

On the Enhancement of Thermal Properties of Graphene Nanofluids

Pablo Ordejón ...

... the work of:

Francesca Costanzo MaX Postdoc at ICN2

Bernd Ensing Univ. of Amsterdam Visiting Prof. at ICN2

MaX Pilot: Thermal Fluids

ABENGOA

Innovative technology solutions for sustainability

Molten salts:

- Heat storage and transport médium
- Allow electric energy generation in the absence of sunlight (with heat stored during daylight)
- Carbonates (M₂CO₃), Chlorides (MCI, MCI₂); Nitrates (MNO₃), and mixtures
- Melting: ~200°C
- Operation: ~500°C
- High heat capacity

Nanoparticles to improve the thermal properties of molten salts

Nanoscale Research Letters 2014, 9:582

NANO EXPRESS

Open Access

Increment of specific heat capacity of solar salt with SiO_2 nanoparticles

Patricia Andreu-Cabedo¹, Rosa Mondragon¹, Leonor Hernandez¹, Raul Martinez-Cuenca¹, Luis Cabedo² and J Enrique Julia^{1*}

Acta Materialia 75 (2014) 80-91

Enhanced specific heat capacity of molten salt-based nanomaterials: Effects of nanoparticle dispersion and solvent material

Byeongnam Jo^{a,b,*}, Debjyoti Banerjee^b

- Nanofluid: nanoparticles dispersed in the fluid
- High heat capacity increase (reports of up to 100%)
- Accurate quantification?

Table 1 Summary of the previous published works and present work in salt-based nanofluids

Authors	Year	Salt composition	Nanoparticles	Preparation method	Results	Ref
Shin and Banerjee	2011	Ll ₂ CO ₃ (62%) + K ₂ CO ₃ (38%)	SiO ₂ (10 nm), 1% wt.	Salt + water (1:100)	Cp; +19% to +24%	[10]
				Nanoparticle dispersion in ultrasonic bath (100 min). Drying in hot plate (200°C)		
Shin and Banerjee	2011	BaCl ₂ (34%) + NaCl (13%) + CaCl ₂ (40%) + LiCl (13%)	SiO ₂ , 1% wt.	Salt + water (1:100)	C _p ; +14.5%	[16]
				Nanopartide dispersion in ultrasonic bath (100 min). Drying in hot plate (200°C)		
Lu and Huang	2013	NaNO ₃ (60%) + KNO ₃ (40%)	Al ₂ O ₃ (13 nm, 90 nm), 0.9% to 4.6% wt.	Salt + water (1:100)	C _p : -10%, 4.6% wt.	[17]
				Nanopartide dispersion in ultrasonic bath (100 min). Drying in hot plate (105°C)		
Tiznobaik and Shin	2013	Li ₂ CO ₃ (62%) + K ₂ CO ₃ (38%)	SiO ₂ (5 to 60 nm), 1% wt.	Salt + water (1:100)	C _p : +23% to +29%	[11]
				Nanopartide dispersion in ultrasonic bath (100 min). Drying in hot plate (200°C)		
Tiznobaik and Shin	2013	Li ₂ CO ₃ (62%) + K ₂ CO ₃ (38%)	SiO ₂ (10 nm), 1% wt.	Salt + water (1:100)	Cp: +26%	[12]
				Nanoparticle dispersion in ultrasonic bath (100 min). Drying in hot plate (200°C)	C _p : +3% (addition NaOH)	
Shin and Banarjee	2013	Li ₂ CO ₃ (62%) + K ₂ CO ₃ (38%)	${\rm SiO}_2$ (2 to 20 nm), 1% wt.	Salt + water (1:100)	Segregation	[13]
				Nanopartide dispersion in ultrasonic bath (100 min). Drying in hot plate (100°C)	C _p : +124% (zone A)	
					C _p : +0% (zone B)	
Dudda and Shin	2013	NaNO ₃ (60%) + KNO ₃ (40%)	SiO ₂ (5 nm, 10 nm, 30 nm, 60 nm), 1% wt.	Salt + water (1:100)	C _p : +10% (5 nm) +13% (10 nm), +21% (30 nm), +28% (60 nm)	[18]
				Nanoparticle dispersion in ultrasonic bath (100 min). Drying in hot plate (200°C)		
Chieruzzi et al.	2013	NaNO ₃ (60%) + KNO ₃ (40%)	SiO ₂ (7 nm), Al ₂ O ₃ (13 nm), TiO ₂ (20 nm), SiO ₂ + Al ₂ O ₃ (2 to 200 nm), 0.5% to 1.5% wt.	Salt + water (1:100)	C _p : +22.5% (SiO ₂ + Al ₂ O ₃ (2 to 200 nm 1.0% wt.))	[19]
				Nanopartide dispersion in ultrasonic bath (100 min). Drying in hot plate (200°C)	H: +15% (all np except TiO ₂ , 1% wt.)	
Jo and Banarjee	2014	Li ₂ CO ₃ (62%) + K ₂ CO ₃ (38%)	Graphite (50 nm) + gum arabic	Salt + water (1:100)	Segregation	[14]
				Nanopartide dispersion in ultrasonic bath (120 min). Drving in hot plate (200°C)	C _p : +100% (material 1)	
					Cp; +33% (material 2)	
Shin and Banarjee	2014	Li ₂ CO ₃ (62%) + K ₂ CO ₃ (38%)	Al ₂ O ₃ (10 nm), 1% wt.	Salt + water (1:100)	C _p ;+32%	[15]
				Nanoparticle dispersion in ultrasonic bath (120 min). Drying in hot plate (100°C)		
Ho and Pan	2014	NaNO ₃ (7%) + KNO ₃ (53%) + NaNO ₂ (40%)	Al ₂ O ₃ (<50 nm), 0.016% to 1% wt.	Salt + nanoparticle aqueous suspension (20% wt.)	C _p : +19.9% (0.063% wt.)	[20]
				Nanoparticle dispersion by mechanic stirring at high temperature (180 min.)		
Present work		NaNO3 (60%) + KNO3 (40%)	SiO ₂ (12 nm), 0.5% to 2.0% wt.	Salt + water (1:10)	C _p : +25% (1.0% wt.)	
				Nanoparticle dispersion in ultrasonic probe (5 min). Drying in hot plate (100°C)		And

