Co-designing an Energy Efficient System

Solution

Luigi Brochard Distinguished Engineer, HPC&AI Lenovo Ibrochard@lenovo.com

MaX International Conference 2018 Trieste 29.01.2018

Industry Thermal Challenges

- Maintaining Moore's Law with increased competition is resulting in higher component power
- Increased memory count, NVMe adoption, and I/O requirements are driving packaging and feature tradeoffs
- To sustain increased performance servers will have to be less dense or use new cooling technology

• How are we working on energy efficiency ?

- Higher Flops/Watt processor
- Water Cooling
- Software for power/energy management

3

2018 Lenovo. All rights reserved.

• Lenovo references with DWC (2012-2018)

				Max inlet
Site	Nodes	Country	Install date	temperature
LRZ SuperMUC	9298	Germany	2012	45°C
LRZ SuperMUC 2	3096	Germany	2014	45°C
LRZ SuperCool2	438	Germany	2015	50°C
NTU	40	Singapore	2012	45°C
Enercon	136	Germany	2013	45°C
US Army (Maui)	756	United States	2013	45°C
Exxon Research	504	United States	2014	45°C
NASA Goddard	80	United States	2014	45°C
PIK	312	Germany	2015	45°C
KIT	1152	Germany	2015	45°C
Birmingham U ph1	28	UK	2015	45°C
Birmingham U ph2	132	UK	2016	45°C
T-Systems	316	Germany	2016	45°C
MMD	296	Malaysia	2016	45°C
UNINET	964	Norway	2016	45°C
Peking U	204	China	2017	45°C
LPSC Trivandrum	72	India	2018	45°C
LRZ SuperMUC NG	6480	Germany	2018	50°C

More than 4.000 nodes with Lenovo DWC technology

2018 Lenovo. All Rights Reserved

• 2 X 3 petaflops SuperMUC systems at LRZ Phase 1 & Phase 2

Phase 1

- Ranked 27 and 28 in TOP500 June 2016
- Fastest computer in Europe on TOP500, June 2012
 - 9324 nodes with 2 Intel Sandy Bridge EP CPUs
 - HPL = 2.9 petaflop/s
 - InfiniBand FDR10 interconnect
 - Large File Space for multiple purpose
 - 10 Petabyte File Space based on IBM GPFS with 200 GB/s I/O bandwidth
- Innovative technology for energy effective computing
 - Hot Water Cooling (45°C)
 - Energy Aware Scheduling
- Most energy efficient high-end HPC system
 - PUE 1.1
 - Total power consumption over 5 years reduced by
 - ~ 37% from 27.6 M€ to 17.4 M€

2018 Lenovo. All rights reserved.

Phase 2

- 3096 nx360 M5 compute nodes Haswell EP CPUs
- HPL = 2.8 petaflop/s
- Direct Hot Water Cooled, Energy Aware Scheduling
- InfiniBand FDR14
- GPFS, 10 x GSS26, 7.5 PB capacity , 100 GB/s I/O bandwidth

• Three generation of direct water cooled systems

- iDataplex dx360M4 (2010-2013)
- NextScale nx360M5 WCT (2013-2016)
- OceanCat SD650 (2017 2018)
- Direct Water cooling CPU/DIMMS/VRs
 - upto 90% of heat goes to water
- Inlet water temperature
 - Up to 45-50°C
 - => Free cooling all year long in most geo
- Wasted Heat Water is hot enough to be efficiently reused
 - like with Adsorption chiller => ERE <<1</p>
- 3rd generation Water Cooling system in production
 - About 20.000 nodes installed

NextScale Chassis Scalable Manifold enovo-

6

2018 Lenovo. All Rights Reserved

PUE, ITUE and ERE

- PUE PUE = Total Facility Power IT Equipment Power
 - Power usage effectiveness (PUE) is a measure of how efficiently a computer data center uses its power;
 - PUE is the ratio of total power used by a computer facility¹ to the power delivered to computing equipment.
 - Ideal value is 1.0
 - It does not take into account how IT power can be optimised

```
• ITUE ITUE = (<u>IT power + VR + PSU + Fan</u>)
IT Power
```

- **IT power effectiveness** (ITUE) measures how the node power can be optimised
- ldeal value if 1.0

- **Energy Reuse Effectiveness** measures how efficient a data center reuses the power dissipated by the computer
- ERE is the ratio of total amount of power used by a computer facility¹ to the power delivered to computing equipment.
- An ideal ERE is 0.0. If no reuse, ERE = PUE

