Spin-Orbit Interaction – A Path to Topological Matter in Real and Momentum Space

Peter Grünberg Institute and Institute for Advanced Simulation Stefan Blügel

Topology of electrons in an insulator

ÜLICH

GEMEINSCHAFT

 $u_{n\mathbf{k}} \to e^{i\varphi} u_{n\mathbf{k}}$

Nash and Sen, Topology and Geometry for Physicists

Topological insulators

Topological matter

Topology of Bloch wavefunction

Topological classification

Topological insulators

Topological matter

Dissipationless edge states

Quantum Spin Hall Effect

Topological Characterization of Solids

Chiral magnetic skyrmion

from Bertrand Dupé

Chiral magnetic skyrmion

Chiral magnetic skyrmion

Skyrmion= non-trivial, smooth mapping from S_d to order parameter space ("trivial winding at infinity") magnetization direction hedgehog vector field of magnetization direction m(x,y) = M/M

dxdy

MHOLTZ MEINSCHAF

Smooth mapping Here d=2, $S_2 \rightarrow S_2$

 $Q = \frac{1}{4\pi} \int_{\mathbb{R}^2} \mathbf{m} \cdot \left(\frac{\partial \mathbf{m}}{\partial x} \times \frac{\partial \mathbf{m}}{\partial y} \right)$

 $\mathbf{m}(x,y)$

Skyrmions: Experimental observations

Layers of materials with intrinsic chirality (cubic helimagnets FeGe, MnSi, Fe_{1-x}Co_xSi) Lorentz Transmission Electron Microscopy X.Z. Yu et al. *Nature* **465**, 90 (2010)

Magnetic Force Microscopy P. Milde et al., *Science* **340**, 1076 (2013)

Ultrathin films with induced chirality (Fe/Ir, Mn/W, Pd/Fe/Ir) Spin-Polarized Scanning Tunneling Microscopy

N. Romming et al. Science 341, 636 (2013)

 $\boldsymbol{B}_{app} \neq 0$

Multiscale modeling

Micromagnetic-model:

 $E(\mathbf{m}) = \int_{\mathbb{T}^2} \left[A |\nabla \mathbf{m}|^2 + \mathbf{D} : (\nabla \mathbf{m} \times \mathbf{m}) + \mathbf{m} \cdot \mathbf{K} \cdot \mathbf{m} - B \mathbf{m} \cdot \hat{\mathbf{e}}_z \right] d\mathbf{r}$

Spin-Lattice Model:

$$H = \frac{1}{2} \sum_{ij} J_{ij} \mathbf{m}_i \mathbf{m}_j + \sum_{ij} \mathbf{D}_{ij} \underbrace{\mathbf{m}_i \times \mathbf{m}_j}_{ij} + \sum_i \mathbf{m}_i \mathbf{K} \mathbf{m}_i + \sum_{ij} \frac{1}{r_{ij}^3} \left[\mathbf{m}_i \mathbf{m}_j - (\mathbf{m}_i \hat{\mathbf{e}}_i)(\mathbf{m}_j \hat{\mathbf{e}}_i) \right]$$

***** DFT-model: $E_{tot}^{DFT}(\mathbf{q}, \hat{e}_{rot}) = E_{noSOC}^{DFT}(\mathbf{q}) + \Delta E_{SOC}^{DFT}(\mathbf{q}, \hat{e}_{rot})$

From total energy calculation to

- A, <u>D</u>, <u>K</u>
- J_{ii}, **D**_{ii}

- M. Heide, G. Bihlmayer, and S. Blügel, Physica B 404, 2678 (2009)
- B. Zimmermann, M. Heide, G. Bihlmayer, and S. Blügel, PRB 90, 115427 (2014)
- B. Schweflinghaus, B. Zimmermann, G. Bihlmayer and S. Blügel, PRB 94, 024403 (2016)

MaX Conference, 31, Jan, 2018

Multiscale modeling

Micromagnetic-model:

 $E(\mathbf{m}) = \int_{\mathbb{R}^2} \left[A |\nabla \mathbf{m}|^2 + \underline{\mathbf{D}} : (\nabla \mathbf{m} \times \mathbf{m}) + \mathbf{m} \cdot \underline{\mathbf{K}} \cdot \mathbf{m} - B \mathbf{m} \cdot \hat{\mathbf{e}}_z \right] d\mathbf{r}$

Spin-Lattice Model:

$$H = \frac{1}{2} \sum_{ij} J_{ij} \mathbf{m}_i \mathbf{m}_j + \sum_{ij} \mathbf{D}_{ij} \underbrace{\mathbf{m}_i \times \mathbf{m}_j}_{ij} + \sum_i \mathbf{m}_i \mathbf{K} \mathbf{m}_i + \sum_{ij} \frac{1}{r_{ij}^3} \left[\mathbf{m}_i \mathbf{m}_j - (\mathbf{m}_i \hat{\mathbf{e}}_i)(\mathbf{m}_j \hat{\mathbf{e}}_i) \right]$$

