Scaling performance In Power-Limited HPC Systems

Prof. Dr. Luca Benini

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

D-ITET, Chair of Digital Dircuits & Systems - Switzerland

Outline

- Power and Thermal Walls in HPC
- **☐** Power and Thermal Management
- **☐** Energy-efficient Hardware
- ☐ Conclusion

Power Wall → Avg

The second, Tianhe-2 (ex 1st) consumes 17.8 MW for "only" 33.2 PetaFLOPs, but...

Thermal Wall → Max+

Intel Haswell – E5-2699 v3 (18 core)

Up to **24°C** Temperature difference on DIE

More than **7°C** thermal heterogeneity under same workload

Dynamic thermal management (DTM)

HPC Architecture - Hardware

Cold air/water

A multi-scale parallel system

CPU

Compute node

Rack

HPC cluster

DPM, DTM are Multi-scale Problems!

HPC Architecture - Software

Programming & Scheduling model is essential!

Outline

- **☐** Power and Thermal Walls in HPC
- **☐** Power and Thermal Management
- **☐** Energy-efficient Hardware
- ☐ Conclusion

HW Support for DPM, DTM

Intel provides a HW power controller called Running Average Power Limit (RAPL).

Power Management → **Reactive**

A significant exploration work on RAPL control:

Zhang, H., & Hoffman, H. (2015). "A Quantitative Evaluation of the RAPL Power Control System".
Feedback Computing.

Quantify the behavior the control system in term of:

- > Stability: freedom from oscillation
- > Accuracy: convergence to the limit
- > Settling time: duration until limit is reached
- Maximum Overshoot: the maximum difference between the power limit and the measured power

Power Management → **HW Predictive**

on-line optimization policies

• A. Bartolini et al. "Thermal and Energy Managementof High-Performance Multicores: Distributed and Self-Calibrating Model-Predictive Controller." TPDS'13

Online techniques are capable of sensing changes in the workload distribution and setting the processor controls accordingly.

Power Management → SW predictive

❖ Predictive models to estimate the power consumption

- Borghesi, A., Conficoni, C., Lombardi, M., & Bartolini, A. "MS3: a Mediterranean-Stile Job Scheduler for Supercomputers-do less when it's too hot!". HPCS 2015
- Sîrbu, A., & Babaoglu, O. "Predicting system-level power for a hybrid supercomputer". HPCS 2016

Challenges

SW policies

HW mechanisms

No application awareness

- 1) Low-Overhead, accurate monitoring
- 2) Scalable data collections, analytics, decisions
- 3) Application awareness

Low Overhead, accurate Monitoring

High-resolution monitoring → more information available

Low Overhead, accurate Monitoring

Real-time Frequency analysis on power supply and more...

Solution – Dwarf In a Giant (DIG)

DIG in Real Life

Developing hardware extensions for fine-grained power monitoring: DIG deployed in production machines

- Intel Xeon E5 based
- Used for prototyping

- ARM64 Cavium based
- Commercial system
- with E4 PCP II

- IBM Power8 based
- Commercial system
- with E4 PCP III
- 18th in Green500

DIG Architecture

High Resolution Out-of-band Power Monitoring

- Overall node power consumption
- Can support edge computing/learning
- Platform independent (Intel, IBM, ARM)
- Sub-Watt precision
- Sampling rate @50kS/s (T=20us)

State-of-the art systems (Bull-HDEEM and PowerInsight)

- Max. 1 ms sampling period
- Use data only offline

Hackenberg et al. "HDEEM: high definition energy efficiency monitoring" Laros et al. "Powerinsight-a commodity power measurement capability."

Real-time Capabilities

DIG in production: E4's D.A.V.I.D.E.

Possible tasks of the PRUs: Averaging @ 1ms, 1s \rightarrow offline Computing, FFT \rightarrow edge analysis

Framework	Fs _{max} [kHz]	CPU Overhead
DIG	50	~40%
DIG+PRU, edge analysis	400	<5%
DIG+PRU, offline	800	<5%
Bull-HDEEM	1	?
PowerInsight	1	?

