CSCS ETH:zurich

\) . Centro Svizzero di Calcolo Scientifico
" 2

Swiss National Supercomputing Centre

—_—

GPU acceleration of plane-wave codes using SIRIUS library
Materials Design Ecosystem at the Exascale: High-Performance and High-Throughput Computing
Anton Kozhevnikov, CSCS

January 29, 2018

<& _ cscs ETHzirich
\' ' Centro Svizzero di Calcolo Scientifico

Swiss National Supercomputing Centre

Introduction

Piz Daint: #3 supercomputer in the world

Cray XC50, 5320 nodes

Intel Xeon E5-2690v3 12C, 2.6GHz, 64GB + NVIDIA Tesla P100 16GB
4.761 Teraflops / node

\:o:¢ cscs ETH ziirich

Piz Daint node layout

32 GB/s
bidirectional 732 GB/s

~60 GB/s over
64 GB of PCle x16 16 Qb of
DDR4 host | D> < . GPU high
~4.2 Teraflops bandwidth
memory
memory

\b:o cscs ETH ziirich
AN

Porting codes to GPUs

No magic “silver bullet” exists!

\:o:o cscs ETH ziirich

Porting codes to GPUs

No magic “silver bullet” exists!

Usual steps in porting codes to GPUs

\:o:o cscs ETH ziirich

Porting codes to GPUs

No magic “silver bullet” exists!

Usual steps in porting codes to GPUs

= cleanup and refactor the code
= (possibly) change the data layout
= fully utilize CPU threads and prepare code for node-level parallelization
= move compute-intensive kernels to GPUs
&

\:0‘0 CSCS ETH:iirich

Porting codes to GPUs
= CUDA (C/C++/ Fortran) = OpenCL

8 _ global__ void add_pw_ekin_gpu_kernel(int num_gvec_ ,
double alpha__, __kernel void vector_add(const int n, _ global float *a, _ global float *b, _ global float *c) {
double const* pw_ekin__, const int i = get_global_id(®);
if (i <n){

c[i] = a[i] + b[i];

cuDoubleComplex const* phi_ ,
cuDoubleComplex const* vphi_ ,
cuDoubleComplex* hphi_)

{ }
int ig = blockIdx.x * blockDim.x + threadIdx.x; }
if (ig < num_gvec_) {

cuDoubleComplex z1 = cuCadd(vphi__[ig], make_cuDoubleComplex(alpha__ * pw_ekin__[ig] * phi_ [ig].x,
alpha__ * pw_ekin__[ig] * phi__[ig].y));
hphi__[ig] = cuCadd(hphi__[ig], z1);

}
}
= OpenACC = OpenMP 4.0
acc = 9
'$acc parallel present(x) #pragma omp target data map(tofrom: x[0:n],y[0@:n])
1$acc loop reduction(+:acc)
doi=1, N {
] : . #pragma omp target
acc = acc + x(i) * x(i)
enddo #pragma omp for
I$acc end parallel for (lnt 1= ei 1 < n; 1++)
call mpi_allreduce(acc, accglobal, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD, err) Y[l] += a X[l],
<@ ..
<¥,® CSCS ETHziirich
AN

Porting codes to GPUs
= CUDA (C/C++/ Fortran) = OpenCL

8 _ global__ void add_pw_ekin_gpu_kernel(int num_gvec__,
double alpha__, __kernel void vector_add(const int n, _ global float *a, _ global float *b, _ global float *c) {
double const* pw_ekin__, id(0);
cuDoubleComplex const* p
cuDoubleComplex const* vy
cuDoubleComplex* hphi_)

int ig = blockIdx.x * blockDim.x + threadIdx.x;
if (ig < num_gvec_) {

cuDoubleComplex z1 = cuCadd(vphi__[ig], make_cuDoubleCo

hphi_ [ig] = cuCadd(hphi_ [ig], z1);

= OpenACC 4.0

acc = 9

'$acc parallel present(x) arget data map(tofrom: x[@:n],y[@:n])
1$acc loop reduction(+:acc)
doi=1, N

acc = acc + x(i) * x(i)

Fpragma omp for
1$acc end parallel for (1'.1t 1= ai 1K< n; 1++)
call mpi_allreduce(acc, accglobal, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM WORLD, err) y[i] += a x[i];

enddo

\):o cscs ETH ziirich
AN

Why do we need a separation of concerns?