M. Heide, G. Bihlmayer, and S. Blügel, Physica B 404, 2678 (2009)
B. Zimmermann, M. Heide, G. Bihlmayer, and S. Blügel, PRB 90, 115427 (2014)
B. Schweflinghaus, B. Zimmermann, G. Bihlmayer and S. Blügel, PRB 94, 024403 (2016)

Ab-initio A, <u>D</u>, <u>K</u>

Micromagnetic-model:

 $E(\mathbf{m}) = \int_{\mathbb{R}^2} \left[\mathbf{A} |\nabla \mathbf{m}|^2 + \mathbf{D} : (\nabla \mathbf{m} \times \mathbf{m}) + \mathbf{m} \cdot \mathbf{K} \cdot \mathbf{m} - \mathbf{B} \mathbf{m} \cdot \hat{\mathbf{e}}_z \right] d\mathbf{r}$

Spin-Lattice Model:

$$H = \frac{1}{2} \sum_{ij} J_{ij} \mathbf{m}_i \mathbf{m}_j + \sum_{ij} \mathbf{D}_{ij} \underbrace{\mathbf{m}_i \times \mathbf{m}_j}_{ij} + \sum_i \mathbf{m}_i \underbrace{\mathbf{K}}_i \mathbf{m}_i + \sum_{ij} \frac{1}{r_{ij}^3} \left[\mathbf{m}_i \mathbf{m}_j - (\mathbf{m}_i \hat{\mathbf{e}}_i)(\mathbf{m}_j \hat{\mathbf{e}}_i) \right]$$

Spin Stiffness:

 $\boldsymbol{A} = \frac{\partial^2}{\partial \mathbf{q}^2} \boldsymbol{E}_{\text{tot}}^{\text{DFT}}(\mathbf{q}) \propto \sum_{i>0} J_{0i} \boldsymbol{R}_{0i}^2$

Spiralization (micromagnetic D)

 $\underline{\mathbf{D}} = \frac{\partial}{\partial \mathbf{q}} E_{\text{tot}}^{\text{DFT}}(\mathbf{q}) \propto \sum \mathbf{D}_{0j} \otimes \mathbf{R}_{0j}$

 $\Rightarrow \mathsf{DFT}\text{-}\mathsf{model}: E_{\mathsf{tot}}^{\mathsf{DFT}}(\mathbf{q}, \hat{e}_{\mathsf{rot}}) = E_{\mathsf{noSOC}}^{\mathsf{DFT}}(\mathbf{q}) + \Delta E_{\mathsf{SOC}}^{\mathsf{DFT}}(\mathbf{q}, \hat{e}_{\mathsf{rot}})$

What happens when space inversion symmetry broken

(GaAs, InSb, interfaces, surfaces, ...)

Time reversal + space inversion symmetry

 $\epsilon_{\mathbf{k}\uparrow} = \epsilon_{\mathbf{k}\downarrow}$

Time reversal only

$$\epsilon_{{f k}\uparrow}=\epsilon_{-{f k}\downarrow}$$
 , $\epsilon_{{f k}\uparrow}
eq\epsilon_{{f k}\downarrow}$

Effective spin-orbit ("magnetic") field Ω :

 $H_1({f k})=rac{\hbar}{2}\Omega({f k})\cdot\sigma$ Time reversal symmetry: $\Omega(-{f k})=-\Omega({f k})$

I. Z^{*}uti[′]c, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)**.**

k

Spin-Orbit Coupling

spin-orbit coupling has fascinating realizations and ramifications in solids

Examples:

- Orbital and topological orbital magnetic moment
- Magnetic Anisotropy
- Dzyaloshinskii-Moriya Interaction
- Rashba Effect , Dresselhaus Effect
- Topological Insulator, Weyl Semimetals
- Spin-Relaxation (Elliot-Yafet, Dyakonov-Perel)
- Anomalous Hall Effect, Spin Hall Effect
- Spin-Orbit torque

Quantum Spin Hall Effect, Quantum Anomalous Hall Effect

HELMHOLTZ

Magnetic materials & spintronics have a market

permanent magnets

Storage

IÜLICH

MRAM

magneto-caloric materials

IoT y data that will constate better analyzing and tra 會 🏛 🚟 REDtone IOT Platform

magnetic sensors

Example 1: Bandstructure of topological insulator

GW with spin-orbit coupling (SOC)

MOST GW WORKS PUBLISHED a posteriori SOC:

LDA (without SOC) + *GW* (without SOC) + SOC(LDA)

GW with spin-orbit coupling (SOC)

MOST GW WORKS PUBLISHED a posteriori SOC:

LDA (without SOC) + *GW* (without SOC) + SOC(LDA)

Sakuma et al., PRB 84 085144 (2011)

LDA (with SOC) + *GW* (with SOC)

(more accurate but ~10 times more time-consuming)

www.flapw.de

ÜI ICH GW with spin-orbit coupling (SOC) **MOST GW WORKS PUBLISHED** a posteriori SOC: LDA (without SOC) + GW (without SOC) + SOC(LDA) Bi₂Te₃ GW+SOC 0.4 0.2 full SOC: LDA+SOC **OUR WORK** 0.0 **G**^{SOC}W^{SOC} Sakuma et al., PRB 84 085144 (2011) **GW+SOC** -0.2 LDA (with SOC) + *GW* (with SOC) -0.4 (more accurate but ~10 times more time-consuming) F← Г $\rightarrow L$ www.flapw.de GSOCWSOC Aguilera, Friedrich, Blügel, PRB 88, 165136 (2013) GEMEINSCHAFT

