Predicting the performance
of QuantumESPRESSO

Pietro Bonfa, Fabio Affinito, Carlo Cavazzoni
CINECA

MaX International Conference 2018, Trieste 29-31 January 2018

Hardware software co-design

Intel: [...] the new architecture we are designing has 1.4 GHz
cores, but new vector instructions and more than 64 cores in a
single socket and many GBs of High Bandwidth Memory (HBM).

1. Can QE expiloit this kind of architecture?
2. How many GBs of HBM are appropriate for QE?

Performance modeling

Analytical Performance Modeling is a method of Software performance testing
generally used to evaluate design options and system sizing based on actual or

anticipated system behaviour.
In the context of co-design it may be used for:

e Making predictions on the efficacy of hardware.
e Monitor hotspots and bottleneck as the hardware is designed.
e Avoid longer and more expensive performance testing.

CINECA

Performance modeling

Analytical Performance Modeling is a method of Software performance testing
generally used to evaluate design options and system sizing based on actual or

anticipated system behaviour.
In the context of code development it may be used for:

e Understand where there is room for improvement.
e Monitor hotspots and bottleneck as the hardware evolves.
e Avoid longer and more expensive performance testing.

CINECA

Performance modeling

Analytical Performance Modeling is a method of Software performance testing
generally used to evaluate design options and system sizing based on actual or

anticipated system behaviour.
In the context of code usability it may be used for:

e Provide indications in the job timings in advances.

e Auto tuning of parallel parameters.
e Avoid performance testing for projects’ submission.

CINECA

Task details

Create a performance model to obtain the relevant information about pw.x to be

used in hardware participatory design, targeting the standard total energy task and
a modern HPC node, i.e. tens of cores, tens of GBs of RAM.

Xeon phy~ Processor

Broadwell

CINECA

Contributions to the total execution time

The total execution time for an application can be approximated as the sum of a
few contributions:

T(f BW,NB) = MPI(BW, NB) + |O(BW,NB,IOB) + SERIAL(f,BW,NB)

Where NB is the network bandwidth, BW is the memory bandwidth per core, fis
the CPU frequency and the SERIAL part is the code executed by each of the MPI
processes. All these term have an implicit dependence on the input parameters.

CINECA

Performance projection

Approach 1:

T(LBW,NB)/T .= a,(NB_/NB)+ a ., (f /) + ag, (BW _ [BW(H))+ ...

ref

PRO: change few parameters to extract values for a. .
CONS: limited predictive power (practically probably few generations). Need to repeat the analysis after
every (major) code change.

Approach 2:

T(FBW,NB)=3 T, (FBW,NB,IOB) + T, with T __ (FBW,NB)=T (+T__ (BW)+T,o(NB&+T,,

el other el

PRO: detailed absolute time predictions.
CONS: requires extensive analysis of the code execution flows.

CINECA

Step one: profiling
Classify code sections: compute, memory, communication, i/o bound

|ldentify computationally intensive parts

[
OUUHHTUM[SPHLSSU

CINECA

Profiling of pw.x

Time in medium to large sized simulation most of the time is spent in MPIl and LA
calls.

Ratio Top MPI functions
This section represents a ratio of all MPI calls to the rest of your code in the application. This section lists the most active MPI functions from all MPI calls in the application
MP|_Bcast 5.75e+03 sec (9.75 %)
MPI_Allreduce 4.98e+03 sec (8.44 %)

1.79e+03 sec (3.03 %)
705 sec (1.2 %)

|
MPI_Altoal IE—— 2.87e+03 sec (4.87 %)
MPI_Barrier IE—
—

W Serial Code - 4.23e+04 sec 71.8% MPI_Comm_split
B OpenMP - 0 sec o]
B MPI calls - 1.66e+04 sec 28.1%

Time mostly on three kernels:
e GEMM
e Diagonalization
o FFT

I/O is negligible, MPI is mainly Alltoall (FFT) and

Bcast/Allreduce (Diagonalization) CINECA

Profiling of yambo

Summary: yambo.stf

Total time: 2.86e+05 sec. Resources: 64 processes, 1 node.

Top MPI functions
This section lists the most active MPI functions from all MPI calls in the application.

Ratio
This section represents a ratio of all MPI calls to the rest of your cade in the application.