\:o:¢ cscs ETH ziirich

Why do we need a separation of concerns?

[Users]
Computational Code
scientists developers

\:o:o cscs ETH ziirich

Why do we need a separation of concerns?

[Users]
Computational Code
scientists developers

[Supercomputer] [Code]
<¥% cscs ETH ziirich

Why do we need a separation of concerns?

Users]
Computational Code
scientists developers

[Supercomputer] [Code]
% cscs ETH ziirich

AN

¢

¢

Why do we need a separation of concerns?

Code]

[Supercomputer
ETHzirich

A
< .0 CSCS

<& _ cscs ETHzirich
\' ' Centro Svizzero di Calcolo Scientifico

\‘ Swiss National Supercomputing Centre

Electronic-structure codes

Electronic structure codes

A
< .0 CSCS

Wien2K
Exciting
Elk

Quantum ESPRESSO
Abinit
Qbox

SIESTA
OpenMX

ETH:zurich

Delta DFT codes effort

9
<@,® CsCs

Code

Version

13.1

081213

development

version

3.1.5

5.1

081213

5212

7.8.2

0.26

Basis

LAPW/APW+lo

tier2 numerical orbitals

LAPW+xlo

APW+lo

plane waves

tier2 numerical orbitals

plane waves

plane waves

LAPW (+lo)

Electron treatment

all-electron

all-electron (relativistic atomic_zora
scalar)

all-electron

all-electron

(mixed NC/US/PAW

potential library)

all-electron (relativistic zora scalar 1e-
12)

PAW 2015 GW-ready (5.4)

PAW

all-electron

A-value

Authors

S. Cottenier [16]

ASE [2,16]

Exciting [10,16]

Elk [14,16]

QuantumESPRESSO

[12,16]

ASE [2]

K. Lejaeghere [16]

F.Jollet and M.

Torrent

FLEUR[9.76] ETH ziirich

Pseudopotential plane-wave method

= Unit cell is mapped to a regular grid
= All functions are expanded in plane-waves

= Atomic potential is replaced by a pseudopotential XA/PS = Vipe(r) + S: S: |ﬁg‘>Dg‘£, <ﬁg‘, |

a &&

\:o:o cscs ETH ziirich

Pseudopotential plane-wave method

= Unit cell is mapped to a regular grid
= All functions are expanded in plane-waves

= Atomic potential is replaced by a pseudopotential ‘A/PS = Vipe(r) + S: S: |ﬁg‘>Dg‘£, <ﬁg‘, |

a &&

Basis functions:

1 () r
pG+x(r) = ﬁe (GHO

\:o:o cscs ETH ziirich

Pseudopotential plane-wave method

= Unit cell is mapped to a regular grid
= All functions are expanded in plane-waves

= Atomic potential is replaced by a pseudopotential ‘A/PS = Vipe(r) + S: S: |B?>D?§’ <ﬁg‘, |

a &&

Basis functions:

1) r

Potential and density:

V)= Y VG p(r) =3 p(G)erS
G

\:o:o cscs ETH ziirich

Pseudopotential plane-wave method

Approximation to atomic potential

Core states are excluded

Number of basis functions: ~1000 / atom

Number of valence states: ~0.001 - 0.01% of the total basis size
Efficient iterative subspace diagonalization schemes exist
Atomic forces can be easily computed

Stress tensor can be easily computed

\:o:o cscs ETH ziirich

Full-potential linearized augmented plane-wave method

Unit cell is partitioned into “muffin-tin” spheres and interstitial region
Inside MT spheres spherical harmonic expansion is used
In the interstitial region functions are expanded in plane-waves

