
Efficient computation of sparse matrix

functions for large scale electronic

structure calculations: The CheSS

library

Stephan Mohr, William Dawson, Michael Wagner, Damien

Caliste, Takahito Nakajima, Luigi Genovese

Barcelona Supercomputing Center

MaX Conference

Trieste, 30th January 2018

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Outline

1 Motivation and Applicability

2 Theory behind CheSS

3 Sparsity and truncation

4 Accuracy and scaling with matrix properties

5 Parallel scaling

6 Comparison with other methods

7 Outlook and conclusions

2 / 20

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Motivation for CheSS

Linear Algebra operations appear in all electronic structure codes and are
in principle easy to handle (standard libraries).

However they can become a severe bottleneck (up to O(N3)).

The straightforward approach is wasteful in the case of sparse matrices:

consequence of a localized basis set (e.g. Gaussians, wavelets, etc.)

intrinsic localization properties of the system

We created a standalone library for sparse Linear Algebra operations,
specifically tailored for electronic structure codes:
Chebyshev Sparse Solvers (CheSS).

CheSS can be obtained for free from https://launchpad.net/chess

More details in J. Chem. Theory Comput., 2017, 13 (10), pp 4684–4698

3 / 20

https://launchpad.net/chess

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Applicability of CheSS

CheSS performs best for matrices exhibiting a small spectral width.

Can this be obtained in practice?

S H

system #atoms sparsity εmin εmax κ sparsity εmin εmax λ ∆HL

DNA 15613 99.57% 0.72 1.65 2.29 98.46% -29.58 19.67 49.25 2.76
bulk pentacene 6876 98.96% 0.78 1.77 2.26 97.11% -21.83 20.47 42.30 1.03
perovskite 768 90.34% 0.70 1.50 2.15 76.47% -20.41 26.85 47.25 2.19
Si nanowire 706 93.24% 0.72 1.54 2.16 81.61% -16.03 25.50 41.54 2.29
water 1800 96.71% 0.83 1.30 1.57 90.06% -26.55 11.71 38.26 9.95

4 / 20

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Basic idea

In CheSS we approximate matrix functions by Chebyshev polynomials:

p(M) =
c0

2
I +

npl∑
i=1

ciT
i (M̃) ,

with

M̃ = σ(M− τ I) ; σ =
2

εmax − εmin
; τ =

εmin + εmax

2

and

cj =
2

npl

npl−1∑
k=0

f

[
1

σ
cos

(
π(k + 1

2)

npl

)
+ τ

]
cos

(
πj(k + 1

2

npl

)
.

Recursion relation for the Chebyshev polynomials:

T0(M̃) = I ,

T1(M̃) = M̃ ,

Tj+1(M̃) = 2M̃Tj(M̃)− Tj−1(M̃) .

Each column independent
=⇒ easily parallelizable

Strict sparsity pattern
=⇒ linear scaling

5 / 20

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Available functions

CheSS can calculate those matrix functions needed for DFT:

density matrix: f (x) = 1
1+eβ(x−µ)

(or f (x) = 1
2

[
1− erf

(
β(ε− x)

)]
)

energy density matrix: f (x) = x
1+eβ(x−µ)

(or f (x) = x
2

[
1− erf

(
β(ε− x)

)]
)

matrix powers: f (x) = xa (a can be non-integer!)

We can calculate arbitrary functions by changing only the coefficients cj !

Only requirement:
function f must be well representable by Chebyshev polynomials over the
entire eigenvalue spectrum.

6 / 20

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Sparsity and truncation

CheSS works with predefined sparsity patterns.

In general there are three:
pattern for the original matrix M
pattern for the matrix function f (M)
auxiliary pattern to perform the matrix-vector multiplications

At the moment all of them must be defined by the user.
Typically: distances atoms / basis functions

1 original matrix M

2 exact calculation of M−1 without
sparsity constraints

3 sparse calculation of M−1 using
CheSS within the sparsity pattern

4 difference between Fig. 2 and
Fig. 3

7 / 20

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Accuracy – error definition

There are two possible factors affecting the accuracy of CheSS:

error introduced due to the enforced sparsity (truncating the
matrix-vector multiplications)

error introduced by the Chebyshev fit

This also affects the definition of the “exact solution”. Two possibilities:

1 calculate the solution exactly and without sparsity constraints and
then crop to the sparsity pattern. Shortcoming: violates in general
the identity f −1(f (M)) = M

