
Predicting the performance
of QuantumESPRESSO

Pietro Bonfà, Fabio Affinito, Carlo Cavazzoni
CINECA

MaX International Conference 2018, Trieste 29-31 January 2018

Hardware software co-design

Intel: [...] the new architecture we are designing has 1.4 GHz
cores, but new vector instructions and more than 64 cores in a
single socket and many GBs of High Bandwidth Memory (HBM).

1. Can QE exploit this kind of architecture?
2. How many GBs of HBM are appropriate for QE?

2010

Performance modeling
Analytical Performance Modeling is a method of Software performance testing
generally used to evaluate design options and system sizing based on actual or
anticipated system behaviour.

In the context of co-design it may be used for:

● Making predictions on the efficacy of hardware.
● Monitor hotspots and bottleneck as the hardware is designed.
● Avoid longer and more expensive performance testing.

Performance modeling
Analytical Performance Modeling is a method of Software performance testing
generally used to evaluate design options and system sizing based on actual or
anticipated system behaviour.

In the context of code development it may be used for:

● Understand where there is room for improvement.
● Monitor hotspots and bottleneck as the hardware evolves.
● Avoid longer and more expensive performance testing.

Performance modeling
Analytical Performance Modeling is a method of Software performance testing
generally used to evaluate design options and system sizing based on actual or
anticipated system behaviour.

In the context of code usability it may be used for:

● Provide indications in the job timings in advances.
● Auto tuning of parallel parameters.
● Avoid performance testing for projects’ submission.

Task details
Create a performance model to obtain the relevant information about pw.x to be
used in hardware participatory design, targeting the standard total energy task and
a modern HPC node, i.e. tens of cores, tens of GBs of RAM.

Contributions to the total execution time
The total execution time for an application can be approximated as the sum of a
few contributions:

T(f,BW,NB) = MPI(BW, NB) + IO(BW,NB,IOB) + SERIAL(f,BW,NB)

Where NB is the network bandwidth, BW is the memory bandwidth per core, f is
the CPU frequency and the SERIAL part is the code executed by each of the MPI
processes. All these term have an implicit dependence on the input parameters.

Performance projection
Approach 1:

T(f,BW,NB)/Tref = αMPI(NBref/NB)+ αCPU(fref/f) + αBW(BWref /BW(f))+ ...

PRO: change few parameters to extract values for αx.
CONS: limited predictive power (practically probably few generations). Need to repeat the analysis after
every (major) code change.

Approach 2:

T(f,BW,NB) = ∑ Tkernel (f,BW,NB,IOB) + Tother with Tkernel (f,BW,NB) ≃ Tc(f)+Tmem(BW)+TMPI(NB)+TI/O

PRO: detailed absolute time predictions.
CONS: requires extensive analysis of the code execution flows.

Step one: profiling
Classify code sections: compute, memory, communication, i/o bound

Identify computationally intensive parts

Profiling of pw.x
Time in medium to large sized simulation most of the time is spent in MPI and LA
calls.

pw
io
otherFFT

& LA

Time mostly on three kernels:
● GEMM
● Diagonalization
● FFT

I/O is negligible, MPI is mainly Alltoall (FFT) and
Bcast/Allreduce (Diagonalization)

Profiling of yambo

The pw.x model components

FFTXlib kernel: FFT kernel + MPI Alltoall + memory access

MM kernel: used during iterative diagonalization

Diagonalization kernel: serial LAPACK function: zhegv, zhegvx

Unbalance: kpoints distribution

#**
#* Generic formula coming from LAWN 41
#**

#
Level 2 BLAS

FMULS_GEMV = lambda __m, __n : ((__m) * (__n) + 2. * (__m))
FADDS_GEMV = lambda __m, __n : ((__m) * (__n))

FMULS_SYMV = lambda __n : FMULS_GEMV((__n), (__n))
FADDS_SYMV = lambda __n : FADDS_GEMV((__n), (__n))
FMULS_HEMV = FMULS_SYMV
FADDS_HEMV = FADDS_SYMV

#
Level 3 BLAS
#
FMULS_GEMM = lambda __m, __n, __k: ((__m) * (__n) * (__k))
FADDS_GEMM = lambda __m, __n, __k: ((__m) * (__n) * (__k))

FLOPS_ZGEMM = lambda __m, __n, __k: (6. * FMULS_GEMM((__m), (__n), ...
FLOPS_CGEMM = lambda __m, __n, __k: (6. * FMULS_GEMM((__m), (__n), ...
FLOPS_DGEMM = lambda __m, __n, __k: (FMULS_GEMM((__m), (__n), .
FLOPS_SGEMM = lambda __m, __n, __k: (FMULS_GEMM((__m), (__n), .

Step two: kernel’s details

Count FLOP or data access as a function
of input parameters.

https://github.com/arporter/habakkuk

Choose model parameters: cpu
frequency, cache size, memory
bandwidth per code, memory

hierarchy, vectorization, software
stack, openMP, ...

https://github.com/arporter/habakkuk

How to choose the relevant HW/SW parameters?

Possible parameters to consider: cpu frequency, cache size, memory bandwidth
per code, memory hierarchy, vectorization, software stack, openMP, ...

What is relevant? What is correlated with what?

Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz

Intel(R) Xeon Phi(TM) CPU 7250 @ 1.40GHz

Software side: FFT

Model input
1. pw.x input files and parallel execution details:

Used to calculate the number of FLOPs of MM, FFT and diagonalization and
memory accesses.

2. System parameters through microbenchmarks:

FLOP/s: obtained with synthetic DGEMM and Diagonalization calls.
FFT performance: obtained with mini FFT benchmark tool.
Memory bandwidth: obtained with synthetic memory access.
Network bandwidth: obtained with synthetic MPI alltoall communications.

Results
Absolute time estimate results.

MnSi, bulk, 64 atoms, 14 k-points

Results
Absolute time estimate results.

Grafene + Fe, 2D, 127 atoms, 6 k-points

Results

Relative time between different generations of HW.

MnSi - bulk, 64 atoms, 14 k-points Grafene + Fe, 2D, 127 atoms, 6 k-points

Conclusions

● No rocket science! Select relevant kernels and find meaningful variables to
evaluate the performances.

● The tricky task is reconstructing the subroutine call tree.
● Takes little time! For pw.x, the preliminary work presented here was done in 1

week of profiling and two weeks of development/test.
● Results already presented and used in co-design meetings.

Future and perspectives

● Expand the model to
○ Parallel diagonalization
○ Task groups
○ Better unbalance description
○ Mixed intra-node and internode communications

● Create and distribute automatic mini-benchmark tools
● Link hardware details to mini-benchmark results
● Training with (and adoption in) AiiDA

$ mpirun -np 64 pw.x -ndiag 16 -ntg 2 ...

