Non Equilibrium Many-Body Perturbation Theory from first principles

D. Sangalli

CNR-ISM, Division of Ultrafast Processes in Materials (FLASHit), Area della Ricerca di Roma 1, Monterotondo Scalo, Italy.

MaX conference 2018 29th – 31st January 2018, Trieste, Italy

Yambo and HPC

New computational resources make possible to tackle more **challenging computational problems** from first-principles

Yambo and HPC

Spatial resolution of $\sim 0.06 \text{ mm} = 60 \mu \text{m}$

Time resolution of $\sim 0.04 \text{ s} = 40 \text{ ms}$

We can use technology to explore shorter space and time scales

Spatial resolution of $\sim 0.06 \text{ mm} = 60 \mu \text{m}$

Time resolution of $\sim 0.04 \text{ s} = 40 \text{ ms}$

We can use technology to explore shorter <u>space</u> and time scales

Enlarge space: Telescope, Galileo (1609)

 $Magnification \sim x20$

1610 Moons of Jupiter

Spatial resolution of $\sim 0.06 \text{ mm} = 60 \mu \text{m}$

Time resolution of $\sim 0.04 \text{ s} = 40 \text{ ms}$

We can use technology to explore shorter <u>space</u> and time scales

Enlarge space: Telescope, Microscope, ..., Scanning electron microscopy, Transmissions electron microscopy

Resolution ~ 1 Angstrom = 10^{-10} mt Magnification ~ 10^{6} - 10^{7}

Spatial resolution of $\sim 0.06 \text{ mm} = 60 \mu \text{m}$

Time resolution of $\sim 0.04 \text{ s} = 40 \text{ ms}$

We can use technology to explore shorter space and <u>time</u> scales

Enlarge space: Telescope, Microscope, ..., Scanning electron microscopy, Transmissions electron microscopy

Nature Materials 10, 165 (2011) TEM image graphene Lattice constant 2 Ang

Resolution ~ 1 Angstrom = 10^{-10} mt Magnification ~ 10^{6} - 10^{7} Slow down time ? 1791 George Stubbs (english painter)

1878 "Sallie Gardner at a Gallop" is a series of photographs consisting of a galloping horse

Why so fast ?

14

Spatial resolution of $\sim 0.06 \text{ mm} = 60 \mu \text{m}$

Time resolution of $\sim 0.04 \text{ s} = 40 \text{ ms}$

We can use technology to explore shorter space and <u>time</u> scales

Enlarge space: Telescope, Microscope, ..., Scanning electron microscopy, Transmissions electron microscopy

Resolution ~ 1 Angstrom = 10^{-10} mt Magnification ~ 10^{6} - 10^{7} Slow down time 1878 "Sallie Gardner at a Gallop" is a series of photographs consisting of a galloping horse

 $\sim 0.5 \text{ ms} = 500 \ \mu\text{m}$ resolution (x80)

How fast can we go?

Flash photolysis method 1949

The Nobel Prize in Chemistry 1967

Prize share: 1/2

Ronald George Wreyford Norrish Prize share: 1/4

George Porter Prize share: 1/4

The Nobel Prize in Chemistry 1967 was divided, one half awarded to Manfred Eigen, the other half jointly to Ronald George Wreyford Norrish and George Porter *"for their studies of extremely fast chemical reactions, effected by disturbing the equibrium by means*

Why so fast ?

The Nobel Prize in Chemistry 1967 Manfred Eigen, Ronald G.W. Norrish, George Porter

Flash photolysis method 1949

The Nobel Prize in Chemistry 1967

Prize share: 1/2

Ronald George Wreyford Norrish Prize share: 1/4

George Porter Prize share: 1/4

 $a = \frac{F_{coulomb}(d)}{m}$

$$d=0.5 a t^2$$

Atoms $\sim 10^{-13} \text{ s} = 100 \text{ fs}$

The Nobel Prize in Chemistry 1999 Ahmed Zewail Femto-chemestry

The Nobel Prize in Chemistry 1999

Breaking of an ICN molecule on the fs timescale

Ahmed H. Zewail Prize share: 1/1

The Nobel Prize in Chemistry 1999 was awarded to Ahmed Zewail "for his studies of the transition states of <u>chemical reactions</u> using <u>femtosecond spectroscopy</u>".

