



Fenix: Realising a new paradigm for collaborative supercomputing research infrastructures

D. Pleiter | MaX International Conference 2018 | Trieste | 29 January 2018



## **Fenix Goals**

# Establish HPC and data infrastructure services for multiple research communities

- Encourage communities to build community specific platforms
- Delegate resource allocation to communities

#### Develop and deploy services that facilitate federation

Based on European and national resources

#### Science community driven approach

- Infrastructure realisation and enhancements based on co-design approach
- Science communities providing resources to realise infrastructure
  → HBP SGA Interactive Computing E-Infrastructure
- Resource allocation managed by community

#### **Distinctive architectural features**

- Interactive Computing Services
- Elastic Scalable Computing Services
- Federated data infrastructure tightly integrated with supercomputing resources

#### Disclaimer

The Fenix infrastructure is still in a design and development phase. Several aspects presented in this talk are to be considered tentative



# **Consortium of Fenix Resource Providers**

# **Currently involved centres**

- BSC (ES)
- CEA (FR)
- CINECA (IT)
- CSCS (CH)
- JSC (DE)

#### **Consortium features**

- European HPC centres that provide resources within PRACE-2.0
- Strong links to key science drivers

#### **Foreseen extensibility**

Open for more partners and stakeholders



#### 4/22

# **Research Communities**

#### **Brain research**

- Scalable brain simulations and challenging data analytics requirements
- Building-up knowledge base as part of Neuroinformatics Platform

#### **Materials science**

- Data sets from simulations but also experiments
- European community already engaged in enabling data sharing

#### Genomics

- Explosion of data volumes
- Some groups start to exploit HPC infrastructures

#### **Physical science experiments**

- Data from large-scale experiments, e.g. ERIC
- Need for scalable simulations for interpreting experimental results or to process data







## **Common Features and Requirements**

#### **Variety of data sources**

- Distributed data sources
- Heterogeneous characteristics

#### HPC systems as source and sink of data

- Scalable model simulations creating data
- Data processing using advanced data analytics methods

# Aim for data curation, comparative data analysis and for building-up knowledge bases

 → Need for infrastructure to facilitate data sharing and high-performance data processing



# **Architectural Concept (1/2)**

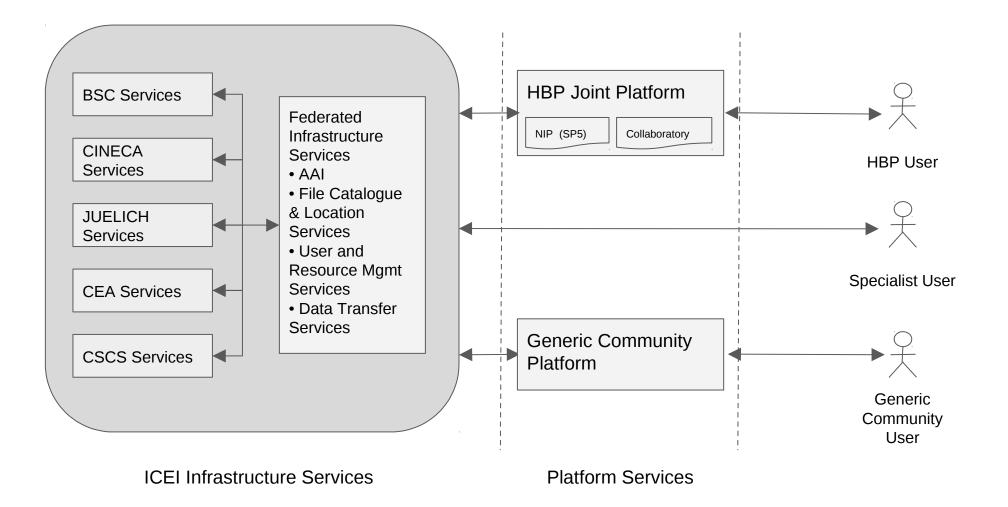
#### **Service-oriented provisioning of resources**

 Focus on infrastructure services suitable for different science communities

# **Support for community specific platforms**

Encourage and facilitate community efforts

#### **Federation of infrastructure services**


- Enhance availability of infrastructure services
- Broaden variety of available services
- Optimise for data locality

#### **Differentiation from Cloud service providers**

- Limited level of virtualisation
- Business model: Account for provisioning of capabilities instead of (elastic) consumption of resources



