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Introduction



Piz Daint: #3 supercomputer in the world

Cray XC50, 5320 nodes

Intel Xeon E5-2690v3 12C, 2.6GHz, 64GB + NVIDIA Tesla P100 16GB 
4.761 Teraflops / node



Piz Daint node layout

CPU 
~500 Gigaflops

GPU 
~4.2 Teraflops

16 Gb of 
high 

bandwidth 
memory

64 GB of 
DDR4 host 

memory

732 GB/s 
32 GB/s 

bidirectional 
over 

PCIe x16
~60 GB/s 
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▪ cleanup and refactor the code 

▪ (possibly) change the data layout 

▪ fully utilize CPU threads and prepare code for node-level parallelization 

▪ move compute-intensive kernels to GPUs
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Porting codes to GPUs
▪ CUDA (C / C++ / Fortran) 

▪ OpenACC 

▪ OpenCL 

▪ OpenMP 4.0
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Electronic structure codes

Periodic Bloch functions 
(plane-waves or similar) Localized orbitals

Full-potential
FLEUR 
Wien2K 
Exciting 

Elk

FHI-aims 
FPLO

Pseudo-potential

VASP 
CPMD 

Quantum ESPRESSO 
Abinit 
Qbox

CP2K 
SIESTA 
OpenMX

Atomic  
potential treatment

Basis functions 
for KS states



Delta DFT codes effort



Pseudopotential plane-wave method

▪ Unit cell is mapped to a regular grid 
▪ All functions are expanded in plane-waves 
▪ Atomic potential is replaced by a pseudopotential V̂PS = V
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Pseudopotential plane-wave method

▪ Unit cell is mapped to a regular grid 
▪ All functions are expanded in plane-waves 
▪ Atomic potential is replaced by a pseudopotential

Basis functions:
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Pseudopotential plane-wave method

▪ Unit cell is mapped to a regular grid 
▪ All functions are expanded in plane-waves 
▪ Atomic potential is replaced by a pseudopotential

Basis functions:

'G+k(r) =
1p
⌦
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Potential and density:
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Pseudopotential plane-wave method

▪ Approximation to atomic potential 

▪ Core states are excluded 

▪ Number of basis functions: ~1000 / atom 

▪ Number of valence states: ~0.001 - 0.01% of the total basis size 

▪ Efficient iterative subspace diagonalization schemes exist 

▪ Atomic forces can be easily computed 

▪ Stress tensor can be easily computed



Full-potential linearized augmented plane-wave method

Interstitial

atom #1
atom #2

▪ Unit cell is partitioned into “muffin-tin” spheres and interstitial region 
▪ Inside MT spheres spherical harmonic expansion is used 
▪ In the interstitial region functions are expanded in plane-waves
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Full-potential linearized augmented plane-wave method

▪ No approximation to atomic potential 

▪ Core states are included 

▪ Number of basis functions: ~100 / atom 

▪ Number of valence states: ~15-20% of the total basis size 

▪ Large condition number of the overlap matrix 

▪ Full diagonalization of dense matrix is required (iterative subspace diagonalization schemes 

are not efficient) 

▪ Atomic forces can be easily computed 

▪ Stress tensor can’t be easily computed (N-point numerical scheme is often required)



Common features of the FP-LAPW and PP-PW methods
▪ Definition of the unit cell (atoms, atom types, lattice vectors, symmetry 

operations, etc.) 

▪ Definition of the reciprocal lattice, plane-wave cutoffs, G vectors, G+k vectors 

▪ Definition of the wave-functions 

▪ FFT driver 

▪ Generation of the charge density on the regular grid 

▪ Generation of the XC-potential 

▪ Symmetrization of the density, potential and occupancy matrices 

▪ Low-level numerics (spherical harmonics, Bessel functions, Gaunt coefficients, 
spline interpolation, Wigner D-matrix, linear algebra wrappers, etc.) 