The Nobel Prize in Chemistry 1967 Manfred Eigen, Ronald G.W. Norrish, George Porter

Flash photolysis method 1949

The Nobel Prize in Chemistry 1967

Manfred Eigen Prize share: 1/2

Ronald George

Wreyford Norrish Prize share: 1/4

George Porter Prize share: 1/4

Why so fast?

 $F_{coulomb}(d)$ \boldsymbol{m}

$$d=0.5 a t^2$$

 $\sim 10^{-13} \text{ s} = 100 \text{ fs}$ Atoms

The Nobel Prize in Chemistry 1999 Ahmed Zewail Femto-chemestry

The Nobel Prize in **Chemistry 1999**

Breaking of an ICN molecule on the fs timescale

Ahmed H. Zewail Prize share: 1/1

The Nobel Prize in Chemistry 1999 was awarded to Ahmed Zewail "for his studies of the transition states of chemical reactions using femtosecond spectroscopy".

Electrons $\sim 10^{-16}$ s = 0.1 fs (Bohr model)

5 fs $\sim 10^{13}$ slow down of time

 $(1 \text{ Ang} \sim 10^6 - 10^7 \text{ space magnification})$

Shortest laser pulses <1 fs (X-Ray)

Two photons photo-emission

PHYSICAL REVIEW B 84, 235210 (2011)

Two photons photo-emission

Ultrafast relaxation of highly excited hot electrons in Si: Roles of the L - X intervalley scattering

T. Ichibayashi, S. Tanaka, J. Kanasaki, and K. Tanimura^{*} The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

Thomas Fauster

Lehrstuhl für Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstrasse 7, Bau A3, D-91058 Erlangen, Germany (Received 2 April 2011; revised manuscript received 29 September 2011; published 27 December 2011)

PRL 102, 087403 (2009)

PHYSICAL REVIEW LETTERS

week ending 27 FEBRUARY 2009

Ultrafast Carrier Relaxation in Si Studied by Time-Resolved Two-Photon Photoemission Spectroscopy: Intravalley Scattering and Energy Relaxation of Hot Electrons

T. Ichibayashi and K. Tanimura

The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan (Received 6 June 2008; published 26 February 2009)

PHYSICAL REVIEW B 84, 235210 (2011)

Two photons photo-emission

Ultrafast relaxation of highly excited hot electrons in Si: Roles of the L - X intervalley scattering

T. Ichibayashi, S. Tanaka, J. Kanasaki, and K. Tanimura^{*} The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

Thomas Fauster Lehrstuhl für Festkörperphysik, Universität Erlangen-Nürnberg, Staudtstrasse 7, Bau A3, D-91058 Erlangen, Germany (Received 2 April 2011; revised manuscript received 29 September 2011; published 27 December 2011)

PRL 102, 087403 (2009)

PHYSICAL REVIEW LETTERS

week ending 27 FEBRUARY 2009

Ultrafast Carrier Relaxation in Si Studied by Time-Resolved Two-Photon Photoemission Spectroscopy: Intravalley Scattering and Energy Relaxation of Hot Electrons

T. Ichibayashi and K. Tanimura

The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan (Received 6 June 2008; published 26 February 2009)

Transient absorption (reflectivity)

Transient absorption (reflectivity)

The birth of a quasiparticle in silicon observed in time—frequency space

Muneaki Hase 1 , Masahiro Kitajima 1 , Anca Monia Constantinescu 2 & Hrvoje Petek 2

nature 2012 LETTERS PUBLISHED ONLINE: 4 MARCH 2012 | DOI: 10.1038/NPHOTON.2012.35

Frequency comb generation at terahertz frequencies by coherent phonon excitation in silicon