# **Architectural Concept (2/2)**





# **Overview over Planned Fenix Services**

#### **Computing services**

- Interactive Computing Services
- (Elastic) Scalable Computing Services
- VM Services

#### **Data services**

- Federated Archival Data Repositories
- Active Data Repositories
- Data Mover Services
- Data Location and Transport Services

# Other

- Authentication and Authorisation Services
- User and Project Management Services
- Monitoring Services



# **Interactive Computing Services**

#### Interactivity

- Capability of a system to support distributed computing workloads while permitting
  - Monitoring of applications
  - On-the-fly interruption by the user
- Interactive processing of data

#### **Architectural requirements**

- Interactive access
- Tight integration with scalable compute resources
- Fast access to storage resources

#### **Support for interactive user frameworks**

Jupyter notebook, R, Matlab/Octave





# (Elastic) Scalable Computing Services

#### **Different options for service provisioning**

- Access to highly scalable compute resources with possible longer wait times
- Elastic access to a limited amount of compute resources

#### **Possible realisation of elastic provisioning**

- Free resources by means of checkpoint/resume mechanisms
- Reserve (small) amount of nodes

#### **Considered use case**

Coupling of neuro-robotics experiments to brain simulations

#### **Open co-design questions**

- Upper limit for acceptable response times
- Scaling range



# **Virtual Machine Services**

#### **Use case**

- Deployment of community services running 24/7
- Examples: HBP Collaboratory, AiiDA daemon

#### **Requirements**

- Allow users to flexibly create and manage VM services similar to a cloud environment
- Provide stable infrastructure services
- Integration in AAI



# **Architectural Concepts: Data Store Types**

#### **Archival Data Repository**

- Data store optimized for capacity, reliability and availability
- Used for storing large data products permanently that cannot be easily regenerated

# **Active Data Repository**

- Data repository localized close to computational or visualization resources
- Used for storing temporary slave replica of large data objects

#### **Possibly: Upload buffers**

 Used for keeping temporary copy of large, not easy to reproduce data products, before these are moved to an Archival Data Repository



# **Architectural Concepts: HPC vs. Cloud**

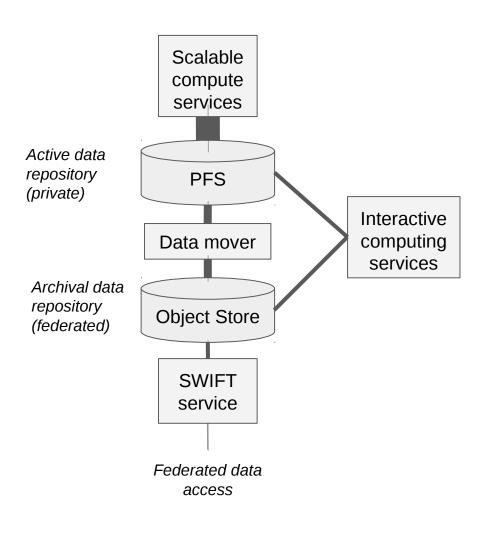
#### State-of-the-art: HPC

- Highly-scalable parallel file systems
  - Scale to O(10<sup>5</sup>) clients
  - Optimised for parallel read/write streams
- Interface(s): POSIX
  - Well established interface
  - Wealth of middleware relying on this interface

#### State-of-the-art: Cloud

- Solutions for widely distributed storage resources
  - Optimised for flexibility
- Various interfaces: Amazon S3, OpenStack Swift
  - Typically web-based stateless interfaces
- Advantages compared to POSIX
  - Suitable for distributed environments (e.g. support for federated IDs)
  - Simple clients
  - Rich mechanisms for access control




### **Storage Architecture**

#### Concept

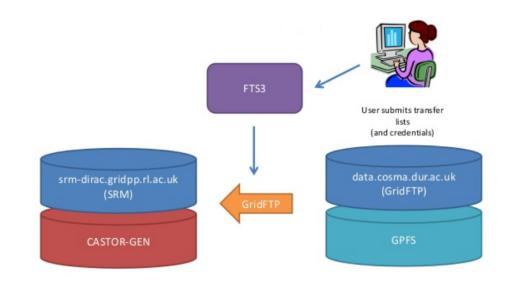
- Federate archival data repositories with Cloud interfaces
- Non-federated active data repositories with POSIX interface accessible from HPC nodes