Associated error: wf̂sparse
= 1
|f̂ (M)|

√∑
(αβ)∈f̂ (M)

(
f̂ (M)αβ − f (M)αβ

)2

2 calculate the solution within the sparsity pattern, and define as exact
one that which fulfills f̂ −1(f̂ (M)) = M

Associated error: wf̂−1(f̂) = 1
|f̂ (M)|

√∑
(αβ)∈f̂ (M)

(
f̂ −1(f̂ (M))αβ −Mαβ

)2

8 / 20

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Fixed versus variable sparsity

Alternative to a fixed sparsity pattern: Variable adaption during the
iterations (e.g. based on the magnitude of the entries).

Advantage: Flexible control of the truncation error

Shortcoming: The sparsity may decrease considerably

Example: Purification method (TRS4 by Niklasson)

Sparsity defined by magnitude

Strong fill-in during the iterations

Cost of matrix multiplications
increases

Unlike CheSS the matrix to be
applied changes ⇒ harder to
parallelize 92

 93

 94

 95

 96

 97

 98

 99

 2 4 6 8 10 12 14 16

s
p

a
rs

it
y
 i
n

 %

iteration

sparsity

9 / 20

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Accuracy

Inverse:

wf̂ −1(f̂): error due to Chebyshev fit
basically zero

wf̂sparse
: error due to sparsity pattern

very small

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

 10 100 1000

m
e
a
n
 r

e
la

ti
v
e
 e

rr
o
r

condition number

wf̂
-1

(f̂)
wf̂sparse

Density matrix:

energy (i.e. Tr(KH)): relative error
of only 0.01%

slightly larger error for small
spectral width:
eigenvalues are denser, finite
temperature smearing affects more

0.000

0.005

0.010

0.015

0.020

0.025

 0.001 0.01 0.1 1

re
la

ti
v
e

 e
rr

o
r

in
 %

gap (eV)

spectral width 50.0 eV
spectral width 100.0 eV
spectral width 150.0 eV

10 / 20

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Scaling with matrix size and sparsity

Series of matrices with the same “degree of sparsity”
(DFT calculations of water droplet of various size).

Example: calculation of the inverse

Runtime only depends on the number of non-zero elements of M

no dependence on the total matrix size

 0

 20

 40

 60

 80

 100

 120

 5x10
6

 1x10
7

 1.5x10
7

 2x10
7

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
)

number of non-zero elements in the original matrix

matrix size 6000
matrix size 12000
matrix size 18000
matrix size 24000
matrix size 30000
matrix size 36000

11 / 20

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Scaling with spectral properties

CheSS is extremely sensitive to the eigenvalue spectrum:

required polynomial degree strongly increases with the spectral width

as a consequence the runtime strongly increases as well

a good input guess for the eigenvalue bounds helps a lot

Example: calculation of the inverse

 1

 10

 100

 1000

 10 100 1000
 10

 100

 1000

 10000

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
)

p
o
ly

n
o
m

ia
l
d
e
g
re

e

condition number

runtime "bounds default"
runtime "bounds adjusted"

npl "bounds default"
npl "bounds adjusted"

12 / 20

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Scaling with spectral properties

For the density matrix the performance depends on two parameters:

spectral width (the smaller the better)

HOMO-LUMO gap (the larger the better)

In both cases the polynomial degree can increase considerably
=⇒ CheSS less efficient.

 0

 50

 100

 150

 200

 0.001 0.01 0.1 1
 0

 500

 1000

 1500

 2000

 2500

 3000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
)

p
o

ly
n

o
m

ia
l
d

e
g

re
e

HOMO-LUMO gap (eV)
runtime, εmax-εmin=50.0 eV

runtime, εmax-εmin=100.0 eV
runtime, εmax-εmin=150.0 eV

npl, εmax-εmin=50.0 eV
npl, εmax-εmin=100.0 eV
npl, εmax-εmin=150.0 eV

13 / 20

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Parallel scaling

Most compute intensive part of CheSS: matrix-vector multiplications.