Muneaki Hase^{1,2*}, Masayuki Katsuragawa³, Anca Monia Constantinescu¹ and Hrvoje Petek^{1*}

Transient absorption (reflectivity)

Recent measures perfomed at Politecnico in Milano

The birth of a quasiparticle in silicon observed in time-frequency space

Muneaki Hase¹, Masahiro Kitajima¹, Anca Monia Constantinescu² & Hrvoje Petek²

nature 2012 LETTERS PUBLISHED ONLINE: 4 MARCH 2012 | DOI: 10.1038/NPHOTON.2012.35

Frequency comb generation at terahertz frequencies by coherent phonon excitation in silicon

Muneaki Hase^{1,2*}, Masayuki Katsuragawa³, Anca Monia Constantinescu¹ and Hrvoje Petek^{1*}

Strong technological interest

Time resolved magnetization

New generation magnetic recording devices

Phys. Rev. Lett. **99**, 047601 (2007) Phys. Rev. Lett. **103**, 117201 (2009)

Selected for viewpoint in physics and editor's suggestion

Phys. Rev. Lett. **76**, 4250 (1996) Nature **435**, 635 (2005) Rev. Mod. Phys. **82**, 2731 (2010)

Time resolved magnetization

Phys. Rev. Lett. **76**, 4250 (1996) Nature **435**, 635 (2005) Rev. Mod. Phys. **82**, 2731 (2010)

New generation magnetic recording devices

Phys. Rev. Lett. **99**, 047601 (2007) Phys. Rev. Lett. **103**, 117201 (2009)

Selected for viewpoint in physics and editor's suggestion

Theory ?

tem. However, a proper theoretical framework that allows an adequate description of the time-resolved pump-probe magneto-optical experiments in metals, magnetic semiconductors, and even dielectrics <u>remains</u> challenging, and the number of approaches is limited

Strong need of theoretical modelling

No easy interpretation of the data

Strong request for theoretical modelling both to describe table top experiments

Strong need of theoretical modelling

No easy interpretation of the data

Strong request for theoretical modelling both to describe table top experiments and measures at FEL facilities

Compute the equilibrium properties of the material: band structure, phonons, electron-phonon matrix elements

Compute the equilibrium properties of the material: band structure, phonons, electron-phonon matrix elements

Photo-carriers excitations: how are carriers created ?

1 - Coherent evolution

Compute the equilibrium properties of the material: band structure, phonons, electron-phonon matrix elements

1 - Coherent evolution

Compute the equilibrium properties of the material: band structure, phonons, electron-phonon matrix elements

1 - Coherent evolution

3 - Define the measured physical quantities

Ab-Initio Many-Body Perturbation Theory

DFT

$$\left[\frac{-\nabla^2}{2}+v_s(r)\right]\psi_{nk}(r)=\epsilon_{nk}\psi_{nk}(r)$$

$$v_s(r) = v_{ions}(r) + v_{Hxc}[n](r)$$

G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002)

Ab-Initio Many-Body Perturbation Theory

G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002) $\epsilon_{nk}^{QP} = \epsilon_{nk}^{KS} + \langle \Sigma(\epsilon^{QP}) - V_{Hxc} \rangle$

Predictive, parameters free and accurate

Computationally very demanding

DFT band structureQP corrections

- DFPT phonons and el-ph matrix elements

 $G_{nmk}^{<}(t) = \langle \psi_{nk} | G^{<}(rt, r't) | \psi_{mk} \rangle \qquad G_{nmk}^{<}(0) = \delta_{nm} f_{nk}^{eq}$

$$i\partial_t G^{<}_{nmk}(t,t) - [H^{eq} + \Delta V^H + \Delta \Sigma_s + U^{ext}(t), G^{<}(t,t)]_{nmk} = S_{nmk}(t)$$

