

PHYSICS F-S GROUP

Understanding Water/Solid Functional Interfaces for Photocatalysis and Electrochemical Applications

Marivi Fernandez-Serra

Motivation

• Electrochemistry (electrolysis)

Exact H₂ evolution mechanism? Volmer+Tafel Steps?

- Correspondence
 between the
 macroscopic voltage
 and the microscopic
 interfacial charge
 distribution in
 electrochemical fuel
 cells.
- What is the actual structure of the electrochemical double layer?
- How V modifies it?

Water/Solid interface

Structure of water at the interface Charge transfer Correct description of the water and metal

Water/Metal (Pd) interaction

• 1 H2O: flat (DFT)

- Metal screens water and creates image charge.
- Interaction may be compared to a H-bond
- Electrostatically not most

stable

A. Michaelides *et. al.*, PRL <u>90</u>, 216102 (2003) A. Poissier *et. al.*, PCCP <u>13</u>, 3375 (2011)

Water/Metal interaction

- Classical electrostatics does not explain the adsorption of water molecules on metallic surfaces.
- Quantum mechanics, i.e charge transfer and Pauli repulsion is needed to understand the binding

A. Poissier et. al., PCCP 13, 3375 (2011)

ab initio or Classical force field?

4200-4205 | PNAS | March 12, 2013 | vol. 110 | no. 11

Ab initio Molecular Dynamics

180 H₂O 4-layer <111> Pd

- DFT PBE GGA;
- DFT vdW-DF^{PBE}
 - Troullier-Martins pseudopotential;
 - SIESTA code;
 - >30 ps
 - T = 300 K
 - Unit cell: 9.75 x 16.85 x 25.97 Å
- Water density = 0.97 g/cm³
- Net Charge: +1|e| and -1|e|

Z-density Pd/H₂O

PBE

Z-density Pd/H₂O

Z-density Pd/H₂O

How vdW interactions modify the picture?

2D order Pd/H₂O

Au(111)

No charge Transfer Effects Similar to Pt (Siepmann-Sprik model)

Z-density Au/H₂O

WORK FUNCTION CHANGE UPON SOLVATION

 $\Delta \phi = \phi_{water} + \phi_{polarization}^{Water/metal}$ $\phi_{polarization}^{water/metal} = \phi_{image}^{metal} + \phi_{polarization}^{water} + \phi_{chargetransfer}^{wat/met}$

WORK FUNCTION CHANGE UPON SOLVATION

Pd (A)

net dipole out

Pd (B)

Work function Change: out : net decrease in: net increase

Single bilayer H-up or H-down

Schnur and Gross New J. Phys. 11 (2009) 125003

Work function change: ($\Phi_{metal/water} - \Phi_{metal}$)

TABLE I: Averaged delta work function $(\Phi_{metal/H_2O} - \Phi_{metal})$ (eV) obtained for the metal/water interfaces AIMD simulations.

	PBE	$vdW-DF^{PBE}$
Pd/H_2O	-1.95 ± 0.44	-1.15 ± 0.28
Au/H_2O	-0.32 ± 0.37	0.09 ± 0.39

	PBE (eV)	VDW (eV)	Exp (eV)
Pd	5.15 ± 0.01	5.40 ± 0.01	5.6
Au	4.58 ± 0.01	4.68 ± 0.02	4.52

Charged simulations

+ 1|e| V<0

- 1|e| V>0

Molecular dynamics under bias potential

 Apply a bias at interface and connect the macroscopic voltage to the microscopic interfacial charge distribution: The electrochemical cell can be thought of as two metallic electrodes which act as charge reservoirs, with the two metal plates separated by a solution (mostly composed of water). This arrangement is analogous to the one encountered in simulations of electronic transport: a central scattering region coupled to electrodes

Left Electrode, V_L , μ_L

[1] J. M. Soler et al., J. Phys.: Condens Matter 14, 2745 (2002)
 [2] A. R. Rocha et al., Phys. Rev. B 73, 085414 (2006);
 Nature Materials 4, 335 (2005)

Luana S. Pedroza, Pedro Brandimarte, Alexandre Reily Rocha, Marivi Fernandez-Serra, Chem. Science 2018

Transport Theory: NEGF + DFT

Nature Materials 4, 335 (2005)

Non-equilibrium Electronic Transport

Transport Theory: NEGF + DFT

Transport Theory: NEGF + DFT

Metal – Water system

Fig. 1 (Color online) (a) Schematic view of the metal-water system used for the non-equilibrium calculations; the left (right) electrodes (LE/RE) and scattering region (SR) are indicated. (b) Sketch of the effect of a positive bias potential on a parallel plate capacitor; the corresponding charge accumulated in each plate as well as the bias ramp are shown.

Luana S. Pedroza, Pedro Brandimarte, Alexandre Reily Rocha, Marivi Fernandez-Serra, Chem. Science 2018

Fig. 4 Relaxed configurations of the water molecule on the Au surface for different bias voltages (+1.5 V \rightarrow +, 0 V, and -1.5 V \rightarrow -), the corresponding angles, and the estimated dipole moment (details in ESI†). The angle α is the angle between the molecular plane and the surface plane, θ is the angle between the isolated molecule dipole and the surface normal, and γ is the angle between the isolated molecule dipole and that calculated from the charge density of the combined Au + H₂O system.

Pauli repulsion- bias dependent

Fig. 6 Differences in the charge density between the Au + water system, a parallel plate capacitor and an isolated H₂O molecule submitted to an equivalent electric field for (a) V = 1.5 V, (b) V = 0, and (c) V = -1.5 V. An isosurface value of $\pm 8.4 \times 10^{-3}$ e per Å³ was considered in all of the plots, where red (blue) indicates an excess (deficiency) of electrons.

Luana S. Pedroza, Pedro Brandimarte, Alexandre Reily Rocha, Marivi Fernandez-Serra, Chem. Science 2018

Conclusion

- Order of water at biased interfaces reflects two phases instabilities.
- DFT combined with NEGF can be used to describe water-metal systems under an external bias potent
- This framework allows for a description of a truly semi-infinite metallic electrode that sets a reference chemical potential that can be controlled by applying an external bias without adding/ removing additional charge to the system.
- This methodology now allows one to properly calculate the forces and therefore perform relaxation or dynamics of water-metal systems out of equilibrium, simulating an electrochemical cell in the sense that ionic currents could be considered now.