7

2018 Lenovo. All rights reserved.

CooLMUC-2: Waste Heat Re-Use for Chilled Water Production

- Lenovo NeXtScale Water Cool (WCT) system
 technology
 - ✓ Water inlet temperatures 50 °C
 - ✓ All season chiller-less cooling
 - ✓ 384 compute nodes
 - ✓ 466 TFlop/s peak performance

- SorTech Adsorbtion Chillers
 - ✓ based of zeolite coated metal fiber heat exchangers
 - ✓ a factor 3 higher than current chillers based on silica gel
 - ✓ COP = 60%
 - ✓ ERE = 0.3

2018 Lenovo. All Rights Reserved

Leibniz Supercomputing Centre

• CooLMUC-2: ERE = 0.3

 $ERE = \frac{Total Facility Power - Treuse}{IT Equipment Power} = \frac{120 - 87}{104} = 0.32$

Example of energy cost with various cooling

- Air, RDHx and DWC energy cost
- EnergyCost = *Total Power * Price per MW/year
- Total Power = (f_{air} * PUE_{air} + f_{cold} * PUE_{cold} + f_{warm} * PUE_{warm}) *Total IT Power
 - Where f_{air} , f_{cold} and f_{warm} are the power consumption ratios using air, cold or hot water cooling vs total power
 - ${\rm f}_{\rm air}$ = Total power cooled by air / Total Power
 - ..
- We assume:
 - 1MW server power consumption cooled with air or RDHX (cold water) and DWC with hot water at 50°C:
 - DWC: 90% heat to water leading to 10% heat to air residual or cold water
 - DWC: reduce power by 10% => 0.9 MW
 - Heat to water = 765 kW, Heat to air = 135 kW
 - 100 kW power consumption cooled with RDHx (storage, network...)
 - Total Power = 1.1 MW or 1 MW depending on cooling
 - PUE_{air} = 1.60, PUE_{cold} = 1.40 and PUE_{warm} = 1.06
 - Price of electricity is 1M€ (or \$) per 1 MW per year

2018 Lenovo. All Rights Reserved

Example of energy cost with various cooling

Partial heat reuse

- Adsorption chillers can produce with COP = 0.6 chilled water with hot water and PUE of 1.06 to produce it
- With DWC Hot water, Total power_{warm} = 765 kW leading to 460 kW of chilled water capacity
- Chilled water capacity is higher than chilled water needed
- => partial heat reuse
- Full heat reuse
 - Data Center has more equipment which are cooled by CRAC, RDHX or In-Row coolers
 - Why not use the unused chilled water capacity for the Data Center others equipments ?

Energy Cost	no heat	partial	full heat	Relativ	ve to	no heat	partial	full heat	Relative to	no heat	partial	full heat
/year M € or \$	reuse	heat reuse	reuse	Air coo	oling	reuse	heat reuse	reuse	DWC no reuse	reuse	heat reuse	reuse
Air only	1.76			Air on	ly	100%			Air only			
RDHx only	1.54			RDHx	only	88%			RDHx only			
DWC + air	1.19	1.13	0.91	DWC +	⊦ air	67%	64%	52%	DWC + air	100%	95%	77%
DWC + RDHx	1.14	1.06	0.84	DWC +	+ RDHx	65%	60%	48%	DWC + RDHx	96%	89%	70%

EnergyCost with full heat reause ~ EnergyCost with no heat reause * ERE / PUE

2017 Lenovo. All Rights Reserved

- Value of Direct Water Cooling on SuperMUC
- Higher TDP processors (165 W)
- Reduced server power comsumption
 - Lower processor power consumption (~ 6%)
 - No fan per node (~ 4%)
- Reduce cooling power consumption
 - With DWC at 45°C, we assume free cooling all year long (~25%)
- Additional savings with xCAT and LL EAS

2018 Lenovo. All Rights Reserved

SuperMUC NG system at LRZ

Phase 1

- Based on Xeon Skylake
 - 6334 Nodes with 2 Intel SKL @205 W CPUs
 - HPL ~ 20 PetaFLOP/s
 - OPA island based Interconnect
 - Large File Space on IBM Spectrum Scale
 - Scratch : 51 PB, 500GigaByte/s IOR bw
- Energy Effective Computing
 - More efficient Hot Water Cooling
 - Waste Heat Reuse
 - Dynamic Energy Aware Run time
- Best TCO and Energy Efficiency
 - PUE ~1.08
 - ERE ~0.30

– Total Power consumption over 5 years to be reduced upto ~50%

2018 Lenovo. All Rights Reserved

SuperMUC NG system Design

Value of Direct Water Cooling with SuperMUC NG

- Higher TDP processors (205+ W)
- Server power comsumption
 - Lower processor power consumption (~ 6%)
 - No fan per node (~ 4%)
- Cooling power consumption
 - With DWC upto 50°C, we assume free cooling all year long (~25%)
- Additional savings with xCAT and SLURM EAR
- Heat Reuse
 - With DWC at 50°C, additional 30% savings as free chilled water is generated through adorption chillers
 With total heat reuse total savings =>

14

2018 Lenovo. All Rights Reserved

• How are we working on energy efficiency ?