MP|_Barrier I 2.69e+04 sec (9.4 %)

1.22e+03 sec (0.425 %)

MPI_Recv N
MP|_Allreduce W 466 sec (0.163 %)
MP|_Beast | 145 sec (0.0507 %)
M Serial Code - 2.57e+05 sec 89.8 % MP|_Cart_sub | 99.6 sec (0.0348 %)
B OpenMP - 0 sec 0%
B WPl calls - 2.9e+04 sec 10.1 %
Bandwidth Domain: o~
) Bandwidth Utilization Histogram () Elapsed Time ~: 4985.788s
This histogram displays the wall time the bandwidth was utilized by certain value. Use sliders at the bottom of the histogram to define threshelds for Low, Medium anc CPU Time 7413.935s
view to group data and see all functions executed during a particular utilization type. To leam bandwidth capabilities, refer to your system specifications or run appropr Memory Bound:
maximum achievable DRAM and QP| bandwidth. = N 2
L2 Hit Rate™: 87.9%
L2 Hit Bound 17.0% R of Clockticks
i E L2 Miss Bound = 31.5% R of Clocklicks
s
Z MCDRAM Bandwidth Bound 23.8% K
& DRAM Bandwidth Bound = 0.3% of Elapsed Time
s L2 Miss Count 14,199,425,970
MCDRAM Hit Rate: 91.7%
20s MCDRAM HitM Rate: 57.7%
Total Thread Count: 128
Paused Time = 4864.7258

CINECA

Bandhwidth Utilization

The pw.x model components

FFTXIlib kernel: FFT kernel + MPI Alltoall + memory access
MM kernel: used during iterative diagonalization
Diagonalization kernel: serial LAPACK function: zhegv, zhegvx

Unbalance: kpoints distribution

CINECA

Step two: kernel’s details

R e

#x Generic formula coming from LAWN 41
F R R T R R T T

#
Level 2 BLAS

Count FLOP or data access as a function *

FMULS_GEMV = lambda __m, __n : ((__m) * (__n) + 2. * (__m))
()f ir]r)[]t F)E]rEirT]EBtEBrE; FADDS_GEMV = lambda __m, __n : ((__m) * (__n))
’ FMULS_SYMV = lambda __n : FMULS_ GEMV((n), (__n))
FADDS_SYMV = lambda __n : FADDS_GEMV((__n), (__n))
FMULS_HEMV = FMULS_SYMV
Choose model parameters: cpu FADDSHENV = FADDS-SYWV
#
frequency, cache size, memory # Level 3 BLAS
bandwidth per code, memory FADDS_GEMH = Tombda Tom Tohe Tk ((Cm) = () ¥ (T
hierarchy, vectorization, software FLOPS OGEMM = Lombda —m. Thi " E O TR S I S G
FLOPS_DGEMM = lambda __m, __n, __k: (FMULS_GEMM((_.m), (_.n),
EStEi()P(, C)F)EBF]“/'F), . FLOPS_SGEMM = lambda __m, __n, __k: (FMULS_GEMM((__m), (__n),

https://github.com/arporter/habakkuk CINECA

https://github.com/arporter/habakkuk

How to choose the relevant HW/SW parameters?

Possible parameters to consider: cpu frequency, cache size, memory bandwidth
per code, memory hierarchy, vectorization, software stack, openMP, ...

What is relevant? What is correlated with what?

Bandwidth [GiB/s]

35

30

25

20

15

10

r037c01s12 - One Thread Memory Bandwidth

Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz

écan\f\.lfrite1 2|8PtrUrl'|r0IILofop

10

11

12 13 14 15 16

17

18

19

20 21 22

Array Size logy [B]

23

24

25

26 27 28 29 30

31

32

pmbw 0.6.2

Bandwidth [GiB/s]

700

600

500

r037c01s12 - Parallel Memory Bandwidth - ScanWrite128PtrUnrollLoop

Array Size logs [B]

pmbw 0.6.2

Bandwidth [GiB/s]

20

18

16

14

12

10

r113c14s04 - One Thread Memory Bandwidth

_ Intel(R) Xeon Phi(TM) CPU 7250 @ 1.40GHz -

écan\f\.lfrite1 2|8PtrUrl1r0IILofop

10

11

12

13

14

15

16

17

18

19

20 21 22

Array Size logy [B]

23

24

25

26 27 28 29 30 31 32

pmbw 0.6.2

Bandwidth [GiB/s]