SIRIUS library



Motivation for a common domain specific library

Quantum ESPRESSO 

inherent PW / PAW 
implementation

BLAS, PBLAS, LAPACK, ScaLAPACK, FFT

Exciting / Elk 

inherent LAPW 
implementation

CPU

Extend the legacy Fortran codes with the API calls to a domain-specific library 
which runs on GPUs and other novel architectures.
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implementation

Exciting / Elk 
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BLAS, PBLAS, LAPACK, ScaLAPACK, FFT, 
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Extend the legacy Fortran codes with the API calls to a domain-specific library 
which runs on GPUs and other novel architectures.



SIRIUS domain specific library 
LAPW / PW / PAW implementation

Where to draw the line?

Effective potential construction

Density mixing

Density generation
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SIRIUS library

▪ full-potential (L)APW+lo 
▪ non-magnetic, collinear and non-collinear magnetic ground states 
▪ non-relativistic, ZORA and IORA valence solvers 
▪ Dirac solver for core states 

▪ norm-conserving, ultrasoft and PAW pseudopotentials 
▪ non-magnetic, collinear and non-collinear magnetic ground states 
▪ spin-orbit correction 
▪ atomic forces 
▪ stress tensor 
▪ Gamma-point case



SIRIUS library

mdarrayCommunicator splindex matrix3d vector3d

SIRIUS is a collection of classes that abstract away the different building blocks of PW and LAPW codes. 
The class composition hierarchy starts from the most primitive classes (Communicator, mdarray, etc.) and 
progresses towards several high-level classes (DFT_ground_state, Band, Potential, etc.). The code is 
written in C++11 with MPI, OpenMP and CUDA programming models.

Atom Spline

Periodic_function

K_point

Step_function

Matching_coefficients

GvecMPI_grid

dmatrix
FFT3DBLACS_grid

linalg
Eigensolver Wave_functions

Atom_type Radial_grid
Unit_cell Radial_integrals Augmentation_operator

Simulation_context

Non_local_operator

Potential
Local_operator

Band
DFT_ground_state

Beta_projectors

Density
K_point_set

https://github.com/electronic-structure/SIRIUS

https://github.com/electronic-structure/SIRIUS


Doxygen documentation

https://electronic-structure.github.io/SIRIUS-doc/

sirius::Local_operator

sirius::Smooth_periodic

_function< double > theta_

sddk::mdarray< double

_complex, 1 >
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_buffer_
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_buffer_x0y0_

z_sizes_

sddk::mdarray_base

< int, N >

sddk::mdarray< int, 3 >

sddk::mdarray< int, 2 >

sddk::block_data_descriptor

gvec_distr_fft_

gvec_fft_slab_

zcol_distr_fft_

gvec_distr_

zcol_distr_

sddk::Communicator

comm_ortho_fft_

fft_comm_

comm_

comm_

gvec_

gvec_base_

gvec_index_by_xy_

sddk::mdarray< uint32

_t, 1 >
gvec_full_index_

sddk::mdarray_base

< uint32_t, N >

geometry3d::vector3d

< double >

vk_

sirius::Unit_cell_input

a2_

a1_

a0_

std::array< double

, 3 >

fft_coarse_

z_col_pos_

sddk::splindex< block >

spl_z_

sddk::splindex_base

< int >

sddk::mdarray< char, 1 >
cufft_work_buf_

sddk::mdarray_base

< char, N >

sddk::FFT3D_grid

grid_

sirius::Simulation

_parameters

param_

sirius::Parameters

_input parameters_input_

sirius::Control_input
control_input_

sirius::Hubbard_input
hubbard_input_

sirius::Settings_input settings_input_

unit_cell_input_

sirius::Iterative_solver

_input

iterative_solver_input_

sirius::Mixer_input

mixer_input_

https://electronic-structure.github.io/SIRIUS-doc/


Development cycle

QEF/q-e/master

/q-e/master

/q-e/sirius

Pull request Pull request

https://github.com/electronic-structure/q-e

https://github.com/electronic-structure/q-e


Example of QE/SIRIUS interoperability

QE SIRIUSInitialization phase
read input file, read pseudopotentials, 
create a list of k-points, initialize data 

structures, communicators, etc.