Interstitial

30
\\0‘0 CSCS

ETH:zurich

Full-potential linearized augmented plane-wave method

Unit cell is partitioned into “muffin-tin” spheres and interstitial region
Inside MT spheres spherical harmonic expansion is used
In the interstitial region functions are expanded in plane-waves

Basis functions:

pa+k(r) =

30
\\0‘0 CSCS

4 O?
ST 42, (G + K)ug, (1) Yim(E) € MTa

tm v=1

L«C,>i(G’+l‘)r rel

[VQ

Interstitial

ETH:zurich

Full-potential linearized augmented plane-wave method

Unit cell is partitioned into “muffin-tin” spheres and interstitial region
Inside MT spheres spherical harmonic expansion is used

In the interstitial region functions are expanded in plane-waves

Basis functions:

pa+k(r) =

4 O?
ST 42, (G + K)ug, (1) Yim(E) € MTa

Itm v=1
L iGior rel

[VQ

Potential and density:

V(r) =<

30
\\0‘0 CSCS

(N VL (1)Yem(F) reMTa

tm . r
Z V(G)e'ST rcl plx)
. G

Interstitial

r c MTo

recl

ETH:zurich

Full-potential linearized augmented plane-wave method

No approximation to atomic potential

Core states are included

Number of basis functions: ~100 / atom

Number of valence states: ~15-20% of the total basis size

Large condition number of the overlap matrix

Full diagonalization of dense matrix is required (iterative subspace diagonalization schemes
are not efficient)

Atomic forces can be easily computed

Stress tensor can’t be easily computed (N-point numerical scheme is often required)

\:o:o cscs ETH ziirich

Common features of the FP-LAPW and PP-PW methods

= Definition of the unit cell (atoms, atom types, lattice vectors, symmetry
operations, etc.)

= Definition of the reciprocal lattice, plane-wave cutoffs, G vectors, G+k vectors
= Definition of the wave-functions

= FFT driver

= Generation of the charge density on the regular grid

= Generation of the XC-potential

= Symmetrization of the density, potential and occupancy matrices

= Low-level numerics (spherical harmonics, Bessel functions, Gaunt coefficients,
spline interpolation, Wigner D-matrix, linear algebra wrappers, etc.)

\:o:o cscs ETH ziirich

<& _ cscs ETHzirich
\' ‘ Centro Svizzero di Calcolo Scientifico

\‘ Swiss National Supercomputing Centre

SIRIUS library

Motivation for a common domain specific library

Extend the legacy Fortran codes with the API calls to a domain-specific library

which runs on GPUs and other novel architectures.

9
<@,® CsCs

[Quantum ESPRESSO) (

Exciting / Ek |

inherent PW / PAW
implementation

inherent LAPW
implementation

[CPU

ETH:zurich

Motivation for a common domain specific library

Extend the legacy Fortran codes with the API calls to a domain-specific library
which runs on GPUs and other novel architectures.

" Quantum ESPRESSO | [Exciting/Elk)

inherent PW / PAW inherent LAPW
implementation implementation

9
<@,® CsCs

[Quantum ESPRESSO | [Exciting/ Elk |

inherent PW / PAW inherent LAPW
implementation implementation

ETH:zurich

Where to draw the line?

Output:

wave-functions ¢;(r) and eigen energies £ ;
charge density p(r) and magnetization m(r)

® total energy F,;, atomic forces F', and stress tensor 03
¥% cscs ETH:ziirich

SIRIUS library

= full-potential (L) APW+lo
= non-magnetic, collinear and non-collinear magnetic ground states
= non-relativistic, ZORA and IORA valence solvers
= Dirac solver for core states

= norm-conserving, ultrasoft and PAW pseudopotentials
= non-magnetic, collinear and non-collinear magnetic ground states
= spin-orbit correction
= atomic forces
= stress tensor
= Gamma-point case

\:o:o cscs ETH ziirich

SIRIUS library
https://github.com/electronic-structure/SIRIUS

SIRIUS is a collection of classes that abstract away the different building blocks of PW and LAPW codes.
The class composition hierarchy starts from the most primitive classes (Communicator, mdarray, etc.) and
progresses towards several high-level classes (DFT_ground_state, Band, Potential, etc.). The code is
written in C++11 with MPI, OpenMP and CUDA programming models.

