MP2, RPA and GW within the Gaussian and Plane Waves Method

Jürg Hutter

Department of Chemistry

University of Zurich

Outline

Goals and Requirements

- Enhanced accuracy for solutions and interfaces
- System size and sampling requirements
- MP2/RPA with Gaussian and Plane Waves
 - Resolution-of-identity (RI) in GPW
 - Applications to liquids and solutions
- Recent Developments
 - MP2 forces and stress tensor
 - Periodic G0W0 Method
 - Cubic scaling RPA/G0W0
- Outlook and Challenges
 - Basis set convergence
 - Properties (derivatives)
 - Sustainable code development

Acknowledgment

- Joost VandeVondele (CSCS) HFX, ADMM, MP2, RPA
- Manuel Guidon (ZMT) HFX, ADMM
- Mauro DelBen (LBNL) MP2, RPA, MP2 gradients
- Jan Wilhelm (BASF) RPA, GW
- Vladimir Rybkin (UZH) UMP2 gradients, WF embedding
- Dorothea Golze (Aalto) Integrals, LRIGPW
- Patrick Sewald (UZH) Ewald Integrals, Tensor library

Liquids and Solutions: Shortcommings of GGA DFT

• Density of Water: Balanced description of hydrogen bonding and van der Waals interactions

• Structure of solvation shell of ions in water: Polarization and charge transfer

• Level alignment: lons in solution and at liquid/solid interfaces

Density of Water at Ambient Conditions

M. Del Ben et al., JCP 143 054506 (2015)

K⁺ in Liquid Water

T. Duignan et al., unpublished

Energy Levels in Liquid Water

Jun Cheng and J. VandeVondele, PRL 116 086402 (2016)

Requirements: System and Method

- Electronic Structure Theory: nonlocal correlation MP2, SOS-MP2, dRPA, double-hybrid functionals
- System sizes
 200+ atoms, 500 correlated electrons,
 4000+ basis functions
- Periodic Boundary Conditions
 Γ-point approximation

Requirements: Sampling

- Molecular Dynamics: multiple time step schemes Monte Carlo: Accurate bias potentials
- Smooth energy surface and accurate analytic forces
- Sampling: 20'000+ energy or energy/force calculations
- CPU-Budget: 1 Mio node-hours, 3 months time to solution 512 node runs, 6 min / energy calculation

Resolution of Identity Approach in CP2K

Gaussian Auxiliary Basis Coulomb Metric (Ewald Summation) F-Point approximation, all functions are periodic

$$(ia \mid jb) = \sum_{PQ} (ia \mid P) \underbrace{(P \mid Q)}_{\text{GPW Integral}} {}^{-1} (Q \mid jb)$$
$$= \sum_{S} (ia \mid S) (S \mid jb) = \sum_{S} B_{ia}^{S} B_{jb}^{S}$$
$$B_{ia}^{S} = \sum_{P} (ia \mid P) (P \mid S)^{-1/2} = \sum_{\mu} C_{\mu i} \sum_{\nu} C_{\nu a} \underbrace{(\mu \nu \mid S)}_{\text{GPW Integral}}$$

J.L. Whitten, JCP 58, 4496 (1973), O. Vahtras, J. Almlöf, M. Feyereisen, CPL 213 514 (1993)

GPW RI Integrals

$$B_{\mu
u}^{\mathcal{S}} = (\mu
u \mid \mathcal{S})$$

Calculate
$$|S\rangle$$
 on grid $\chi_S(\mathbf{R})$
 \Downarrow FFT

Multiply with operator to get potential $V_S(\mathbf{G}) = \chi_S(\mathbf{G}) \cdot \mathcal{O}(\mathbf{G})$ $\Downarrow \text{ FFT}$ Integrate $(\mu\nu|$ on grid with $V_S(\mathbf{R})$ $B^S_{\mu\nu} = \sum_{\mathbf{R}} \Phi_{\mu\nu}(\mathbf{R}) \cdot V_S(\mathbf{R})$

M. DelBen et al., JCTC 8 4177 (2012); JCTC 9 2654 (2013)

RI-MP2, RI-dRPA

$$E^{(2)} = -\sum_{i \le j}^{o} (2 - \delta_{ij}) \sum_{ab}^{v} \frac{(ia \mid jb)[2(ia \mid jb) - (ib \mid ja)]}{\varepsilon_a + \varepsilon_b - \varepsilon_i - \varepsilon_j}$$
$$E_c^{\text{RI}-d\text{RPA}} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \text{Tr} \left(\ln (1 + Q(\omega)) - Q(\omega) \right)$$
$$Q(\omega) = 2B^T G(\omega) B$$
$$G(\omega)_{ia,jb} = \frac{\varepsilon_a - \varepsilon_i}{(\varepsilon_a - \varepsilon_i)^2 + \omega^2} \, \delta_{ij} \delta_{ab}$$

Isobaric–Isothermal Monte Carlo

Simulation of Liquid Water

- 64 water molecules, 192 atoms, 256 active electrons
- cc-TZV Basis, [3s3p2d1f], [3s2p1d],
 3648 basis functions, 8704 RI basis functions

Scaling: dRPA and MP2

64 water molecules, cc-TZVP Basis; 256 occupied orbitals, 3648 basis function, 8704 RI basis functions

CPU Timings

Num. Cores	Time/MC cycle [s]	Total MC time [million Coreh]
512	17.3	0.1
768	34.3	0.3
2400	65.4	2.0
6400	275.2	7.2
12800	218.1	12.2
	Num. Cores 512 768 2400 6400 12800	Num. Cores Time/MC cycle [s] 512 17.3 768 34.3 2400 65.4 6400 275.2 12800 218.1