## Envisaged implementation: Mandate same technology at all sites

 Current candidate: OpenStack SWIFT






# **Data Location and Transfer Services**

#### **Objectives**

- Enable identification of physical replicum of data object based on a Peristent Identifier by querying a central service
- Facilitate easy replication of data objects within the federated data infrastructure

#### Challenges

 Established technology candidates (e.g., FTS3), but incompatibilities wrt protocol and AAI





# **Authentication and Authorisation Infrastructure**

#### **Requirements**

- All Fenix services must be in the same AAI domain
- Users should be able to authenticate with Fenix infrastructure services and community platform services in a seamless way
- The AAI must be extendable to other Fenix Communities
- Coherent authorisation

#### **Anticipated solution**

- Federation of Identify Providers (IdP)
- Central Fenix IdP Service based on OpenStack technology (and/or UNICORE)
  - Acts as proxy to forward attributes



# **Resource Allocation Model**

#### **Actors**

- Fenix Resource Providers
- Fenix Communities
- Fenix Users

#### **Role of Fenix Resource Providers**

- Provide fixed amount of resources for given period to Fenix Communities
- Define rules for resource allocation (e.g., peer-review process)

#### **Fenix Users**

Submit proposal for resources to relevant Fenix Community

#### **Fenix Community**

 Review proposal and award available resources to Fenix Users



### **Fenix Credits**

### Fenix Credit =

**Currency for authorising resource consumption** 

#### **Different types of resources**

- Scalable compute resources (N<sub>node</sub> × time)
- Interactive computing services (N<sub>node</sub> × time)
- Active data repositories (capacity × time)
- Archival data repositories (capacity)
- Virtual Machines

## **Credit attributes**

- Value and type of resource
- Fenix Resource Provider
- Validity period



# **User Management**

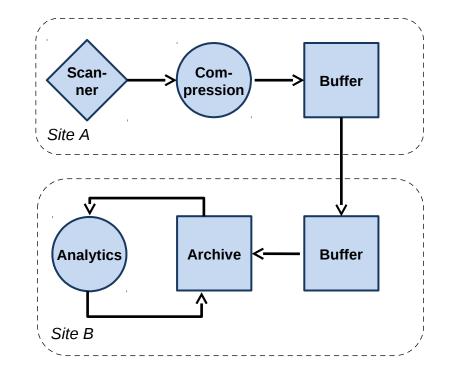
#### Model

- Scientist identifies itself through virtual identity issued by accepted Identity Provider
- Scientist registers with Fenix Community to become a Fenix User

### Workflow

- Scientist obtains virtual identity
- Scientist applies for membership in a Fenix Community and accepts Fenix Community Usage Agreement
- Fenix Community decides on application




# **Use Case Analysis**

# Analysis of workflow based on abstract infrastructure model

- Data ingest
- Data repository
- Processing station
- Data transport

# Use case/workload specific annotation of components

- Data transport
  - Maximum/average required bandwidth
  - Interface requirements
- Data repository
  - Maximum capacity requirements
  - Access control requirements
- Processing station
  - Data processing hardware architecture requirements
  - Required software stacks





### **Summary and Outlook**

# Strong science drivers towards data-oriented, federated HPC infrastructures

Examples: Brain research, materials science

#### Many opportunities and challenges

- Federation of services including AAI
- POSIX vs. Cloud storage technologies
- Integration of interactive computing services
- New models for allocating HPC and data resources to research communities

# Fenix

- Group of (currently) 5 European supercomputing centres committing to federate relevant services
- First step towards realisation of Fenix planned in context of HBP SGA ICEI (Interactive Computing E-Infrastructure)





# Credits

#### BSC

Javier Bartolome, Sergi Girona and others

#### CEA

 Gilles Wiber, Hervé Lozach, Jacques-Charles Lafoucriere, Jean-Philippe Nomine and others

#### CINECA

 Carlo Cavazzoni, Debora Testi, Giuseppe Fiameni, Michele Carpen, Roberto Mucci and others

#### CSCS

 Colin McMurtrie, Roberto Aielli, Sadaf Alam, Stefano Gorini, Thomas Schulthess and others

#### **Jülich Supercomputing Centre**

 Alex Peyser, Anna Lührs, Björn Hagemeier, Boris Orth, Dorian Krause, Thomas Eickermann, Thomas Lippert and others