600

400

300

200

100 |-

r113c14s04 - Parallel Memory Bandwidth - ScanWrite128PtrUnrollLoop

T T
——
"
+
T
PR —
——
—_——
——
—— |
e
—_——
—.—
—— |
e
g
—.
——
—]
—
S o
e

21 22

Array Size logs [B]

pmbw 0.6.2

speed (mtlops)

Software side: FFT

double-precision complex, 1d transforms double-precision complex, 1d transforms
powers of two non-powers of two
10000 o 7000
intel-ipps o—a fftw3 out-of-place
intel-mkl-dfti in-place #- fftw3 in-place
9000 fitw3 out-of-place e—a intel-mkl-dfti out-of-place
fftw3 in-place 6000 ftw2
8000 intel-mkl-dfti out-of -plac w--a intel-mkl-dfii in-place
ffte ffte
ooura-sgf ewplib
T000 fitw? 5000 & diftpack
spiral-egner-fft o—=e gsl-mixed-radix
= Breen ey — = kissfft
6000 SIayer é 4000 E monnier
& dfftpack = o #--% mixfft
5000 gsl-mixed-radix é mftc
mpfun®0 = nunutils
L]
bloodworth @ 3000
4000 o g
sciport
3000 kissfft
monnier 2000
numutils
2000 esrfft
mixfft
| cross 1000
1000 seimark2c
. cwplib
0 - e jmffte 0 w
I T E T e S N GZREEZE253555855500080
H BEASSESESTINAZBRREESRI R 0 BESESERSZIEA0DBAERREE
mExEIGE3IE nBESKRS88x5

CINECA

Model input

1. pw.x input files and parallel execution details:

Used to calculate the number of FLOPs of MM, FFT and diagonalization and
Memory accesses.

2. System parameters through microbenchmarks:

FLOP/s: obtained with synthetic DGEMM and Diagonalization calls.

FFT performance: obtained with mini FFT benchmark tool.

Memory bandwidth: obtained with synthetic memory access.

Network bandwidth: obtained with synthetic MPI alltoall communications.

CINECA

Results

Absolute time estimate results.

MnSi - BDW MnSi - KML
140 —) 250 —
120 | = 200
100 | .
80 150 ;
60 | | wTRUE
- - L = ESTIMATE
= M . . . = I ESTIMATE+15%
® 5) 1
0! 0 . . |
e ra R Q\ Q\ ol & ol & & &
W \?‘ \‘i\ & \‘i‘
"‘ ‘“ '&' “L h "LD N 4 “lf@ ;‘»‘fﬁ\)‘qﬁ
> > 3 Q\ Q\ R
@@ &S PRSI

MnSi, bulk, 64 atoms, 14 k-points CINECA

Results

Absolute time estimate results.

Time (s)

250

150

100

GrapheneFe - BDW

400 —
350

Time (s)

' 300
! | 250
200 -
' ' 150 |
100 -
' Euh B "-EENn
_ : : : : | 0 : :

Grafene + Fe, 2D, 127 atoms, 6 k-points

Q\ & ‘;?\ .&?\ wé:\Q\ ";?\ ‘;‘g\
,g,\b /wqodﬁ /hqo‘} B @ e 4 & ; AF ;
b & Q d
P & ¥

GrapheneFe - KL

ETRUE
HESTIMATE
ESTIMATE + 15%

CINECA

Results

Relative time between different generations of HW.

ratio

BDW / KML (core vs 2 core)

4 MPI 8 MPI 16 MPI 32 MPI

MnSi - bulk, 64 atoms, 14 k-points

14

BDW/KHNL (core vs 2 coreg)

= TRUE
mESTIMATE

4 MPI 8 MPI 16 MPI 32 MPI

Grafene + Fe, 2D, 127 atoms, 6 k-points

CINECA

Conclusions

e No rocket science! Select relevant kernels and find meaningful variables to
evaluate the performances.

e The tricky task is reconstructing the subroutine call tree.

e Takes little time! For pw.x, the preliminary work presented here was done in 1
week of profiling and two weeks of development/test.

e Results already presented and used in co-design meetings.

CINECA

Future and perspectives

e Expand the model to $ mpirun -np 64 pw.x -ndiag 16 -ntg 2 ...
o Parallel diagonalization

o Task groups
o Better unbalance description
o Mixed intra-node and internode communications

e Create and distribute automatic mini-benchmark tools o oo
o5 AlIDA

e Link hardware details to mini-benchmark results
e Training with (and adoption in) AiiDA

CINECA