Density of Liquid Water

M. Del Ben et al., JCP 143 054506 (2015)

K⁺ in Liquid Water

T. Duignan et al., unpublished

Energy Levels in Liquid Water

Jun Cheng and J. VandeVondele, PRL 116 086402 (2016)

Recent Developments

• MP2 forces and stress tensor

M. Del Ben et al., JCP 143 102803 (2015) V. Rybkin, J. VandeVondele, JCTC 12 2214-2223 (2016)

• Periodic G0W0 Method

J. Wilhelm et al. JCTC 12 3623-3635 (2016) J. Wilhelm, JH, PRB 95 235123 (2017)

• Cubic scaling RPA/G0W0

J. Wilhelm et al. JCTC 12 5851-5859 (2016) J. Wilhelm et al. JPCL ASAP

MP2 Forces and Stress Tensor

Restricted MP2

M. Del Ben et al., JCP 143 102803 (2015)

Unrestricted MP2

V. Rybkin, J. VandeVondele, JCTC 12 2214-2223 (2016)

• Performance

Forces(Stress) MP2/ Energy MP2 ≈ 4 MP2 energy/ UMP2 energy ≈ 3 Forces(Stress) UMP2/ Forces(Stress) MP2 ≈ 4

Applications: IR spectra from MP2 MD

M. Del Ben et al., JCP 143 102803 (2015)

Periodic G0W0 Method

Execution time and speedup for G0W0 calculations of water systems (cc-TZVP basis). Calculation of 20 quasi-particle energies. Numerical integration using 60 points.

J. Wilhelm et al. JCTC 12 3623-3635 (2016); J. Wilhelm, JH, PRB 95 235123 (2017)

Cubic Scaling RPA/GW

RI with Overlap Metric

$$(\alpha\beta \mid \gamma\delta) = \sum_{PQRS} (\alpha\beta P) (PQ)^{-1} (Q \mid R) (RS)^{-1} (S\gamma\delta)$$

- $(\alpha\beta P)$ analytic 3-center overlap
- (PQ) analytic 2-center overlap
- $(Q \mid R)$ semi-analytic 2-center Ewald integrals

Make use of sparsity of 3-center overlap integrals

Reduced Scaling Methods (dRPA)

$$D_{\mu\lambda}^{\text{occ}}(\tau) = \sum_{i}^{\text{occ}} C_{\mu i} C_{\lambda i} e^{-|(\varepsilon_i - \varepsilon_F)\tau|} \qquad D_{\nu\sigma}^{\text{virt}}(\tau) = \sum_{a}^{\text{virt}} C_{\nu a} C_{\sigma a} e^{-|(\varepsilon_a - \varepsilon_F)\tau|}$$
$$Q_{PQ}(\tau) = \sum_{R} K_{RP} \sum_{T} K_{TQ} \sum_{\mu\sigma} \sum_{\lambda} (\lambda \sigma R) D_{\mu\lambda}^{\text{occ}}(\tau) \sum_{\nu} (\mu \nu T) D_{\nu\sigma}^{\text{virt}}(\tau)$$
$$K_{RP} = \sum_{Q} (RQ)^{-1} (Q \mid P)^{1/2}$$

Reduced Scaling Methods (G0W0)

G0W0 calculation of the bandgap in Graphene nanoribbons

Number of atoms (Name of the GNR)

Outlook and Challenges

- Basis set convergence
- Properties (derivatives)
- Sustainable code development

Basis Sets Convergence

Table 5. All-Electron Pseudopotential HF@PBE, RI-dRPA@ PBE, and RI-MP2 Contributions to the Counterpoise Corrected Cohesive Energies in mE_h of LiH at the Experimental Geometry (a = 4.084 Å) for Various Basis Set and Cell Sizes^{*a*}

	$2 \times 2 \times 2$	$3 \times 3 \times 3$	$4 \times 4 \times 4$	extr. $(E_X^{n\to\infty})$	
HF@PBE					
cc-DZVP	-131.91	-134.80	-135.00		
cc-TZVP	-124.84	-128.07	-128.31		
cc-QZVP	-124.41	-127.63	-127.88		
RI-dRPA@PBE					
cc-DZVP	-27.05	-28.53	-28.95	-29.19	
cc-TZVP	-38.42	-40.11	-40.62	-40.89	
cc-QZVP	-41.86	-43.73	-44.28	-44.59	
extr. $(E_{X\to\infty}^{n\to\infty})$				-46.42	
RI-MP2					
cc-DZVP	-29.25	-30.30	-30.57	-30.75	
cc-TZVP	-38.00	-39.33	-39.68	-39.91	
cc-QZVP	-40.57	-41.99	-42.36	-42.60	
extr. $(E_{X\to\infty}^{n\to\infty})$				-44.10	

"The text discusses how the extrapolated numbers (italic type) have been obtained.

Basis Sets Convergence

- F12 methods 'solve' basis set problem
 F12 algorithms for (low scaling) RPA and GW ?
- Double-hybrids with long-range wavefunction correlation No 1/r cusp in wavefunction
- RI basis sets: optimized minimal vs. automatic/general 2x size of RI basis, also global vs. local RI

Properties

- Only a limited number of properties is accessible by energy calculations alone.
- 1-particle properties are accessible using the one-particle density matrix requires massive programming efforts for non-variational methods
- Many properties are accessible through (higher) derivatives
- Increased complexity through PBC (MP2 dipole in PBC?)

Sustainable Code Development

- More sophisticated electronic structure methods
 - \longrightarrow increased code complexity
- Reduced scaling algorithms

 — increased code complexity
- Hardware/Software development massive parallelism, memory hierarchy, GPU, CUDA

 \longrightarrow increased code complexity

www.cp2k.org

CSCS Swiss National Supercomputing Centre

HP2C High Performance and High Productivity Computing

MARVEL