Coherent evolution

Scattering term

 $G_{nmk}^{<}(t) = \langle \psi_{nk} | G^{<}(rt, r't) | \psi_{mk} \rangle$

$$P(t) = -e \sum_{nmk} r_{nmk} \Delta G_{nmk}^{<}(t)$$

$$G_{nmk}^{<}(0) = \delta_{nm} f_{nk}^{eq}$$

$$f_{nk}(t) = -i G_{nnk}^{<}(t)$$

$$\chi[f_{nk}(t)](\omega)$$

0.8

D. Sangalli, and A. Marini, Europhysics Letters 110, 47004 (2015)

D. Sangalli, and A. Marini, Europhysics Letters 110, 47004

D. Sangalli, and A. Marini, Europhysics Letters 110, 47004 (2015)

$$\partial_t f_{nk}^{(e)}(t) = \boldsymbol{\gamma}_{nk}^{(h)} f_{nk}^{(h)} - \boldsymbol{\gamma}_{nk}^{(e)} f_{nk}^{(e)}$$

D. Sangalli, and A. Marini, Europhysics Letters 110, 47004 (2015)

$$\partial_{t} f_{nk}^{(e)}(t) = \frac{\gamma_{nk}^{(h)} f_{nk}^{(h)} - \gamma_{nk}^{(e)} f_{nk}^{(e)}}{f_{nk}^{(e)}} f_{nk}^{(e)}}{\beta_{nk}^{(e)}} f_{nk}^{(e)}$$
$$\partial_{t} f_{nk}^{(e)}(t) = -\overline{\gamma}_{nk}^{(e)} f_{nk}^{(e)}$$

$$\partial_t f_{nk}^{(e)}(t) = \frac{\boldsymbol{\gamma}_{nk}^{(h)} f_{nk}^{(h)} - \boldsymbol{\gamma}_{nk}^{(e)} f_{nk}^{(e)}}{f_{nk}^{(e)}} f_{nk}^{(e)}}$$
$$\partial_t f_{nk}^{(e)}(t) = -\overline{\boldsymbol{\gamma}}_{nk}^{(e)} f_{nk}^{(e)}$$

 $f_{nk}^{(e)}(\epsilon_{nk})$

$$S_{nnk}^{<}(t) = \gamma_{nk}^{(h)} f_{nk}^{(h)}(t) - \gamma_{nk}^{(e)} f_{nk}^{(e)}(t)$$

Energy [eV]

 $f_{nk}^{(e)}(\epsilon_{nk})$

 $f_{nk}^{(e)}(\epsilon_{nk})$

 $f_{nk}^{(e)}(\epsilon_{nk})$

 $f_{nk}^{(e)}(\epsilon_{nk})$

D. Sangalli, S. Dal Conte, C. Manzoni,
G. Cerullo and A. Marini,PHYSICAL REVIEW B 93, 195205 (2016)
Editor'sEditor'sSuggestion

Pump Energy 3.1 eV Fluence 12 nJ – 200 nJ

White Probe 1.7 - 3.1 eV

Residuals Renormalization

Reflectivity

The "ultra-fast" team

A. Marini (project leader)

D. Sangalli

CNR-ISM, Division of Ultrafast Processes in Materials, Area della Ricerca di Roma 1, Monterotondo Scalo, Italy

Code, theory developments, application to bulk systems: www.yambo-code.org (part GPL / part "pre-GPL") https://github.com/yambo-code

E. Perfetto

G. Stefanucci University of Tor Vergata, Roma, Italy

Code, theory development, applications to models and isolated systems

The "ultra-fast" team

A. Marini (project leader)

D. Sangalli

CNR-ISM, Division of Ultrafast Processes in Materials, Area della Ricerca di Roma 1, Monterotondo Scalo, Italy