Scalable Data Collection, Analytics

Front-end

- MQTT Brokers
- Data Visualization
- NoSQL Storage
- Big Data Analytics

Back-end

 MQTT—enabled sensor collectors

MQTT to NoSQL Storage: MQTT2Kairosdb

= {Value;Timestamp}

Examon Analytics: Batch & Streaming

Streaming Analytics: virtual sensors!

Examon in production: CINECA's GALILEO

Data Ingestion Rate	~67K	Metrics/s
DB Bandwidth	~98	Mbit/s
DB Size	~1000	GB/week
DB Write Latency	20	us
DB Read Latency	4800	us

Tier1 system 0.5-1TB every week Tier0 *estimated* 10TB per 3.5 Days

Stream analytics & distributed processing are a necessity

Application Aware En2Sol Minimization

HARDWARE

Galileo: Tier-1 HPC system based on an IBM NeXtScale cluster

- Cluster: 516 nodes (14 rack)
- Node: Dual socket Intel Haswell E5-2630 v3
 CPUs with 8 cores at 2.4 GHz (85W TDP),
 DDR3 RAM 128 GB
- Power consumption: 360 KW
- OS: SMP CentOS Linux version 7.0
- Top500: Ranked at 281th

SOFTWARE

Quantum ESPRESSO is an integrated suite of HPC codes for electronic-structure calculations and materials modelling at the nanoscale.

PMPI

MPI profiling interface Augment each standard MPI function with profiling collection functionality


```
Include <mpi.h>
                                                                                 Include <mpi.h>
                                                                 hello.c
                                                                                                                             pmpi_wrapper.c
main()
                                                                                int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype,
    int world_size, world_rank;
                                                                                                   int root, MPI_Comm comm)
    char message[] = "Hello world to everyone from MPI root!"
                                                                                     /* prologue profiling code */
    // Initialize the MPI environment
                                                                                     start_time = get_time();
    MPI_Init(NULL, NULL);
                                                                                     int err = PMPI_Bcast(buffer, count, datatype, root, comm);
    // Get the number of processes
    MPI_Comm_size(MPI_COMM_WORLD, &world_size);
                                                                                     /* epilogue profiling code */
                                                                                     end_time = get_time();
    // Get the rank of the process
                                                                                     int duration = end time - start time;
   MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
                                                                                    printf("MPI_Bcast duration: %d sec\n", duration);
    // Send a broadcast message from root MPI to everyone
                                                                                     return err;
    MPI_Bcast(message, strlen(message), MPI_CHAR, 0, MPI_COMM_WORLD);
    // Finalize the MPI environment
    MPI_Finalize();
                                                                                                           MPI Library
```

PMPI Runtime

Our PMPI implementation has the following features:

- Number MPI calls: 50 MPI functions wrapped (all the QE's MPI calls)
- Timing: record TSC for timing (time clock accuracy)
- Network data: record all data sent and received from the process
- **Fixed perf counters**: monitor 3 fixed performance counters using low overhead *rdpmc()* instruction
 - Fixed 1: Number of instructions retired
 - Fixed 2: Clock at the nominal frequency at every active cycle
 - Fixed 3: Clock coordinated at frequency of the core at every active cycle
- PMC perf counters: monitor 8 configurable performance counters using low overhead rdpmc() instruction

APP time vs MPI Time

Ndiag 1 Workload MPI root: 10.25% AVG workload (no root): 5.98% Linear algebra is computed only by the root MPI → unbalanced workload

Ndiag 16 Workload MPI root: 6.59% AVG workload (no root): 6.23% Linear algebra is computed by all MPI processes → balanced workload

Idea: use DVFS to slow down cores during MPI-phases

Challenge: Account for DVFS inertia, and appl. slowdown

PMPI-based E2Sol minimization

If QE has significant percentage of MPI time with MPI phases longer than 500us

PMPI needed to gauge and exploit (PMPI + PM) power saving opportunity

Unbalanced benchmark on a single node (negligible MPI communication time)

Up to 11% of energy and 12% of power saved with no impact on performance

Outline

- ☐ Power and Thermal Walls in HPC
- **☐** Power and Thermal Management
- Energy-efficient Hardware
- ☐ Conclusion

The era of Eterogeneous Architecture

Massive presence of accelerators in TOP500

Absolute dominance in GREEN500

Home / Green500 / November 2017 / List

Japan

GREEN500 LIST - NOVEMBER 2017

Listed below are the November 2017 The Green500's energy-efficient supercomputers ranked from 1 to 100.

