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A Universal Predictor of Atomic-Scale Properties
The Schrödinger Equation allows – in principle! – prediction of any
property for any kind of molecule or material
Prohibitive computational cost
A proliferation of ad-hoc electronic-structure methods and empirical
potentials tuned to specific problems

ĤΨ = EΨ
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Machine-Learning as a Universal Interpolator

Machine-learning can be regarded as a sophisticated interpolation between
a few known values of the properties
Can it be made as accurate and general as the Schrödinger equation?
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Measuring distances between materials

The crucial ingredient in machine-learning is a method to compare the
items whose properties should be predicted
A kernel function K(A,B) can be used to assess the (dis)-similarity between
items in a set

5 David M. Wilkins http://cosmo.epfl.ch Symmetry Matters



A General-Purpose Similarity Kernel

How to compare two atomic structures?
Start from a comparison of local environments!
We use SOAP (smooth overlap of atomic positions) kernels – smooth,
invariant to translations, rotations and permutations of identical atoms.
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Additive Property Models & Beyond

Crucial observation: learning with an average kernel is equivalent to
learning an atom-centered additive energy model

E (A) =
∑

iWiK (A,Ai)
K (A,B) =

∑
i∈A,j∈B k (Xi,Xj)

⇐⇒ ε (X ) =
∑

i wik (X ,Xi)
E (A) =

∑
i∈A ε (Xi)

Entropy-regularized matching provides a natural way to go beyond additive
models
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Accurate Prediction of Scalar Properties

SOAP kernels with additive environment kernels allow for high-accuracy
predictions of molecular and material properties
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Bartok, De, Kermode, Bernstein, Csányi, Ceriotti, Sci. Adv. (2017);
pentacene data from G. Day and J. Yang



100k Molecules with Coupled-Cluster
CCSD(T) Energetics on the GDB9 database of small molecules - 114k
useful predictions based on 20k training calculations
1 kcal/mol error for predicting CCSD(T) based on PM7 geometries; 0.18
kcal/mol error for predicting CCSD(T) based on DFT geometries!
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Symmetries in Machine-Learning

In a Gaussian Process framework, the kernel represents correlations
between properties. This must be reflected in how it transforms under
symmetry operations applied to the inputs:

k (X ,X ′)↔ 〈y (X ) ; y (X ′)〉 , so k
(
ŜX , Ŝ′X ′

)
↔
〈
y
(
ŜX
)

; y
(
Ŝ′X ′

)〉
Properties that are invariant under Ŝ must be learned with a kernel
insensitive to the operation:

k
(
ŜX , Ŝ′X ′

)
= k (X ,X ′)

How about machine-learning tensorial properties T? The kernel should be
covariant under rigid rotations - need a symmetry-adapted framework:

kµν (X ,X ′)↔ 〈Tµ (X ) ;Tν (X ′)〉 → kµν
(
R̂X , R̂′X ′

)
= Rµµ′kµ′ν′ (X ,X ′)R′νν′
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Glielmo, Sollich, De Vita, PRB (2017);
Grisafi, Wilkins, Csányi, Ceriotti, PRL (2018)



A Simple (but Limited) Solution

For rigid molecules, one can convert the tensor to a reference frame and
learn individual components using an invariant kernel

kµν (X ,X ′) ≡ R (X )µj k (X ,X ′)R (X ′)νj ,

k (X ,X ′) = k̃ (R (X )X ,R (X ′)X ′)

Learning of second-harmonic response of water solutions (SHS experiments)
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Bereau, Andrienko, von Lilienfeld, JCTC (2015);
Liang, Tocci, Wilkins, Grisafi, Roke, Ceriotti, PRB (2017)



λ−SOAP Kernel
Recall the definition of SOAP, based on the atom-density overlap
Each tensor can be decomposed into irreducible spherical components Tλ
A hierarchy of λ-SOAP kernels can be defined to learn tensorial quantities

k (X ,X ′) =

∫
dR̂κ

(
X , R̂X ′

)
, κ (X ,X ′) =

∣∣∣∣∫ ρX (x) ρX ′ (x)dx
∣∣∣∣2
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image from: Wikipedia

Tλµ
(
R̂ (X )

)
= Dλµµ′

(
R̂
)
Tλµ′ (X )

15 David M. Wilkins http://cosmo.epfl.ch Symmetry Matters

Grisafi, Wilkins, Csányi, Ceriotti, PRL (2018)



λ−SOAP Kernel
Recall the definition of SOAP, based on the atom-density overlap
Each tensor can be decomposed into irreducible spherical components Tλ
A hierarchy of λ-SOAP kernels can be defined to learn tensorial quantities

k0 (X ,X ′) =

∫
dR̂κ

(
X , R̂X ′

)

15 David M. Wilkins http://cosmo.epfl.ch Symmetry Matters

Grisafi, Wilkins, Csányi, Ceriotti, PRL (2018)



λ−SOAP Kernel
Recall the definition of SOAP, based on the atom-density overlap
Each tensor can be decomposed into irreducible spherical components Tλ
A hierarchy of λ-SOAP kernels can be defined to learn tensorial quantities

kλµν (X ,X ′) =

∫
dR̂Dλµν

(
R̂
)
κ
(
X , R̂X ′

)

15 David M. Wilkins http://cosmo.epfl.ch Symmetry Matters

Grisafi, Wilkins, Csányi, Ceriotti, PRL (2018)



