
GPU acceleration of plane-wave codes using SIRIUS library
Materials Design Ecosystem at the Exascale: High-Performance and High-Throughput Computing
Anton Kozhevnikov, CSCS
January 29, 2018

Introduction

Piz Daint: #3 supercomputer in the world

Cray XC50, 5320 nodes

Intel Xeon E5-2690v3 12C, 2.6GHz, 64GB + NVIDIA Tesla P100 16GB
4.761 Teraflops / node

Piz Daint node layout

CPU
~500 Gigaflops

GPU
~4.2 Teraflops

16 Gb of
high

bandwidth
memory

64 GB of
DDR4 host

memory

732 GB/s
32 GB/s

bidirectional 
over

PCIe x16
~60 GB/s

Porting codes to GPUs

No magic “silver bullet” exists!

Porting codes to GPUs

No magic “silver bullet” exists!

Usual steps in porting codes to GPUs

▪ cleanup and refactor the code

▪ (possibly) change the data layout

▪ fully utilize CPU threads and prepare code for node-level parallelization

▪ move compute-intensive kernels to GPUs

Porting codes to GPUs

No magic “silver bullet” exists!

Usual steps in porting codes to GPUs

Porting codes to GPUs
▪ CUDA (C / C++ / Fortran)

▪ OpenACC

▪ OpenCL

▪ OpenMP 4.0

Porting codes to GPUs
▪ CUDA (C / C++ / Fortran)

▪ OpenACC

▪ OpenCL

▪ OpenMP 4.0

Why do we need a separation of concerns?

Why do we need a separation of concerns?

Computational
scientists

Code
developers

Users

Why do we need a separation of concerns?

Supercomputer Code

Computational
scientists

Code
developers

Users

Why do we need a separation of concerns?

Supercomputer Code

Computational
scientists

Code
developers

Users

Why do we need a separation of concerns?

Supercomputer Code

Computational
scientists

Code
developers

Users

Electronic-structure codes

Electronic structure codes

Periodic Bloch functions
(plane-waves or similar) Localized orbitals

Full-potential
FLEUR
Wien2K
Exciting

Elk

FHI-aims
FPLO

Pseudo-potential

VASP
CPMD

Quantum ESPRESSO
Abinit
Qbox

CP2K
SIESTA
OpenMX

Atomic
potential treatment

Basis functions
for KS states

Delta DFT codes effort

Pseudopotential plane-wave method

▪ Unit cell is mapped to a regular grid
▪ All functions are expanded in plane-waves
▪ Atomic potential is replaced by a pseudopotential V̂PS = V

loc

(r) +
X

↵

X

⇠⇠

0

|�↵

⇠

iD↵

⇠⇠

0h�↵

⇠

0 |

Pseudopotential plane-wave method

▪ Unit cell is mapped to a regular grid
▪ All functions are expanded in plane-waves
▪ Atomic potential is replaced by a pseudopotential

Basis functions:

'G+k(r) =
1p
⌦
ei(G+k)r

V̂PS = V
loc

(r) +
X

↵

X

⇠⇠

0

|�↵

⇠

iD↵

⇠⇠

0h�↵

⇠

0 |

Pseudopotential plane-wave method

▪ Unit cell is mapped to a regular grid
▪ All functions are expanded in plane-waves
▪ Atomic potential is replaced by a pseudopotential

Basis functions:

'G+k(r) =
1p
⌦
ei(G+k)r

Potential and density:

V (r) =
X

G

V (G)eiGr ⇢(r) =
X

G

⇢(G)eiGr

V̂PS = V
loc

(r) +
X

↵

X

⇠⇠

0

|�↵

⇠

iD↵

⇠⇠

0h�↵

⇠

0 |

Pseudopotential plane-wave method

▪ Approximation to atomic potential

▪ Core states are excluded

▪ Number of basis functions: ~1000 / atom

▪ Number of valence states: ~0.001 - 0.01% of the total basis size

▪ Efficient iterative subspace diagonalization schemes exist

▪ Atomic forces can be easily computed

▪ Stress tensor can be easily computed

Full-potential linearized augmented plane-wave method

Interstitial

atom #1
atom #2

▪ Unit cell is partitioned into “muffin-tin” spheres and interstitial region
▪ Inside MT spheres spherical harmonic expansion is used
▪ In the interstitial region functions are expanded in plane-waves