Note: Shaded entries in the table below mean the power data is derived and not meassured

GREEN500 LISTS ▼ RESOURCES ▼ ABOUT ▼ MEDIA KIT

Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)		Power Efficiency (GFlops/watts)
1	259	Shoubu system B - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exascaler Inc. Advanced Center for Computing and Communication, RIKEN Japan	794,400	842.0	50	17.009
2	307	Suiren2 - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exascaler Inc. High Energy Accelerator Research Organization /KEK Japan	762,624	788.2	47	16.759
3	276	Sakura - ZettaScaler-2.2, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband EDR, PEZY-SC2, PEZY Computing / Exascaler Inc. PEZY Computing K.K. Japan	794,400	824.7	50	16.657
4	149	DGX SaturnV Volta - NVIDIA DGX-1 Volta36, Xeon E5- 2698v4 20C 2.2GHz, Infiniband EDR, NVIDIA Tesla V100 , Nvidia NVIDIA Corporation United States	22,440	1,070.0	97	15.113
5	4	Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz, ExaScaler Japan Agency for Marine-Earth Science and Technology	19,860,000	19,135.8	1,350	14.173

Tweets b

Recipe for Energy-efficient Acceleration

- Many (thousands) "simple" cores, managing FP units and special-function units for key workload patterns (stencil, tensor units) → maximize FP/mm2
- Non-coherent caches and lots of "non-cache" memory (registers for multithreading, scratchpad) → maximize "useful" Bit/mm2 for on-chip
- Large memory bandwidth based on tightly coupled-memory (HBM) → maximize GBps/mm2 for off-chip
- Low Operating voltage and moderate operating frequency > keep W/mm2 under control
- From 2D to 3D (now 2.5D)

Is there room for differentiation, or are GP-GPUs the only answer?

Pezy-SC2 (top 1-2-3 GREEN500 Nov17)

Pezy-SC highlights:

- Technology (16nm TSMC) 54% power reduction
- Advance and integrated power delivery 30% power reduction
- Low voltage operation (0.7v) 16% power reduction
- Low performance host processor 15% power reduction

Combines low-power design, simple (no legacy!) instruction set, advanced power management

Opportunity for (EU) HPC: open ISA

PISC-V open RISC ISA developed by UCB and supported now by the RISC-V foundation (riscv.org), with 70+ members (including, NVIDIA, IBM, QUALCOMM, MICRON, SAMSUNG, GOOGLE...)

- Reasonable, streamlined ISA → distills many years of research, conceived for efficiency not for legacy support
- Safe-to-use free ISA → freedom to operate (see RISC-V genealogy project), freedom to change/evolve/specialize, no licensing costs
- Wide community effort already on-going on tools, verification... →
 leverage this to jumpstart and compensate for our initial inertia
- Rapidly gaining traction in many application domains (IoT, big data) → large "dual-use" markets opportunity
- Spec covers 64bit, vector ISA (on-going), 128bit (planned)
- HPC-profile RISC-V startups already active (esperanto.ai)

PULP: An Open Source Parallel Computing Platform

PULP Hardware and Software released under Solderpad License

Used by tens of companies and universities, taped out in 14nm FINFET, 22FDX,... 64bit core "Ariane" + Platform to be launched in Q1 2018 (taped out in 22FDX)

PULP: An Open Source Parallel Computing Platform

PULP Hardware and Software released under Solderpad License

Used by tens of companies and universities, taped out in 14nm FINFET, 22FDX,... 64bit core "Ariane" + Platform to be launched in Q1 2018 (taped out in 22FDX)

Thanks for your attention!

www.pulp-platform.org

The fun is just beginning...