Code, theory developments, application to bulk systems: www.yambo-code.org (part GPL / part "pre-GPL") https://github.com/yambo-code

E. Perfetto G. Stefanucci University of Tor Vergata, Roma, Italy Code, theory development, applications to models and isolated systems

Applications to transition metal dicalcogenides

Nano Letters, **17**, 4549 (2017): *Ab Initio Calculations of Ultrashort Carrier Dynamics in Two-Dimensional Materials: Valley Depolarization in Single-Layer WSe2*

ACS nano **10**, 1182 (2016) *Photo-Induced Bandgap Renormalization Governs the Ultrafast Response of Single-Layer MoS2*

M. Marsili Teaching

A. Molina-Sanchez Institute of Materials Science, University of Valencia, Valencia, Spain

Thank you for your attention

References

Development of the theoretical and numerical method:

- C. Attaccalite, M. Gruning, A. Marini, Phys. Rev. B 84, 245110 (2011)
- D. Sangalli, A. Marini, A. Debernardi, Phys. Rev. B 86, 125139 (2012)
- A. Marini, J. of Phys: Conf. Ser. 427, 012003 (2013)
- D. Sangalli and A. Marini, J. of Phys: Conf. Ser. 609, 012006 (2015)
- E. Perfetto, D. Sangalli, A. Marini, G. Stefanucci, Phys. Rev. B 92, 205304 (2015)
- E. Perfetto, D. Sangalli, A. Marini, G. Stefanucci, Phys. Rev. B 94, 245303 (2016)

Applications to bulk silicon:

- D. Sangalli, and A. Marini, Europhysics Letters **110**, 47004 (2015)
- D. Sangalli, S. Dal Conte, C. Manzoni, G. Cerullo and A. Marini, Phys. Rev B 93, 195205 (2016)

Applications molecules:

- E. Perfetto, D. Sangalli, A. Marini, and G. Stefanucci, submitted to Journal of Physical Chemistry Letters (2018)

Applications to TMDs:

- A. Molina Sanchez, D. Sangalli, K. Hummer, A. Marini, L. Wirtz, Phys. Rev. B 88, 045412 (2013)
- E. Pogna, M. Marsili, D. De Fazio, S. Dal Conte, C. Manzoni, D. Sangalli,
- D. Yoon, A. Lombardo, A. Ferrari, A. Marini, G. Cerullo, D. Prezzi, ACS nano 10, 1182 (2016)
- A. Molina Sanchez, D. Sangalli, L. Wirtz, and A. Marini, Nano Letters 17, 4549 (2017)

$$i\partial_t G^{<}_{nmk}(t,t) - [H^{eq} + \Delta V^H + \Delta \Sigma_s + U^{ext}(t), G^{<}(t,t)]_{nmk} = S_{nmk}(t)$$

Coherent evolution

Scattering term

Propagate a group of small matricies, one for each k-point, "N x N". Silicon case: N = 8; 743 matricies on a double grid in the IBZ (4x4x4 + 15x15x15) (6x6x6 + 25x25x25)

All EOM are coupled via

a) The calculation of the density matrix (easy part)

b) The scattering processes from $k \rightarrow k+q$ which need to be updated

Some timing on bulk silicon @(4x4x4+15x15x15):

DFT: (i) scf:	~1s	serial (coarse grid)
(ii) nscf:	33s	serial (coarse grid, 100 bands)
	5m 6s	4 cores (fine grid)
DFPT: (i) phonons and elph:	1m	4 cores (coarse grid, 10 bands)
GW:	9h 8m	4 cores (fine grid)
BSE:	1h30m	4 cores (fine grid)
SEX Kernel:	2m48s	4 cores (coarse grid)
NEGF: (t=0.01 fs)	14h38m	4 cores (double grid, scatt. 2.5 fs, 11h1m)
NEQ COHSEX:	1h51m	4 cores (fine grid)
NEQ BSE:	2h40m	4 cores (fine grid)