Full-potential linearized augmented plane-wave method

Interstitial

atom #1
atom #2

▪ Unit cell is partitioned into “muffin-tin” spheres and interstitial region
▪ Inside MT spheres spherical harmonic expansion is used
▪ In the interstitial region functions are expanded in plane-waves

Basis functions:

'G+k(r) =

8
>>><

>>>:

X

`m

O↵

X̀

⌫=1

A↵
`m⌫(G+ k)u↵

`⌫(r)Y`m(r̂) r 2 MT↵

1p
⌦
ei(G+k)r r 2 I

Full-potential linearized augmented plane-wave method

Interstitial

atom #1
atom #2

▪ Unit cell is partitioned into “muffin-tin” spheres and interstitial region
▪ Inside MT spheres spherical harmonic expansion is used
▪ In the interstitial region functions are expanded in plane-waves

Basis functions:

'G+k(r) =

8
>>><

>>>:

X

`m

O↵

X̀

⌫=1

A↵
`m⌫(G+ k)u↵

`⌫(r)Y`m(r̂) r 2 MT↵

1p
⌦
ei(G+k)r r 2 I

Potential and density:

V (r) =

8
>><

>>:

X

`m

V ↵
`m(r)Y`m(r̂) r 2 MT↵

X

G

V (G)eiGr r 2 I
⇢(r) =

8
>><

>>:

X

`m

⇢↵`m(r)Y`m(r̂) r 2 MT↵

X

G

⇢(G)eiGr r 2 I

Full-potential linearized augmented plane-wave method

▪ No approximation to atomic potential

▪ Core states are included

▪ Number of basis functions: ~100 / atom

▪ Number of valence states: ~15-20% of the total basis size

▪ Large condition number of the overlap matrix

▪ Full diagonalization of dense matrix is required (iterative subspace diagonalization schemes

are not efficient)

▪ Atomic forces can be easily computed

▪ Stress tensor can’t be easily computed (N-point numerical scheme is often required)

Common features of the FP-LAPW and PP-PW methods
▪ Definition of the unit cell (atoms, atom types, lattice vectors, symmetry

operations, etc.)

▪ Definition of the reciprocal lattice, plane-wave cutoffs, G vectors, G+k vectors

▪ Definition of the wave-functions

▪ FFT driver

▪ Generation of the charge density on the regular grid

▪ Generation of the XC-potential

▪ Symmetrization of the density, potential and occupancy matrices

▪ Low-level numerics (spherical harmonics, Bessel functions, Gaunt coefficients,
spline interpolation, Wigner D-matrix, linear algebra wrappers, etc.)

SIRIUS library

Motivation for a common domain specific library

Quantum ESPRESSO

inherent PW / PAW
implementation

BLAS, PBLAS, LAPACK, ScaLAPACK, FFT

Exciting / Elk

inherent LAPW
implementation

CPU

Extend the legacy Fortran codes with the API calls to a domain-specific library
which runs on GPUs and other novel architectures.

Motivation for a common domain specific library

Quantum ESPRESSO

inherent PW / PAW
implementation

BLAS, PBLAS, LAPACK, ScaLAPACK, FFT

Exciting / Elk

inherent LAPW
implementation

CPU

SIRIUS domain specific library
LAPW / PW / PAW implementation

Quantum ESPRESSO

inherent PW / PAW
implementation

Exciting / Elk

inherent LAPW
implementation

BLAS, PBLAS, LAPACK, ScaLAPACK, FFT,
cuBLAS, MAGMA, PLASMA, cuFFT

CPU GPU

Extend the legacy Fortran codes with the API calls to a domain-specific library
which runs on GPUs and other novel architectures.

SIRIUS domain specific library
LAPW / PW / PAW implementation

Where to draw the line?