DFT_ground_state
Band
Local_operator
Potential
Density
K_point_set
K_point
Non_local_operator
Beta_projectors Periodic_function Matching_coefficients
Simulation_context
Unit_cell Radial_integrals Augmentation_operator Step_function
Atom_type Radial_grid
Atom Spline
Eigensolver Wave_functions
linalg
dmatrix
BLACS_grid FFT3D
20 MPI_grid Gvec .
\\‘0‘ cscs = Communicator mdarray splindex matrix3d vector3d ETHzurich

https://github.com/electronic-structure/SIRIUS

Doxygen documentation

https://electronic-structure.qgithub.io/SIRIUS-doc/

+ dRIm_dr() - pw_ekin, ~
static void sirius::SHT::dRIm_dr (int Imax__, . -7
vector3d< double >& r_,
/
mdarray< double, 2> & data__ /

) m !:3 ya _vius::ConlroLinp __control_input_
girius::Hubbard_inp: _ hubbard_input_
irius::Settings_inpuf,

iterative_solver_input.

sirius::Iterative_sopagr -~
_input

Compute the derivatives of real spherical harmonics over the components of cartesian vector.

The following derivative is computed:

Ren(0,8) _ Ren0,,8,) 00, ORen0,,8,) 0,
or, 90, or, op, or,

The derivatives of angles are:

_ cos(¢,) cos(6,)
B r
cos(6,) sin(p,)
r
_ M std::array< double
r 8> sddk::mdarray_ba

< double_complex, N

99, _ _sin(@,)
or, sin(@,)r
9p, _ cos(¢,)

sin(@,)r

guec_distr_
zcol_distr_

\
\

\fit_buffer_aux2_
ft_buffer_aux1_ s
\

fft_buffer_ <
\

The derivative of ¢ has discontinuities at @ = 0,8 = x. This, however, is not a problem, because multiplication by the the derivative of R, removes it.
The following functions have to be hardcoded:

/
,/ comm_ortho_f
fft_col

R (0,)

£
ORen(6,4) 1
R 0)

script for

Rlm[l_, m_, th_, ph_] :=
If(m > 0, Sqrt[2]*ComplexExpand[Re[SphericalHarmonic¥(l, m, th, ph]]],
If(m < 0, Sqrt[2]*ComplexExpand[Im[SphericalHarmonicY[l, m, th, ph]]],
If[m == 0, ComplexExpand[Re[SphericalHarmonic¥[1l, 0, th, ph]]]]

z_offsets_
map_gvec_to_fft
buffer
map_gvec_to_fft
_buffer_x0y0_

1
]
Do[Print[FullSimplify[D[Rlm[l, m, theta, phi], theta]])], {1, 0, 4}, {m, -1, 1}]
Do[Print[FullSimplify[TrigExpand[D[RIlm[l, m, theta, phi], phi]/Sin[theta]]]], {1, 0, 4}, {m, -1, 1}]

ETH:zurich

https://electronic-structure.github.io/SIRIUS-doc/

Development cycle

https://github.com/electronic-structure/qg-e

QEF/qg-e/master
/g-e/master

/q-e/sirius

Pull request Pull request

\b:o cscs ETH ziirich
AN

https://github.com/electronic-structure/q-e

Example of QE/SIRIUS interoperability

QE Initialization phase SIRIUS

read input file, read pseudopotentials,
create a list of k-points, initialize data
structures, communicators, etc.

