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A Universal Predictor of Atomic-Scale Properties

@ The Schrodinger Equation allows — in principle! — prediction of any
property for any kind of molecule or material

o Prohibitive computational cost

o A proliferation of ad-hoc electronic-structure methods and empirical

potentials tuned to specific problems
I .
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A Universal Predictor of Atomic-Scale Properties

@ The Schrodinger Equation allows — in principle! — prediction of any
property for any kind of molecule or material

@ Prohibitive computational cost

o A proliferation of ad-hoc electronic-structure methods and empirical
potentials tuned to specific problems

A ‘machine learning”
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Machine-Learning as a Universal Interpolator

@ Machine-learning can be regarded as a sophisticated interpolation between
a few known values of the properties

e Can it be made as accurate and general as the Schrodinger equation?
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Measuring distances between materials

o The crucial ingredient in machine-learning is a method to compare the
items whose properties should be predicted

o A kernel function K(A, B) can be used to assess the (dis)-similarity between
items in a set
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A General-Purpose Similarity Kernel

@ How to compare two atomic structures?
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A General-Purpose Similarity Kernel

@ How to compare two atomic structures?

@ Start from a comparison of local environments!

-~ -~
k(X;, X))
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A General-Purpose Similarity Kernel

@ How to compare two atomic structures?
@ Start from a comparison of local environments!

e We use SOAP (smooth overlap of atomic positions) kernels — smooth,
invariant to translations, rotations and permutations of identical atoms.

KX, &) ~ [ () ()
Bartok, Kondor, Csanyi, PRB (2013)
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Additive Property Models & Beyond

o Crucial observation: learning with an average kernel is equivalent to
learning an atom-centered additive energy model

E(A) =2 WiK@AA) | e(X) =35 wik(X, &)
K(A,B) = > e jen k (& &) E(A) =2 ien € (X))
e Entropy-regularized matching provides a natural way to go beyond additive
models

\

¥

K(A,B) = Z” k(XiA, XjB)
E(A) =3, e(X)
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Accurate Prediction of Scalar Properties

o SOAP kernels with additive environment kernels allow for high-accuracy
predictions of molecular and material properties

0 Ae(meV) 25 3x3 5x5 7x7 9x9

Learning Curve testing on 25% of the dataset
o] . o SA M
& pentacene
* . N N
= i pentacene
o8 - iy
x 20 40 60 80 =
k3 S Ik t ey 8 .
04 s = . t
oSl VATOH:FPS g ’
s 8 ol AVG 05 i ., A
02} LN
g ass iy
o 08! 02 T

08 1 100
Number of Training Samples

Bartok, De, Kermode, Bernstein, Csanyi, Ceriotti, Sci. Adv. (2017);
pentacene data from G. Day and J. Yang
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100k Molecules with Coupled-Cluster

e CCSD(T) Energetics on the GDB9 database of small molecules - 114k
useful predictions based on 20k training calculations

Ramakrishnan et al., Scientific Data (2014); Ramakrishnan et al., JCTC (2015)
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100k Molecules with Coupled-Cluster

e CCSD(T) Energetics on the GDB9 database of small molecules - 114k
useful predictions based on 20k training calculations

@ 1 kcal/mol error for predicting CCSD(T) based on PM7 geometries; 0.18
kcal/mol error for predicting CCSD(T) based on DFT geometries!
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De, Bartok, Csanyi, Ceriotti, PCCP (2016);

Bartok, De, Kermode, Bernstein, Csanyi, Ceriotti, Sci. Adv. (2017)
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Symmetries in Machine-Learning

13

In a Gaussian Process framework, the kernel represents correlations
between properties. This must be reflected in how it transforms under
symmetry operations applied to the inputs:

k (X, &) < (y (X);y (X)), sok (é)c, é’x’) N <y (SX) v (S’X’)>

Properties that are invariant under S must be learned with a kernel
insensitive to the operation:

k (SX, S’X’) = k(XX

How about machine-learning tensorial properties T? The kernel should be
covariant under rigid rotations - need a symmetry-adapted framework:

K (X, X)) & (T, (X);T, (X)) = K (RX,R’X') = Rk (X, X)R,

Glielmo, Sollich, De Vita, PRB (2017);

Grisafi, Wilkins, Csanyi, Ceriotti, PRL (2018)
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A Simple (but Limited) Solution

e For rigid molecules, one can convert the tensor to a reference frame and
learn individual components using an invariant kernel