Effective potential construction

Density mixing

Density generation

Eigen-value problem⇣
� 1

2
�+ veff (r)

⌘
 j(r) = "j j(r)

⇢(r) = ↵⇢new(r) + (1� ↵)⇢old(r)

⇢new(r) =
X

j

| j(r)|2v
eff

(r) =

Z
⇢(r0)

|r0 � r|dr
0 + v

XC

[⇢](r) + v
ext

(r)

Output:

total energy , atomic forces and stress tensor

charge density and magnetization

wave-functions and eigen energies j(r) "j
⇢(r) m(r)

F↵E
tot

�↵�

SIRIUS library

▪ full-potential (L)APW+lo
▪ non-magnetic, collinear and non-collinear magnetic ground states
▪ non-relativistic, ZORA and IORA valence solvers
▪ Dirac solver for core states

▪ norm-conserving, ultrasoft and PAW pseudopotentials
▪ non-magnetic, collinear and non-collinear magnetic ground states
▪ spin-orbit correction
▪ atomic forces
▪ stress tensor
▪ Gamma-point case

SIRIUS library

mdarrayCommunicator splindex matrix3d vector3d

SIRIUS is a collection of classes that abstract away the different building blocks of PW and LAPW codes.
The class composition hierarchy starts from the most primitive classes (Communicator, mdarray, etc.) and
progresses towards several high-level classes (DFT_ground_state, Band, Potential, etc.). The code is
written in C++11 with MPI, OpenMP and CUDA programming models.

Atom Spline

Periodic_function

K_point

Step_function

Matching_coefficients

GvecMPI_grid

dmatrix
FFT3DBLACS_grid

linalg
Eigensolver Wave_functions

Atom_type Radial_grid
Unit_cell Radial_integrals Augmentation_operator

Simulation_context

Non_local_operator

Potential
Local_operator

Band
DFT_ground_state

Beta_projectors

Density
K_point_set

https://github.com/electronic-structure/SIRIUS

https://github.com/electronic-structure/SIRIUS

Doxygen documentation

https://electronic-structure.github.io/SIRIUS-doc/

sirius::Local_operator

sirius::Smooth_periodic

function< double > theta

sddk::mdarray< double

_complex, 1 >

buf_rg_

vphi2_

vphi1_

f_pw_fft_

f_pw_local_

sddk::FFT3D

fft_buffer_aux2_

fft_buffer_aux1_

fft_buffer_

sddk::mdarray_base

< double_complex, N >

sddk::mdarray< double, 1 >

pw_ekin_

f_rg_

sddk::Gvec

gvec_shell_len_

sddk::mdarray_base

< double, N >

sddk::Gvec_partition

gkvec_p_

gvec_coarse_p_

gvec_partition_

sddk::mdarray< int, 1 >
zcol_offs_

gvec_shell_

gvec_base_mapping_

z_offsets_

map_gvec_to_fft

buffer

map_gvec_to_fft

_buffer_x0y0_

z_sizes_

sddk::mdarray_base

< int, N >

sddk::mdarray< int, 3 >

sddk::mdarray< int, 2 >

sddk::block_data_descriptor

gvec_distr_fft_

gvec_fft_slab_

zcol_distr_fft_

gvec_distr_

zcol_distr_

sddk::Communicator

comm_ortho_fft_

fft_comm_

comm_

comm_

gvec_

gvec_base_

gvec_index_by_xy_

sddk::mdarray< uint32

_t, 1 >
gvec_full_index_

sddk::mdarray_base

< uint32_t, N >

geometry3d::vector3d

< double >

vk_

sirius::Unit_cell_input

a2_

a1_

a0_

std::array< double

, 3 >

fft_coarse_

z_col_pos_

sddk::splindex< block >

spl_z_

sddk::splindex_base

< int >

sddk::mdarray< char, 1 >
cufft_work_buf_

sddk::mdarray_base

< char, N >

sddk::FFT3D_grid

grid_

sirius::Simulation

_parameters

param_

sirius::Parameters

_input parameters_input_

sirius::Control_input
control_input_

sirius::Hubbard_input
hubbard_input_

sirius::Settings_input settings_input_

unit_cell_input_

sirius::Iterative_solver

_input

iterative_solver_input_

sirius::Mixer_input

mixer_input_

https://electronic-structure.github.io/SIRIUS-doc/

Development cycle

QEF/q-e/master

/q-e/master

/q-e/sirius

Pull request Pull request

https://github.com/electronic-structure/q-e

https://github.com/electronic-structure/q-e

Example of QE/SIRIUS interoperability

QE SIRIUSInitialization phase
read input file, read pseudopotentials,
create a list of k-points, initialize data

structures, communicators, etc.