set unit cell parameters (lattice vectors, atom types,
atomic positions, etc.), cutoffs and other parameters

initialize simulation context

set k-points >

initialize K_point_set class
initialize Density class

initialize Potential class

initialize DFT_ground_state class

generate initial density
get rho(G) and mag(G)

30
\\0‘0 CSCS

ETH:zurich

Example of QE/SIRIUS interoperability

QE Initialization phase SIRIUS

read input file, read pseudopotentials,

QE SCF cycle SIRIUS

create a list of k-points, initialize data
structures, communicators, etc.

set unit cell parameters (lattice vectors, atom types,
atomic positions, etc.), cutoffs and other parameters

initialize simulation context

set k-points >

initialize K_point_set class
initialize Density class

initialize Potential class

initialize DFT_ground_state class

generate initial density

-

—p solve band problem and find KS orbitals

get band energies

find band occupancies set band occupancies >

generate unsymmetrized rho(G) and mag(G)

get rho(G) and mag(G)

symmetrize rho(G) and mag(G)

mix rho(G) and mag(G)

get rho(G) and mag(G)

30
\\0‘0 CSCS

—8 generate Vesi(r) and Ves(G) set Vet(G) >
get forces generate forces
0 get stress tensor generate stress tensor
ETH:zirich

QE: variable cell relaxation of Sis3Ge

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 64-atom unit cell of Si1xGex The runs
we performed on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) , on dual
socket 18-core Intel Broadwell @2.1GHz nodes (CPU) and on nodes with 64-core Intel Xeon Phi processor
@1.3 GHz (KNL). Time for the full ‘vc-relax’ calculation is reported.

\:o:o cscs ETH ziirich

QE: variable cell relaxation of Sis3Ge

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 64-atom unit cell of Si1xGex The runs
we performed on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) , on dual
socket 18-core Intel Broadwell @2.1GHz nodes (CPU) and on nodes with 64-core Intel Xeon Phi processor
@1.3 GHz (KNL). Time for the full ‘vc-relax’ calculation is reported.

B QE (CPU) QE+SIRIUS (CPU) B QE+SIRIUS (KNL) B QE+SIRIUS (GPU)
2000

—
0)
o
o

1000

500

Time to solution (sec)

0

<¥% cscs Number of nodes ETH ziirich

QE: variable cell relaxation of Sig;Ge

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 64-atom unit cell of Si1xGex The runs
we performed on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) , on dual
socket 18-core Intel Broadwell @2.1GHz nodes (CPU) and on nodes with 64-core Intel Xeon Phi processor
@1.3 GHz (KNL). Time for the full ‘vc-relax’ calculation is reported.

B QE (CPU) B QE+SIRIUS (CPU) B QE+SIRIUS (KNL) B QE+SIRIUS (GPU)

2000
5
g 1500
[
5
2 1000
(7))
I
€ 500
" .

) R

\:o:¢ cscs Number of nodes ETH ziirich

QE: variable cell relaxation of Sis3Ge

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 64-atom unit cell of Si1xGex The runs
we performed on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) , on dual
socket 18-core Intel Broadwell @2.1GHz nodes (CPU) and on nodes with 64-core Intel Xeon Phi processor
@1.3 GHz (KNL). Time for the full ‘vc-relax’ calculation is reported.

B QE (CPU) B QE+SIRIUS (CPU) B QE+SIRIUS (KNL) B QE+SIRIUS (GPU)
2000
5
g 1500
[
5
2 1000
(7))
I
€ 500
" ..
. S
1 2 5 10

\\b:o cscs Number of nodes ETH ziirich

QE: variable cell relaxation of Sis3Ge

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 64-atom unit cell of Si1xGex The runs
we performed on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) , on dual
socket 18-core Intel Broadwell @2.1GHz nodes (CPU) and on nodes with 64-core Intel Xeon Phi processor
@1.3 GHz (KNL). Time for the full ‘vc-relax’ calculation is reported.