initialize simulation context

set k-points

initialize Density class

initialize Potential class

generate initial density

initialize DFT_ground_state class

set unit cell parameters (lattice vectors, atom types, 
atomic positions, etc.), cutoffs and other parameters

initialize K_point_set class

get rho(G) and mag(G) 
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QE SIRIUSInitialization phase
read input file, read pseudopotentials, 
create a list of k-points, initialize data 

structures, communicators, etc.

initialize simulation context

set k-points

initialize Density class

initialize Potential class

generate initial density

initialize DFT_ground_state class

set unit cell parameters (lattice vectors, atom types, 
atomic positions, etc.), cutoffs and other parameters

initialize K_point_set class

get rho(G) and mag(G) 

SCF cycle

set Veff(G) generate Veff(r) and Veff(G) 

solve band problem and find KS orbitals

get band energies

find band occupancies set band occupancies

QE SIRIUS

generate unsymmetrized rho(G) and mag(G) 

get rho(G) and mag(G) 

symmetrize rho(G) and mag(G) 

mix rho(G) and mag(G) 

generate forcesget forces

generate stress tensorget stress tensor



QE: variable cell relaxation of Si63Ge

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 64-atom unit cell of Si1-xGex The runs 
we performed on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) , on dual 
socket 18-core Intel Broadwell @2.1GHz nodes (CPU) and on nodes with 64-core Intel Xeon Phi processor 
@1.3 GHz (KNL). Time for the full ‘vc-relax’ calculation is reported.
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QE: variable cell relaxation of Si63Ge

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 64-atom unit cell of Si1-xGex The runs 
we performed on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) , on dual 
socket 18-core Intel Broadwell @2.1GHz nodes (CPU) and on nodes with 64-core Intel Xeon Phi processor 
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QE: variable cell relaxation of Si63Ge

Performance benchmark of the QE and SIRIUS-enabled QE codes for the 64-atom unit cell of Si1-xGex The runs 
we performed on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) , on dual 
socket 18-core Intel Broadwell @2.1GHz nodes (CPU) and on nodes with 64-core Intel Xeon Phi processor 
@1.3 GHz (KNL). Time for the full ‘vc-relax’ calculation is reported.
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QE: ground state of Pt-cluster in water
Performance benchmark of the QE and SIRIUS-enabled QE codes for the 288-atom unit cell of Pt cluster 
embedded in the water. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes 
(BW), on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU) and on nodes 
with 64-core Intel Xeon Phi processor @1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs. 
Time for the SCF ground state calculation is reported.
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with 64-core Intel Xeon Phi processor @1.3 GHz (KNL). ELPA eigen-value solver was used for CPU runs. 
Time for the SCF ground state calculation is reported.
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Exciting: ground state of Mn-based MoF (C5H11MnNO6)
Performance benchmark of the QE and SIRIUS-enabled Exciting codes for the 96-atom unit cell of Mn metal-
organic framework. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (CPU) 
and on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU).
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Performance benchmark of the QE and SIRIUS-enabled Exciting codes for the 96-atom unit cell of Mn metal-
organic framework. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (CPU) 
and on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU).
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Performance benchmark of the QE and SIRIUS-enabled Exciting codes for the 96-atom unit cell of Mn metal-
organic framework. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (CPU) 
and on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU).



Exciting: ground state of Mn-based MoF (C5H11MnNO6)
Ti

m
e 

to
 s

ol
ut

io
n 

(m
in

ut
es

)

0

75

150

225

300

375

450

Number of nodes
12 24 96 216

Exciting (CPU, sequential diagonalization with MKL) Exciting+SIRIUS (CPU, sequential diagonalization with MKL)
Exciting+SIRIUS (CPU, parallel diagonalization with ELPA) Exciting+SIRIUS (GPU, sequential diagonalization with MAGMA)

26.6
50.8 44.053.1

147.1

279.5

163.8
184.1

430.8

378.1

Performance benchmark of the QE and SIRIUS-enabled Exciting codes for the 96-atom unit cell of Mn metal-
organic framework. The runs we performed on dual socket 18-core Intel Broadwell @2.1GHz nodes (CPU) 
and on hybrid nodes with 12-core Intel Haswell @2.5GHz + NVIDIA Tesla P100 card (GPU).



Thank you for your attention.