initialize simulation context

set k-points

initialize Density class

initialize Potential class

generate initial density

initialize DFT_ground_state class

set unit cell parameters (lattice vectors, atom types,
atomic positions, etc.), cutoffs and other parameters

initialize K_point_set class

get rho(G) and mag(G)

Example of QE/SIRIUS interoperability

QE SIRIUSInitialization phase
read input file, read pseudopotentials,
create a list of k-points, initialize data

structures, communicators, etc.

initialize simulation context

set k-points

initialize Density class

initialize Potential class

generate initial density

initialize DFT_ground_state class

set unit cell parameters (lattice vectors, atom types,
atomic positions, etc.), cutoffs and other parameters

initialize K_point_set class

get rho(G) and mag(G)

SCF cycle

set Veff(G) generate Veff(r) and Veff(G)

solve band problem and find KS orbitals

get band energies

find band occupancies set band occupancies

QE SIRIUS

generate unsymmetrized rho(G) and mag(G)

get rho(G) and mag(G)

symmetrize rho(G) and mag(G)

mix rho(G) and mag(G)

generate forcesget forces

generate stress tensorget stress tensor

QE: variable cell relaxation of Si63Ge

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 64-atom unit cell of Si1-xGex The runs
we performed on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) , on dual
socket 18-core Intel Broadwell @2.1GHz nodes (CPU) and on nodes with 64-core Intel Xeon Phi processor
@1.3 GHz (KNL). Time for the full ‘vc-relax’ calculation is reported.

QE: variable cell relaxation of Si63Ge

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 64-atom unit cell of Si1-xGex The runs
we performed on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) , on dual
socket 18-core Intel Broadwell @2.1GHz nodes (CPU) and on nodes with 64-core Intel Xeon Phi processor
@1.3 GHz (KNL). Time for the full ‘vc-relax’ calculation is reported.

Ti
m

e
to

 s
ol

ut
io

n
(s

ec
)

0

500

1000

1500

2000

Number of nodes
1 2 5 10

QE (CPU) QE+SIRIUS (CPU) QE+SIRIUS (KNL) QE+SIRIUS (GPU)

QE: variable cell relaxation of Si63Ge

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 64-atom unit cell of Si1-xGex The runs
we performed on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) , on dual
socket 18-core Intel Broadwell @2.1GHz nodes (CPU) and on nodes with 64-core Intel Xeon Phi processor
@1.3 GHz (KNL). Time for the full ‘vc-relax’ calculation is reported.

Ti
m

e
to

 s
ol

ut
io

n
(s

ec
)

0

500

1000

1500

2000

Number of nodes
1 2 5 10

QE (CPU) QE+SIRIUS (CPU) QE+SIRIUS (KNL) QE+SIRIUS (GPU)

232

406

988

1901

QE: variable cell relaxation of Si63Ge

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 64-atom unit cell of Si1-xGex The runs
we performed on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) , on dual
socket 18-core Intel Broadwell @2.1GHz nodes (CPU) and on nodes with 64-core Intel Xeon Phi processor
@1.3 GHz (KNL). Time for the full ‘vc-relax’ calculation is reported.

Ti
m

e
to

 s
ol

ut
io

n
(s

ec
)

0

500

1000

1500

2000

Number of nodes
1 2 5 10

QE (CPU) QE+SIRIUS (CPU) QE+SIRIUS (KNL) QE+SIRIUS (GPU)

252

426

960

1860

232

406

988

1901

QE: variable cell relaxation of Si63Ge

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 64-atom unit cell of Si1-xGex The runs
we performed on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) , on dual
socket 18-core Intel Broadwell @2.1GHz nodes (CPU) and on nodes with 64-core Intel Xeon Phi processor
@1.3 GHz (KNL). Time for the full ‘vc-relax’ calculation is reported.