B QE (CPU) B QE+SIRIUS (CPU) B QE+SIRIUS (KNL) B QE+SIRIUS (GPU)
2000

1000
III .ll
0 EEl
1 2 5 10

\\b:o cscs Number of nodes ETH ziirich

—
&)
o
o

Time to solution (sec)

QE: variable cell relaxation of Sis3Ge

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 64-atom unit cell of Si1xGex The runs
we performed on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) , on dual
socket 18-core Intel Broadwell @2.1GHz nodes (CPU) and on nodes with 64-core Intel Xeon Phi processor
@1.3 GHz (KNL). Time for the full ‘vc-relax’ calculation is reported.

B QE (CPU) B QE+SIRIUS (CPU) B QE+SIRIUS (KNL) B QE+SIRIUS (GPU)
2000

—
&)
o
o

1000

500

Time to solution (sec)

0

10

\\b:o cscs Number of nodes ETH ziirich

QE: ground state of Pt-cluster in water

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 288-atom unit cell of Pt cluster
embedded in the water. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes
(BW), on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) and on nodes
with 64-core Intel Xeon Phi processor @1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs.

Time for the SCF ground state calculation is reported.

\:o:o cscs ETH ziirich

QE: ground state of Pt-cluster in water

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 288-atom unit cell of Pt cluster
embedded in the water. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes
(BW), on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) and on nodes
with 64-core Intel Xeon Phi processor @1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs.
Time for the SCF ground state calculation is reported.

B QE (CPU) B QE+SIRIUS (CPU) B QE+SIRIUS (KNL) QE+SIRIUS (GPU)
400
'S 300
3
C
9O
é 200
o
£
= 100
0
@ 18 32 50 .
\\0‘0 CSCS Number of nodes ETHzurich

QE: ground state of Pt-cluster in water

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 288-atom unit cell of Pt cluster
embedded in the water. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes
(BW), on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) and on nodes
with 64-core Intel Xeon Phi processor @1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs.
Time for the SCF ground state calculation is reported.

® QE (CPU) B QE+SIRIUS (CPU) B QE+SIRIUS (KNL) B QE+SIRIUS (GPU)
400
'S 300
)
C
O
é 200
o]
()
E 100
0
° 18 32 50 o
\\).0 CSCS Number of nodes ETH:iirich

QE: ground state of Pt-cluster in water

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 288-atom unit cell of Pt cluster
embedded in the water. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes
(BW), on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) and on nodes
with 64-core Intel Xeon Phi processor @1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs.
Time for the SCF ground state calculation is reported.

M QE (CPU) B QE+SIRIUS (CPU) B QE+SIRIUS (KNL) M QE+SIRIUS (GPU)

400

w
o
o

200

Time to solution (sec.)

100

0
32

Y 3 o
U CSCS
\‘0. Number of nodes ETHzurich

QE: ground state of Pt-cluster in water

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 288-atom unit cell of Pt cluster
embedded in the water. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes
(BW), on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) and on nodes
with 64-core Intel Xeon Phi processor @1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs.
Time for the SCF ground state calculation is reported.

M QE (CPU) B QE+SIRIUS (CPU) B QE+SIRIUS (KNL) M QE+SIRIUS (GPU)

400

w
o
o

200

Time to solution (sec.)

100

0

32

Y 3 o
U CSCS
\‘0. Number of nodes ETHzurich

QE: ground state of Pt-cluster in water

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 288-atom unit cell of Pt cluster
embedded in the water. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes
(BW), on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) and on nodes
with 64-core Intel Xeon Phi processor @1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs.
Time for the SCF ground state calculation is reported.

M QE (CPU) B QE+SIRIUS (CPU) B QE+SIRIUS (KNL) M QE+SIRIUS (GPU)

400

w
o
o

200

Time to solution (sec.)