λ−SOAP Kernel
Recall the definition of SOAP, based on the atom-density overlap
Each tensor can be decomposed into irreducible spherical components Tλ
A hierarchy of λ-SOAP kernels can be defined to learn tensorial quantities

kλµν (X ,X ′) =

∫
dR̂Dλµν

(
R̂
)
κ
(
X , R̂X ′

)

15 David M. Wilkins http://cosmo.epfl.ch Symmetry Matters

Grisafi, Wilkins, Csányi, Ceriotti, PRL (2018)



λ−SOAP Kernel
Recall the definition of SOAP, based on the atom-density overlap
Each tensor can be decomposed into irreducible spherical components Tλ
A hierarchy of λ-SOAP kernels can be defined to learn tensorial quantities

kλµν (X ,X ′) =

∫
dR̂Dλµν

(
R̂
)
κ
(
X , R̂X ′

)

15 David M. Wilkins http://cosmo.epfl.ch Symmetry Matters

Grisafi, Wilkins, Csányi, Ceriotti, PRL (2018)



λ−SOAP Kernel
Recall the definition of SOAP, based on the atom-density overlap
Each tensor can be decomposed into irreducible spherical components Tλ
A hierarchy of λ-SOAP kernels can be defined to learn tensorial quantities

kλµν (X ,X ′) =

∫
dR̂Dλµν

(
R̂
)
κ
(
X , R̂X ′

)

15 David M. Wilkins http://cosmo.epfl.ch Symmetry Matters

Grisafi, Wilkins, Csányi, Ceriotti, PRL (2018)



λ−SOAP Kernel
Recall the definition of SOAP, based on the atom-density overlap
Each tensor can be decomposed into irreducible spherical components Tλ
A hierarchy of λ-SOAP kernels can be defined to learn tensorial quantities

kλµν (X ,X ′) =

∫
dR̂Dλµν

(
R̂
)
κ
(
X , R̂X ′

)

15 David M. Wilkins http://cosmo.epfl.ch Symmetry Matters

Grisafi, Wilkins, Csányi, Ceriotti, PRL (2018)



λ−SOAP Kernel
Recall the definition of SOAP, based on the atom-density overlap
Each tensor can be decomposed into irreducible spherical components Tλ
A hierarchy of λ-SOAP kernels can be defined to learn tensorial quantities

kλµν (X ,X ′) =

∫
dR̂Dλµν

(
R̂
)
κ
(
X , R̂X ′

)

15 David M. Wilkins http://cosmo.epfl.ch Symmetry Matters

Grisafi, Wilkins, Csányi, Ceriotti, PRL (2018)



Machine-Learning the Dielectric Response of Water
A demonstration of the SA-GPR framework, and the λ-SOAP kernel -
learning the dielectric response of water oligomers
The kernels for multi-atomic systems can be built with an additive ansatz -
which gives meaningful partitioning into molecular contributions
Works well for bulk systems (liquid & ice) after fixing non-additive terms

Kµν (A,B) =
1

NANB

∑
ij

kµν
(
XA
i ,XB

j
)
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Machine-Learning the Dielectric Response of Water
A demonstration of the SA-GPR framework, and the λ-SOAP kernel -
learning the dielectric response of water oligomers
The kernels for multi-atomic systems can be built with an additive ansatz -
which gives meaningful partitioning into molecular contributions
Works well for bulk systems (liquid & ice) after fixing non-additive terms

Clausius-Mossotti: α = (ε− 1)(ε+ 2)−1V

Learning a localized property gives much better results!
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Predicting the Full Polarizability of Molecules

Benchmarking polarizability learning on the QM7b dataset. DFT and
high-end coupled-cluster references (Rob DiStasio@Cornell)
Preliminary tests (1400 training structures) - we can predict α with better
accuracy than DFT.
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〈·〉 , σ (·) [a.u.] αxx αyy αzz αxy αxz αyz
DFT vs CCSD 2.6, 2.6 2.0, 2.1 0.9, 0.9 0.6, 1.3 0.0, 0.6 0.1, 0.6

SA-GPR vs CCSD 0.0, 1.5 0.0, 1.4 0.0, 0.9 0.0, 1.0 0.0, 0.7 0.0, 0.6
∆SA-GPR 0.0, 0.7 0.0, 0.6 0.0, 0.3 0.0, 0.4 0.0, 0.3 0.0, 0.2
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Learning Charge Densities
Charge density gives access to a wide variety of properties
Decomposing the density into (localized) components that transform as
spherical harmonics means we can learn them with SA-GPR:

ρ(r) =
∑

i
∑

nlm c(i)nlmgn(|r− ri|)Ym
l (Θ)
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∼ 1% error for ab initio density with 500 training points
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Outlook
Building structural kernels from local-environments SOAP fingerprints

“Nearsightedness” of electronic matter, beyond additive models using
entropy-regularized kernels
Excellent perfomance on benchmark DBs: ∼1 kJ/mol for 80%GDB9 and
75%QM7b(multi-scale)
Predictions all the way PM7→CC, potentials for solids, silicon & molecular
crystals
Ingredients for effective learning: sound mathematical foundation,
cross-species learning & multi-scale kernels, training set sparsification

Huge potential of a SA-GPR framework to learn tensors - electric
multipoles and response, but also densities, Hamiltonians, . . .
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(Development) code available on http://cosmo-epfl.github.io & http://sketchmap.org/