Ti
m

e
to

 s
ol

ut
io

n
(s

ec
)

0

500

1000

1500

2000

Number of nodes
1 2 5 10

QE (CPU) QE+SIRIUS (CPU) QE+SIRIUS (KNL) QE+SIRIUS (GPU)

298.44

519.5

1020

1800

252

426

960

1860

232

406

988

1901

QE: variable cell relaxation of Si63Ge

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 64-atom unit cell of Si1-xGex The runs
we performed on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) , on dual
socket 18-core Intel Broadwell @2.1GHz nodes (CPU) and on nodes with 64-core Intel Xeon Phi processor
@1.3 GHz (KNL). Time for the full ‘vc-relax’ calculation is reported.

Ti
m

e
to

 s
ol

ut
io

n
(s

ec
)

0

500

1000

1500

2000

Number of nodes
1 2 5 10

QE (CPU) QE+SIRIUS (CPU) QE+SIRIUS (KNL) QE+SIRIUS (GPU)

150
240

480

900

298.44

519.5

1020

1800

252

426

960

1860

232

406

988

1901

QE: ground state of Pt-cluster in water
Performance benchmark of the QE and SIRIUS-enabled QE codes for the 288-atom unit cell of Pt cluster
embedded in the water. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes
(BW), on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) and on nodes
with 64-core Intel Xeon Phi processor @1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs.
Time for the SCF ground state calculation is reported.

QE: ground state of Pt-cluster in water
Ti

m
e

to
 s

ol
ut

io
n

(s
ec

.)

0

100

200

300

400

Number of nodes
18 32 50

QE (CPU) QE+SIRIUS (CPU) QE+SIRIUS (KNL) QE+SIRIUS (GPU)

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 288-atom unit cell of Pt cluster
embedded in the water. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes
(BW), on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) and on nodes
with 64-core Intel Xeon Phi processor @1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs.
Time for the SCF ground state calculation is reported.

QE: ground state of Pt-cluster in water
Ti

m
e

to
 s

ol
ut

io
n

(s
ec

.)

0

100

200

300

400

Number of nodes
18 32 50

QE (CPU) QE+SIRIUS (CPU) QE+SIRIUS (KNL) QE+SIRIUS (GPU)

364.03

275.49

344.18

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 288-atom unit cell of Pt cluster
embedded in the water. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes
(BW), on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) and on nodes
with 64-core Intel Xeon Phi processor @1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs.
Time for the SCF ground state calculation is reported.

QE: ground state of Pt-cluster in water
Ti

m
e

to
 s

ol
ut

io
n

(s
ec

.)

0

100

200

300

400

Number of nodes
18 32 50

QE (CPU) QE+SIRIUS (CPU) QE+SIRIUS (KNL) QE+SIRIUS (GPU)

186.6
208.35

305.46

364.03

275.49

344.18

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 288-atom unit cell of Pt cluster
embedded in the water. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes
(BW), on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) and on nodes
with 64-core Intel Xeon Phi processor @1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs.
Time for the SCF ground state calculation is reported.

QE: ground state of Pt-cluster in water
Ti

m
e

to
 s

ol
ut

io
n

(s
ec

.)

0

100

200

300

400

Number of nodes
18 32 50

QE (CPU) QE+SIRIUS (CPU) QE+SIRIUS (KNL) QE+SIRIUS (GPU)

240249.88

330.14

186.6
208.35

305.46

364.03

275.49

344.18

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 288-atom unit cell of Pt cluster
embedded in the water. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes
(BW), on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) and on nodes
with 64-core Intel Xeon Phi processor @1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs.
Time for the SCF ground state calculation is reported.

QE: ground state of Pt-cluster in water
Ti

m
e

to
 s

ol
ut

io
n

(s
ec

.)

0

100

200

300

400

Number of nodes
18 32 50

QE (CPU) QE+SIRIUS (CPU) QE+SIRIUS (KNL) QE+SIRIUS (GPU)

112.34125.07

166.49

240249.88

330.14

186.6
208.35

305.46

364.03

275.49

344.18

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 288-atom unit cell of Pt cluster
embedded in the water. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes
(BW), on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) and on nodes
with 64-core Intel Xeon Phi processor @1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs.
Time for the SCF ground state calculation is reported.