100

0

18 32

Y 3 o
U CSCS
\‘0. Number of nodes ETHzurich

Exciting: ground state of Mn-based MoF (CsH11MnNOg)

Performance benchmark of the QE and SIRIUS-enabled Exciting codes for the 96-atom unit cell of Mn metal-
organic framework. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (CPU)
and on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU).

\:o:o cscs ETH ziirich

Exciting: ground state of Mn-based MoF (CsH11MnNOg)

Performance benchmark of the QE and SIRIUS-enabled Exciting codes for the 96-atom unit cell of Mn metal-
organic framework. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (CPU)
and on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU).

I Exciting (CPU, sequential diagonalization with MKL) B Exciting+SIRIUS (CPU, sequential diagonalization with MKL)
Exciting+SIRIUS (CPU, parallel diagonalization with ELPA) B Exciting+SIRIUS (GPU, sequential diagonalization with MAGMA)

450

w
N
ol

300

225

150

Time to solution (minutes)

~
0)

0
<® 12 24 96 216 o
&P @ CSCS ETHzurich

e Number of nodes

Exciting: ground state of Mn-based MoF (CsH11MnNOs)

Performance benchmark of the QE and SIRIUS-enabled Exciting codes for the 96-atom unit cell of Mn metal-
organic framework. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (CPU)
and on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU).

I Exciting (CPU, sequential diagonalization with MKL) B Exciting+SIRIUS (CPU, sequential diagonalization with MKL)
Exciting+SIRIUS (CPU, parallel diagonalization with ELPA) B Exciting+SIRIUS (GPU, sequential diagonalization with MAGMA)
450
@ 375
2
=
E 300
-
2 225
>
)
(7))
o 150
()
£
= 75
0
<® 12 24 96 216 .
S X g CSCS ETHzurich

Number of nodes

Exciting: ground state of Mn-based MoF (CsH11MnNOs)

Performance benchmark of the QE and SIRIUS-enabled Exciting codes for the 96-atom unit cell of Mn metal-
organic framework. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (CPU)
and on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU).

I Exciting (CPU, sequential diagonalization with MKL) B Exciting+SIRIUS (CPU, sequential diagonalization with MKL)
Exciting+SIRIUS (CPU, parallel diagonalization with ELPA) B Exciting+SIRIUS (GPU, sequential diagonalization with MAGMA)

450

w
N
ol

300

225

150

Time to solution (minutes)

~
0)

0
96 216
\\):o CSCS ETHziirich

Number of nodes

Exciting: ground state of Mn-based MoF (CsH11MnNOs)

Performance benchmark of the QE and SIRIUS-enabled Exciting codes for the 96-atom unit cell of Mn metal-
organic framework. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (CPU)
and on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU).

I Exciting (CPU, sequential diagonalization with MKL) B Exciting+SIRIUS (CPU, sequential diagonalization with MKL)
Exciting+SIRIUS (CPU, parallel diagonalization with ELPA) B Exciting+SIRIUS (GPU, sequential diagonalization with MAGMA)

450

w
N
ol

300

279.5

225

150

1471

Time to solution (minutes)

~
0)

44.0

0
‘o 12 24 96 216 o
S ‘0 CSCS ETHzurich

Number of nodes

Exciting: ground state of Mn-based MoF (CsH11MnNOs)

Performance benchmark of the QE and SIRIUS-enabled Exciting codes for the 96-atom unit cell of Mn metal-
organic framework. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (CPU)
and on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU).

I Exciting (CPU, sequential diagonalization with MKL) B Exciting+SIRIUS (CPU, sequential diagonalization with MKL)
Exciting+SIRIUS (CPU, parallel diagonalization with ELPA) B Exciting+SIRIUS (GPU, sequential diagonalization with MAGMA)

450

w
N
ol

300

225

150

Time to solution (minutes)

~
0)

931 44.0

0
96 216
\\):o CSCS ETHziirich

Number of nodes

Centro Svizzero di Calcolo Scientifico
Swiss National Supercomputing Centre

(§. cSCS ETHziirich
<@

Thank you for your attention.