- High Flops / Watt processor
- Water Cooling
- Software for energy management

2018 Lenovo. All rights reserved.

How was this work done ?

LL-EAS phases to set optimal frequency for jobs

Initialization phase at LL installation time

- LL compute on all nodes the coefficents required for optimal frequency calculations
- User submit a job
 - User submit his job with a tag
 - Job is run at nominal frequency
 - In the background:
 - LL measures power, energy, time and hpm counters for the job
 - LL predicts power(i), energy(i), time (i) if job was run a different frequency i
 - LL writes Energy report for the job in the xCAT/LL DB

User resubmit a job with same tag

- Given the energy policy and the tag, LL determines optimal frequency j
- LL set nodes for the job at frequency j
- In the background:
 - LL measures power, energy, time and hpm counters for the job
 - LL compares measurement and prediction, and provide correction actions if needed
- LL add new record with new energy report for the job in the xCAT/LL DB

A Case Study of Energy Aware Scheduling on SuperMuc Akel Auveter, Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities Luigi Brochard, IBM Systems Technology Group

Leibniz Supercomputing Centre

© 2011 IBM Corporation

R.

Irz

How was this work done ?

Energy Aware Run time

- Offer a dynamic and transparent solution to energy awareness :
 - Avoiding having to re-execute applications again and again
 - Easy to use
 - Without source code modifications
 - Without historic application information
 - Supporting standard programming models: MPI, MPI+OpenMP
 - Using standard libraries and tools as much as possible to be easily portable
 - Open Source
 - Frequency change based on simple Energy Policies with performance thresholds
 - Minimizing the overhead introduced

2017 Lenovo. All rights reserved.

Energy Aware Runtime

• EAR high level view

- Automatic and dynamic frequency selection based on:
 - Distributed architecture / Low overhead
 - Architecture characterization (learning phase)
 - Application characterization
 - Outer loop detection (DPD)
 - Application signature computation (CPI,GBS,POWER,TIME)
 - Performance and power projection
 - Users/System policy definition for frequency selection (configured with thresholds)
 - MINIMIZE_ENERGY_TO_SOLUTION
 - Goal: To save energy by reducing frequency (with potential performance degradation)
 - We limit the performance degradation with a MAX_PERFORMANCE_DEGRADATION threshold
 - MINIMIZE_TIME_TO_SOLUTION
 - Goal: To reduce time by increasing frequency (with potential energy increase)
 - We use a MIN_PERFORMANCE_EFFICIENCY_GAIN threshold to avoid that application that do not scale with frequency to consume more energy for nothing

• GUI to monitor power and performance

2018 Lenovo. All rights reserved.

LiCO – Lenovo intelligent Computing Orchestrator

A <u>single software stack</u> optimized for Intel and NVIDIA processors to efficiently manage both HPC & AI workloads

For HPC

- Easy-to-use interface for users to submit and manage jobs
- Full access to native tools in the stack for more technical users
- Built on an OpenHPC software base, with Lenovo value-add capabilities and optimizations

Simplify use and job management for HPC

For Al

- Execute jobs, monitor training progress through a single GUI
- Easily try different frameworks, system types to determine best fit
- Out of the box scaling for both Intel and NVIDIA environments

Easy access to train and optimize Al models

LiCO for HPC

- Single GUI consolidates functionality for both administrators and users
- Built on an OpenHPC foundation
 - Monitoring, Scheduling, MPI, etc.
- Lenovo value-added capabilities, developed through client collaboration
 - Open web portal (Oxford & South Hampton)
 - Energy-Aware Runtime (BSC)

Validated stack of open tools to simplify cluster environments

2017 Lenovo Internal. All rights reserved.

validated

= software stack

Conclusions

2018 Lenovo. All rights reserved.

- Co-design with end users and research labs is crucial
- Example is Lenovo Energy Efficient systems
 - LRZ & BSC have been/are bringing their own skills to the development of new technologies

*TRAN*ORNY

Lenovo

Different is better