Exciting: ground state of Mn-based MoF (C5H11MnNO6)
Performance benchmark of the QE and SIRIUS-enabled Exciting codes for the 96-atom unit cell of Mn metal-
organic framework. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (CPU)
and on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU).

Exciting: ground state of Mn-based MoF (C5H11MnNO6)
Ti

m
e

to
 s

ol
ut

io
n

(m
in

ut
es

)

0

75

150

225

300

375

450

Number of nodes
12 24 96 216

Exciting (CPU, sequential diagonalization with MKL) Exciting+SIRIUS (CPU, sequential diagonalization with MKL)
Exciting+SIRIUS (CPU, parallel diagonalization with ELPA) Exciting+SIRIUS (GPU, sequential diagonalization with MAGMA)

Performance benchmark of the QE and SIRIUS-enabled Exciting codes for the 96-atom unit cell of Mn metal-
organic framework. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (CPU)
and on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU).

Exciting: ground state of Mn-based MoF (C5H11MnNO6)
Ti

m
e

to
 s

ol
ut

io
n

(m
in

ut
es

)

0

75

150

225

300

375

450

Number of nodes
12 24 96 216

Exciting (CPU, sequential diagonalization with MKL) Exciting+SIRIUS (CPU, sequential diagonalization with MKL)
Exciting+SIRIUS (CPU, parallel diagonalization with ELPA) Exciting+SIRIUS (GPU, sequential diagonalization with MAGMA)

430.8

378.1

Performance benchmark of the QE and SIRIUS-enabled Exciting codes for the 96-atom unit cell of Mn metal-
organic framework. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (CPU)
and on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU).

Exciting: ground state of Mn-based MoF (C5H11MnNO6)
Ti

m
e

to
 s

ol
ut

io
n

(m
in

ut
es

)

0

75

150

225

300

375

450

Number of nodes
12 24 96 216

Exciting (CPU, sequential diagonalization with MKL) Exciting+SIRIUS (CPU, sequential diagonalization with MKL)
Exciting+SIRIUS (CPU, parallel diagonalization with ELPA) Exciting+SIRIUS (GPU, sequential diagonalization with MAGMA)

163.8
184.1

430.8

378.1

Performance benchmark of the QE and SIRIUS-enabled Exciting codes for the 96-atom unit cell of Mn metal-
organic framework. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (CPU)
and on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU).

Exciting: ground state of Mn-based MoF (C5H11MnNO6)
Ti

m
e

to
 s

ol
ut

io
n

(m
in

ut
es

)

0

75

150

225

300

375

450

Number of nodes
12 24 96 216

Exciting (CPU, sequential diagonalization with MKL) Exciting+SIRIUS (CPU, sequential diagonalization with MKL)
Exciting+SIRIUS (CPU, parallel diagonalization with ELPA) Exciting+SIRIUS (GPU, sequential diagonalization with MAGMA)

44.053.1

147.1

279.5

163.8
184.1

430.8

378.1

Performance benchmark of the QE and SIRIUS-enabled Exciting codes for the 96-atom unit cell of Mn metal-
organic framework. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (CPU)
and on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU).

Exciting: ground state of Mn-based MoF (C5H11MnNO6)
Ti

m
e

to
 s

ol
ut

io
n

(m
in

ut
es

)

0

75

150

225

300

375

450

Number of nodes
12 24 96 216

Exciting (CPU, sequential diagonalization with MKL) Exciting+SIRIUS (CPU, sequential diagonalization with MKL)
Exciting+SIRIUS (CPU, parallel diagonalization with ELPA) Exciting+SIRIUS (GPU, sequential diagonalization with MAGMA)

26.6
50.8 44.053.1

147.1

279.5

163.8
184.1

430.8

378.1

Performance benchmark of the QE and SIRIUS-enabled Exciting codes for the 96-atom unit cell of Mn metal-
organic framework. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (CPU)
and on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU).

Thank you for your attention.