Easily parallelizable

identical for all operations

Example: Calculation of M−1 (runs performed with 16 OpenMP threads)

 0

 5

 10

 15

 20

 25

 30

 35

 500 1000 1500 2000 2500

s
p

e
e

d
u

p

number of cores

matrix size 12000
matrix size 24000
matrix size 36000

ideal

 4

 8

 16

 32

 64

 128

 128 256 512 1024 2048

ru
n

ti
m

e
(s

e
c
o

n
d

s
)

number of cores

matrix size 12000
matrix size 24000
matrix size 36000

ideal

14 / 20

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Extreme scaling

We have also performed extreme-scaling tests from 1536 to 16384 cores.

Example: Calculation of M−1 (runs performed with 8 OpenMP threads)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 2000 4000 6000 8000 10000 12000 14000 16000

s
p
e
e
d
u
p

number of cores

matrix size 96000
ideal

Given the small matrix (96000× 96000) the obtained scaling is good.

We will try to further improve the scaling.
15 / 20

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Comparison with other methods: Inverse

Comparison of the matrix inversion between:

CheSS

SelInv

ScaLAPACK

LAPACK

 1

 10

 100

 2 4 8

 1
6

 3
2

 6
4

 1
2
8

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
)

κ

matrix size 6000
 sparsity S: 97.95 %
 sparsity S

-1
: 88.45 %

CheSS

 1

 10

 100

 2 4 8

 1
6

 3
2

 6
4

 1
2
8

κ

matrix size 12000
 sparsity S: 98.93 %
 sparsity S

-1
: 93.73 %

SelInv

 1

 10

 100

 2 4 8

 1
6

 3
2

 6
4

 1
2
8

κ

matrix size 18000
 sparsity S: 99.27 %
 sparsity S

-1
: 95.65 %

ScaLAPACK

 1

 10

 100

 2 4 8

 1
6

 3
2

 6
4

 1
2
8

κ

matrix size 24000
 sparsity S: 99.45 %
 sparsity S

-1
: 96.66 %

LAPACK

 1

 10

 100

 2 4 8

 1
6

 3
2

 6
4

 1
2
8

κ

matrix size 30000
 sparsity S: 99.56 %
 sparsity S

-1
: 97.28 %

16 / 20

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Comparison with other methods: Density matrix

Comparison of the density matrix calculation between:

CheSS hybrid MPI/OpenMP

PEXSI hybrid MPI/OpenMP

CheSS MPI-only

PEXSI MPI-only

 10

 100

 1000

 50 100 150 200

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
)

spectral width (eV)

matrix size 6000
 sparsity S: 97.95 %
 sparsity H: 92.97 %
 sparsity K: 88.45 %

CheSS hybrid
(160 MPI x 12 OMP)

 10

 100

 1000

 50 100 150 200

spectral width (eV)

matrix size 12000
 sparsity S: 98.93 %
 sparsity H: 96.25 %
 sparsity K: 93.73 %

PEXSI hybrid
(160 MPI x 12 OMP)

 10

 100

 1000

 50 100 150 200

spectral width (eV)

matrix size 18000
 sparsity S: 99.27 %
 sparsity H: 97.42 %
 sparsity K: 95.65 %

CheSS MPI-only
(1920 MPI x 1 OMP)

 10

 100

 1000

 50 100 150 200

spectral width (eV)

matrix size 24000
 sparsity S: 99.27 %
 sparsity H: 97.42 %
 sparsity K: 95.65 %

PEXSI MPI-only
(1920 MPI x 1 OMP)

 10

 100

 1000

 50 100 150 200

spectral width (eV)

matrix size 30000
 sparsity S: 99.27 %
 sparsity H: 97.42 %
 sparsity K: 95.65 %

17 / 20

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Integration into ELSI

There are various other libraries to
accelerate linear algebra operations, e.g.

ELPA

libOMM

PEXSI

...

The ELSI project tries to provide one
single interface for all these libraries.

We are planning to include also CheSS
in ELSI.

18 / 20

Motivation and Applicability Theory Sparsity Accuracy and scaling Parallel scaling Comparison Outlook

Conclusions

CheSS is a flexible tool to calculate matrix functions for DFT

can easily be extended to other functions

exploits sparsity of the matrices, linear scaling possible

works best for small spectral widths of the matrices

very good parallel scaling (both MPI and OpenMP)

19 / 20

Thank you for your attention!

stephan.mohr@bsc.es

	Motivation and Applicability
	Theory behind CheSS
	Sparsity and truncation
	Accuracy and scaling with matrix properties
	Parallel scaling
	Comparison with other methods
	Outlook and conclusions

