Variational formulation for finding Wannier functions with entangled band structure

Lin Lin

Department of Mathematics, UC Berkeley; Lawrence Berkeley National Laboratory

Joint work with Anil Damle and Antoine Levitt (arXiv:1801.08572)

MaX International Conference: Materials Design Ecosystem at the Exascale, Trieste, January 2018

Wannier functions

 Maximally localized Wannier function (MLWF) [Marzari-Vanderbilt, Phys. Rev. B 1997]. Examples below from [Marzari et al. Rev. Mod. Phys. 2012]

Silicon

Graphene

 Reason for the existence of MLWF for insulating systems [Kohn, PR 1959] [Nenciu, CMP 1983] [Panati, AHP 2007], [Brouder et al, PRL 2007] [Benzi-Boito-Razouk, SIAM Rev. 2013] etc

Application of Wannier functions

- Analysis of chemical bonding
- Band-structure interpolation
- Basis functions for DFT calculations (representing occupied orbitals ψ_i)
- Basis functions for excited state calculations (representing Hadamard product of orbitals $\psi_i \odot \psi_j$)
- Strongly correlated systems (DFT+U)
- Phonon calculations
- etc

Maximally localized Wannier functions

 Geometric intuition: Minimization of "spread" or second moment.

 $\min_{\substack{\Phi=\Psi U,\\U^*U=I}} \Omega[\Phi]$

$$\Omega[\Phi] = \sum_{j=1}^{n} \int |\phi_j(x)|^2 x^2 \, dx - \left(\int |\phi_j(x)|^2 x \, dx \right)^2$$

• *U*: gauge degrees of freedom

Maximally localized Wannier functions

Robustness

- Initialization: Nonlinear optimization and possible to get stuck at local minima.
- Entangled band: Localization in the absence of band gap.
- Both need to be addressed for high throughput computation.

Example: WTe2

Old:

Begin Projections W:s c=0.10667692,1.1235077,0.869249688:s c=0.10667692,1.1235077,2.607749065:s End Projections

New:

scdm_proj: true scdm_entanglement: 1 scdm_mu: -0.43 scdm_sigma: 2.0

Selected columns of density matrix (SCDM)

[A. Damle, LL, L. Ying, JCTC, 2015]
[A. Damle, LL, L. Ying, JCP, 2017]
[A. Damle, LL, L. Ying, SISC, 2017]
[A. Damle, LL, arXiv:1703.06958]

Density matrix perspective

 Ψ is unitary, then

 $P = \Psi \Psi^*$

is a projection operator, and is gauge invariant.

$$P = \Psi \Psi^* = \Phi(U^*U) \Phi^* = \Phi \Phi^*$$

is close to a sparse matrix.

 Can one construct sparse representation directly from the density matrix?

Algorithm: Selected columns of the density matrix (SCDM)

Pseudocode (MATLAB. Psi: matrix of size m*n, m>>n)

- Very easy to code and to parallelize!
- Deterministic, no initial guess.
- perm encodes selected columns of the density matrix

[A. Damle, LL, L. Ying, JCTC, 2015]

k-point

 Strategy: find columns using one "anchor" k-point (such as Γ), and then apply to all k-points

$$P(\mathbf{k}) = \sum_{\varepsilon_{b,\mathbf{k}} \in \mathcal{I}} |\psi_{b,\mathbf{k}}\rangle \langle \psi_{b,\mathbf{k}}| = \sum_{\varepsilon_{b,\mathbf{k}} \in \mathcal{I}} |\widetilde{\psi}_{b,\mathbf{k}}\rangle \langle \widetilde{\psi}_{b,\mathbf{k}}|$$

$$(\Xi^*(\mathbf{k})\Xi(\mathbf{k}))_{b,b'} = \sum_{b''=1}^{N_b} \psi_{b'',\mathbf{k}}(\mathbf{r}_b)\psi^*_{b'',\mathbf{k}}(\mathbf{r}_{b'}) = P(\mathbf{r}_b,\mathbf{r}_{b'};\mathbf{k})$$

$$U(\mathbf{k}) = \Xi(\mathbf{k}) \left[\Xi^*(\mathbf{k})\Xi(\mathbf{k})\right]^{-\frac{1}{2}}$$

Examples of SCDM orbitals (Γ-point)

Silicon

Water

Examples of SCDM orbitals (k-point)

Cr2O3. k-point grid $6 \times 6 \times 6$ Initial spread from SCDM: 17.22 Å² MLWF converged spread: 16.98 Å²

Entangled bands

- Decay ⇔ Smoothness
- Quasi-density matrix

$$P(\mathbf{k}) = \sum_{\varepsilon_{b,\mathbf{k}}} |\psi_{b,\mathbf{k}}\rangle f(\varepsilon_{b,\mathbf{k}}) \langle \psi_{b,\mathbf{k}} |$$

- Choose f to be a smooth smearing function
- In localization, we can easily afford ~eV smearing.

