
response, read address, read data/response)

▪ Can operate largely independently of each other

▪ Each channel uses the same trivial handshaking between
source and destination => simplifies the interface design

▪ In AXI3 transactions are bursts of lengths between 1 and 16

▪ Each transaction consists of address, data, and response
transfers on their corresponding channels

▪ Every transfer identifies itself as part of a specific transaction
by its transaction ID tag

▪ Transactions may complete out-of-order and transfers
belonging to different transactions may be interleaved.
Thanks to the ID that every transfer carries, out-of-order
transactions can be sorted out at the destination

AXI (Advanced eXtensible Interface)

73

Power Matters

Example: AXI Write Burst

74

Power Matters

Development Tools

75

Power Matters

ARM Debug Architecture

76

Power Matters

Keil Development Tools for ARM

77

Power Matters

Keil Development Tools for ARM

78