Trieste MaX Conference, 31. Jan. 2018

22 Trieste MaX Conference, 31. Jan. 2018

Comparison with ARPES: Bi₂Se₃

Comparison with ARPES: Bi₂Se₃

Fermi level

1 eV

Bulk conduction band (BCB) BCB bttom Band gap Surface stat band (SSB Dirac point Bulk valence band (BVB) -0.1 -0.05 0 0.05 0.1 k (1/Å)

0.3 Å⁻¹

ARPES

0

0.1

0.2

0.3

0.4

0.5

0.6

Binding energy (eV)

"GW"

Example 2: Skyrmion design

Skyrmions for Spintronics

The Fert criteria

- Chiral magnetism in thin films, but not too thin (min 3 layers)
- Try find small but not too small skyrmions ≈ 5-10 nm
- Above room temperature and zero magnetic field
- Fit to the field of spintronics: *injection*, *transport*, *detection*, manipulation at reasonable fields and *currents*
- Fast & energy efficient
- Also for logic operation
- Metallic magnetism

Albert Fert, Vincent Cross and João Sampaio, Nature Nanotechnology **8**, 152 (2013)

Multiscale modeling

Micromagnetic-model:

 $E(\mathbf{m}) = \int_{\mathbb{R}^2} \left[A |\nabla \mathbf{m}|^2 + \mathbf{D} : (\nabla \mathbf{m} \times \mathbf{m}) + \mathbf{m} \cdot \mathbf{K} \cdot \mathbf{m} - B \mathbf{m} \cdot \hat{\mathbf{e}}_z \right] d\mathbf{r}$

Spin-Lattice Model:

$$H = \frac{1}{2} \sum_{ij} J_{ij} \mathbf{m}_i \mathbf{m}_j + \sum_{ij} \mathbf{D}_{ij} \underbrace{\mathbf{m}_i \times \mathbf{m}_j}_{ij} + \sum_i \mathbf{m}_i \underbrace{\mathbf{K}}_i \mathbf{m}_i + \sum_{ij} \frac{1}{r_{ij}^3} \left[\mathbf{m}_i \mathbf{m}_j - (\mathbf{m}_i \hat{\mathbf{e}}_i)(\mathbf{m}_j \hat{\mathbf{e}}_i) \right]$$

Exchange bias stabilized skyrmions

Mn/W(100)

PAGE 29 te MaX Conference. 31. Jan. 2018

20

 $B_{\rm ise}$

 $B_{\rm tr1}$

40

60

Temperature [K]

80

100

120

Nandy, Kiselev, Blügel, PRL.116, 177202 (2016)

80

60

0

0

 $[\mathbf{T}]$

B 40

Spontaneous nucleation of

<1()()>

Interlayer Exchange Bias Skyrmions

Nandy, Kiselev Blügel PRL.**116**, 177202 (2016)

Interlayer exchange coupling (IEC) between reference and free magnetic layer may compensate the required magnetic field.

Skyrmions in zero applied field

State resolved Heisenberg coupling

Steep slope at the Fermi energy System is extremely sensitive on lattice relaxations Energy shifts due to Hybridization effects

PAGE 34 Trieste MaX Conference, 31, Jan, 2018

B. Dupé, G. Bihlmayer,S. Blügel, S. Heinze,Nature Comm. 7, 11779 (2016)

Example 3: Skyrmion detection

Small skyrmions from first-principles

Spin-Polarized Scanning Tunneling Microscopy N. Romming et al. *Science* **341**, 636 (2013)

Pd/Fe/Ir(111)

Real-space spin relaxation of nanoskyrmions

D. Crum, M. Bouhassoune, J. Bouaziz, B. Schwelinghaus, S. Blügel, S. Lounis, Nature Comm. 6, 8541 (2015)

.MHOLTZ MEINSCHAFT

Spin-mixing magnetoresistance

*

All-electric detection

MHOLTZ MEINSCHAFT

D. Crum, M. Bouhassoune, J. Bouaziz, B. Schwelinghaus, S. Blügel, S. Lounis, Nature Comm. 6, 8541 (2015)

Future Outlook

Spinorbitronics

- Spintextures for neuro-inspired computing
- Ultrafast and antiferromagnetic spintronics
- 3D nanoscale magnetic textures & dynamics

Quantum materials

- Emergent complex phase space topology
- Topological superconductors for QC

Materials discovery lab – Computer

Cognitive Materials and Functionality

Discovery

From Nicola Marzari

Quantum Phenomena for the New Information Age

vww.flapw.de

Daniel Wortmann Gustav Bihlmayer Gregor Michalicek Uliana Alekseeva

KKRnano

Rudolf Zeller Roman Kovacik Marcel Bornemann Paul Baumeister Dirk Pleiter

Jens Bröder Daniel Wortmann

WANNIER90

&Aii