Entangled bands

Entangled case 1 (metal, valence + conduction):

$$f(\varepsilon) = \frac{1}{2} \operatorname{erfc}\left(\frac{\varepsilon - \mu_c}{\sigma}\right) = \frac{1}{\sqrt{\pi\sigma^2}} \int_{\varepsilon}^{\infty} \exp\left(-\frac{(t - \mu_c)^2}{\sigma^2}\right) \, \mathrm{d}t.$$

Entangled case 2 (near Fermi energy):

$$f(\varepsilon) = \exp\left(-\frac{(\varepsilon - \mu_c)^2}{\sigma^2}\right)$$

Using SCDM

MATLAB/Julia code

https://github.com/asdamle/SCDM https://github.com/antoine-levitt/wannier

Quantum ESPRESSO [I. Carnimeo, S. Baroni, P. Giannozzi, arXiv: 1801.09263]

• Wannier90 [V. Vitale et al]

https://github.com/wannier-developers/wannier90

Interface to Wannier90

Example for isolated band:

scdm_proj: true
scdm_entanglement: 0

Example for entangled band:

```
scdm_proj: true
scdm_entanglement: 1
scdm_mu: -1.0
scdm_sigma: 1.0
```

Example: band interpolation

Si

Cu

Band structure interpolation: Al

10x10x10 k-points, 6 bands \Rightarrow 4 bands (no disentanglement)

Smaller spread by Better interpolation

Variational formulation of Wannier functions for entangled systems

[A. Damle, LL, A. Levitt, arXiv:1801.08572]

Frozen band

 Disentanglement procedure [Souza-Marzari-Vanderbilt, PRB 2001]

$$P_f(\mathbf{k}) = \sum_{n \in \mathcal{N}_f(\mathbf{k})} |\psi_{n,\mathbf{k}}\rangle \langle \psi_{n,\mathbf{k}}|$$

$$P_w(\mathbf{k})P_f(\mathbf{k}) = P_f(\mathbf{k}), \quad \forall \mathbf{k} \in \Gamma^*$$

- Subspace selection process with frozen band constraint
- $N_{outer} \ge N_w > N_f$: work with more bands!

How to enforce the constraint?

PROPOSITION 3.1. The following statements are equivalent:

1.
$$P_w(\mathbf{k})P_f(\mathbf{k}) = P_f(\mathbf{k}).$$

2. $U_f(\mathbf{k})U_f^*(\mathbf{k}) = I_{N_f(\mathbf{k})}.$
3. $U_f(\mathbf{k})U_r^*(\mathbf{k}) = 0$ and $U_f(\mathbf{k})$ has full row rank.
4. $U(\mathbf{k}) = \begin{bmatrix} I_{N_f(\mathbf{k})} & 0\\ 0 & Y(\mathbf{k}) \end{bmatrix} X(\mathbf{k}),$ where $X(\mathbf{k})$ is a unitary matrix of size $N_w \times N_w$, and $Y(\mathbf{k})$ is a matrix with orthogonal columns of size $(N_o - N_f(\mathbf{k})) \times (N_w - N_f(\mathbf{k})).$

(X,Y) representation

Variational formulation

$$\inf_{\{X(\mathbf{k}), Y(\mathbf{k})\}} \quad \Omega[\{U(\mathbf{k})\}],$$

s.t.
$$U(\mathbf{k}) = \begin{bmatrix} I_{N_f(\mathbf{k})} & 0\\ 0 & Y(\mathbf{k}) \end{bmatrix} X(\mathbf{k}),$$
$$X^*(\mathbf{k}) X(\mathbf{k}) = I_{N_w},$$
$$Y^*(\mathbf{k}) Y(\mathbf{k}) = I_{N_w - N_f(\mathbf{k})}.$$

Equivalent to "Partly occupied Wannier functions" [K. Thygesen, L. Hanse, K. Jacobsen, PRL 2005]

Julia code: https://github.com/antoine-levitt/wannier

Relation to disentanglement

 Split into gauge invariant part (Ω_I) and gauge-dependent part (Ω)

$$\Omega[\{U(\mathbf{k})\}] = \Omega_I[\{U(\mathbf{k})\}] + \widetilde{\Omega}[\{U(\mathbf{k})\}]$$

Interpreted as one-step alternating minimization of the variational formulation

1.
$$\inf_{\{Y(\mathbf{k})\}} \Omega_I[\{U(\mathbf{k})\}]$$

2.
$$\inf_{\{X(\mathbf{k})\}} \widetilde{\Omega}[\{U(\mathbf{k})\}]$$

 $\Omega^{var} \leq \Omega^{dis}$

Silicon: first 8 bands

	Final spread $(Å$	$\binom{2}{2}$ max error (eV)	RMSE (eV)
Variational	25.177	0.069	0.021
Wannier90	27.00	0.083	0.023
SCDM	45.206	0.112	0.029

Silicon: first 8 bands

Orbital spread (\AA^2)									
Variational	3.15	3.15	3.15	3.15	3.15	3.15	3.15	3.15 \cdot	Symmetry
Wannier90	3.16	3.16	3.16	3.16	3.59	3.59	3.59	3.59	restored!
SCDM	4.93	4.93	4.93	4.93	6.37	6.37	6.37	6.37	

Per orbital spread (isosurface= ± 0.5 for normalized orbitals)

Variational (spread=3.15) Wannier (spread=3.59)

Uniform electron gas

- Wannier function with frozen band constraints?
- One dimension

Decay properties

Algebraic decay: only minimize second moment

Can be enhanced to super-algebraic decay!

• [H. Cornean, D. Gontier, A. Levitt, D. Monaco, arxiv:1712.07954]

Two dimension

Fourier space

(a) $|\widehat{w}_2(\xi)|$. The function has components on arbitrarily large wave vectors.

(b) $|\nabla_{\xi} \hat{w}_2(\xi)|$, clearly showing the divergence on corners and discontinuity on edges.

Two dimension

Real space

(c) $w_2(\mathbf{r})$.

(d) Slice of w_2 at y = 0, showing the $1/r^2$ decay.

Conclusion

- Wannier localization can be robustly initialized with SCDM (already in Wannier90). High-throughput materials simulation
- Variational optimization can lead to smaller spread with comparable computational cost, esp. entangled band
- Spread is not everything!
- Future: Symmetry. Topological materials.

DOE Base Math, CAMERA, SciDAC, Early Career NSF CAREER. Thank you for your attention!