Andreu-Cabedo et al. Nanoscale Research Letters 2014, 9:582

Nanoparticles to improve the thermal properties of molten salts

ABENGOA RESEARCH

Nanofluids to improve the thermal properties of molten salts

- Nanofluid: nanoparticles dispersed in the fluid
- High heat capacity increase (reports of up to 100%)
- Accurate quantification ?
- Understanding mechanism for increase in heat capacity and other thermal properties

Can we understand and (eventually) predict the thermal properties of liquids with simulation?

- Atomistic simulations provide information about the structure and thermodynamical properties of the molten salts, as a function of composition. [Computational Materials Science 83, 362 (2014)]
- They also provide understanding of the interaction of the molten salt with the embedded Nanoparticles, and how these affect the structure and properties of the liquid. [Acta Materialia 75, 80 (2014)]

To elaborate **computational protocols** for the determination of the key **thermal parameters of nanofluids**, to predict and explain the **modification of these properties by the addition of nanoparticles**

Forbes / Energy

Spain's Renewable Energy Powerhouse Abengoa **Teeters Toward Bankruptcy**

ECONOMÍA

Carlos Sanz-Navarro, Abengoa Resarch.

Heat Transfer Fluids

- Room temperature applications Cooling and termal management
- Graphene nanofluids very large effect on thermal properties
- Large literature on Graphene nanofluids
- Experimental work at ICN2 (preparation and thermal properties)

DMF: Dimethylformamide

Organic solvent for Graphite Nanoflakes currently used by P. Gómez (ICN2)

Very stable dispersions - low concentration of NFs: 0 - 0.05 wt %

NFs: 100 – 400 nm diameter; 1-10 layers

Thermal properties: Specific Heat and Thermal Conductivity

Experiments: R. Rodriguez, E. Chavez, P. Gomez, C. Sotomayor – ICN2

Experimental Results

Raman spectra - DMF modes

Experiments: R. Rodriguez, E. Chavez, P. Gomez, C. Sotomayor – ICN2

Nanofluid: Graphene flakes in DMF

- MD simulation
- LAMMPS; GAFF/OPLS force fields
- Equibration; NVT; NPT

DMF with Graphene NPs

6 ps movie (out of a 1 ns simulation)