K (X, X)) = R(X),, k (X, X)R(X)

k(X, X)) =k(R(X)X,R(X)X)

e Learning of second-harmonic response of water solutions (SHS experiments)
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Quantum chemistry (atomic unit)

Bereau, Andrienko, von Lilienfeld, JCTC (2015);
Liang, Tocci, Wilkins, Grisafi, Roke, Ceriotti, PRB (2017)
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A—SOAP Kernel

@ Recall the definition of SOAP, based on the atom-density overlap

(X, X") ~ [ p(x)p'(x)

o) = [ () e ) 2

Grisafi, Wilkins, Csanyi, Ceriotti, PRL (2018)
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A—SOAP Kernel

@ Recall the definition of SOAP, based on the atom-density overlap
e Each tensor can be decomposed into irreducible spherical components T*
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T} (R(x)) =D}, (R) T (2)

Grisafi, Wilkins, Csanyi, Ceriotti, PRL (2018)
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A—SOAP Kernel

15

@ Recall the definition of SOAP, based on the atom-density overlap
e Each tensor can be decomposed into irreducible spherical components T*
@ A hierarchy of \-SOAP kernels can be defined to learn tensorial quantities

K0 (X, X)) = /dfm (X, f{X’)

Grisafi, Wilkins, Csanyi, Ceriotti, PRL (2018)
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A—SOAP Kernel

@ Recall the definition of SOAP, based on the atom-density overlap
e Each tensor can be decomposed into irreducible spherical components T*
@ A hierarchy of \-SOAP kernels can be defined to learn tensorial quantities
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K, (X, X') = / dRD?, (R) K (X,RX’)

Grisafi, Wilkins, Csanyi, Ceriotti, PRL (2018)
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Machine-Learning the Dielectric Response of Water

@ A demonstration of the SA-GPR framework, and the A-SOAP kernel -
learning the dielectric response of water oligomers

@ The kernels for multi-atomic systems can be built with an additive ansatz -
which gives meaningful partitioning into molecular contributions

16

1
Ko (A.B) = T2 >k (X, P)
i

Grisafi, Wilkins, Csanyi, Ceriotti, PRL (2018)
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Machine-Learning the Dielectric Response of Water

@ A demonstration of the SA-GPR framework, and the A-SOAP kernel -
learning the dielectric response of water oligomers

@ The kernels for multi-atomic systems can be built with an additive ansatz -
which gives meaningful partitioning into molecular contributions

e Works well for bulk systems (liquid & ice) after fixing non-additive terms
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Learning a localized property gives much better results!
Grisafi, Wilkins, Csanyi, Ceriotti, PRL (2018)
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Predicting the Full Polarizability of Molecules

e Benchmarking polarizability learning on the QM7b dataset. DFT and
high-end coupled-cluster references (Rob DiStasio@Cornell)

@ Preliminary tests (1400 training structures) - we can predict o with better
accuracy than DFT.
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Learning Charge Densities

@ Charge density gives access to a wide variety of properties

e Decomposing the density into (localized) components that transform as
spherical harmonics means we can learn them with SA-GPR:
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Learning Charge Densities

@ Charge density gives access to a wide variety of properties
e Decomposing the density into (localized) components that transform as
spherical harmonics means we can learn them with SA-GPR:
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Learning Charge Densities

@ Charge density gives access to a wide variety of properties
e Decomposing the density into (localized) components that transform as
spherical harmonics means we can learn them with SA-GPR:

P() = 32 Lot ot (It = 1) Y1(6)
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Learning Charge Densities

@ Charge density gives access to a wide variety of properties
e Decomposing the density into (localized) components that transform as
spherical harmonics means we can learn them with SA-GPR:

P() = 32 Lot ot (It = 1) Y1(6)

. Eo.oooz
0l -1 50.0001
w — L ' —;0
g = Ly 4-0.0001
3 -0.0002
1(|> 162 =

training molecules

~ 1% error for ab initio density with 500 training points
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Outlook

@ Building structural kernels from local-environments SOAP fingerprints
o “Nearsightedness” of electronic matter, beyond additive models using
entropy-regularized kernels
o Excellent perfomance on benchmark DBs: ~1 kJ/mol for 80%GDB9 and
75%QM7b(multi-scale)
o Predictions all the way PM7—CC, potentials for solids, silicon & molecular
crystals
o Ingredients for effective learning: sound mathematical foundation,
cross-species learning & multi-scale kernels, training set sparsification
e Huge potential of a SA-GPR framework to learn tensors - electric
multipoles and response, but also densities, Hamiltonians, ...

(Development) code available on http://cosmo-epfl.github.io & http://sketchmap.org/
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