20

18

-30

-20

-10

0

10

20

30

N-N distance [Å]

Corr. funct. 7.5

3.5

1.3

0.5

Radial distribution in the plane as a function of the height abov

- there is strong layering observed
- in the first layer, the DMF is mainly lying flat on the grap
- 3 coordination shells can be seen around a DMF molecu layer (could be more on larger flakes)
- 3 layers can be observed onto the surface

Layering of DMF on graphene flake

π -stacking

DFT Calculations

LUMO

HOMO (0.13)

HOMO-1 (0.17)

HOMO-2 (0.21)

HOMO-3 (0.22)

DFT Calculations Reduced Density Gradient Johnson, Keinan, Mori, Contreras, Cohen and Yang JACS 132, 6498 (2010) в А С Weak Strong Strong interaction interaction repulsion

Raman shifts

Experimenta	Theoretical frequencies [cm ⁻¹]				
[cn	B3LYP/6-311G(d, p)				
DMF	0.05 wt %	DMF	A	B	С
1090.9	1092.6	1092.9	1096.3	1113.0	1094.2
1438.5	1439.8	1430.7	1443.7	1442.5	1440.3

Specific Heat in liquids

Vibrational Density of States

$$S(v) = \frac{2}{kT} \lim_{\tau \to \infty} \int_{-\tau}^{\tau} C(t) e^{-i2\pi v t} dt.$$
$$C(t) = \langle v(t)v(0) \rangle$$

- Solid: quasiharmonic approximation (quantum effects)
- Gas: diffusion and anharmonicity

Specific Heat in liquids

Heat Capacity of DMF

MAX INTERNATIONAL CONFERENCE – TRIESTE, JAN 29-31, 2018

Preliminary results:

Specific heat of the nanofluid is close to the sum of its components

San	nple	Cp (J/g/K)					
Flake size C-atoms	DMF molecules	flake(g)	DMF(I)	DMF(I)+flake(g)	nanofluid	difference	
24	100	0.423	2.041	1.996	2.077	0.081	
54	225	0.961	2.041	2.000	2.049	0.049	
138	575	0.991	2.041	2.001	2.040	0.039	
348	1450	1.174	2.041	2.008	2.005	-0.003	

3.9 wt% samples (different NF sizes)

Thermal Conductivity

Thermal conductivity calculated from Green-Kubo equation from a long classical MD simulation

$$\kappa = \frac{V}{k_B T^2} \int_0^\infty \langle J_x(0) J_x(t) \rangle \, dt = \frac{V}{3k_B T^2} \int_0^\infty \langle \mathbf{J}(0) \cdot \mathbf{J}(t) \rangle \, dt$$

$$\mathbf{J} = \frac{1}{V} \left[\sum_i e_i \mathbf{v}_i - \sum_i \mathbf{S}_i \mathbf{v}_i \right]$$

$$= \frac{1}{V} \left[\sum_i e_i \mathbf{v}_i + \sum_{i < j} (\mathbf{f}_{ij} \cdot \mathbf{v}_j) \mathbf{x}_{ij} \right]$$

$$= \frac{1}{V} \left[\sum_i e_i \mathbf{v}_i + \frac{1}{2} \sum_{i < j} (\mathbf{f}_{ij} \cdot (\mathbf{v}_i + \mathbf{v}_j)) \mathbf{x}_{ij} \right]$$

$$\text{convective vibrational/phononic contribution}}$$

Thermal Conductivity

Issues:

- Achieving converged results from short simulations (Ercole, Marcolongo & Baroni)
- Computing the heat flux and conductivity from ab-initio (Marcolongo, Umari, Baroni)

- Created a workflow for the automatization of the simulations of the thermal properties of nanofluids
- Validation with experimental measurements in GNF in DMF (measured at ICN2) – extreme case: very large changes for very small concentrations of NPs
- Identify microscopic mechanisms
- Adopt the new developments by Baroni and co-workers on the thermal conductivity

EUROPEAN CENTER OF EXCELLENCE _ A H2020 E-INFRASTRUCTURE _ EU GRANT # 676598