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Long-range order in a 2D quantum gas? 

Mermin-Wagner theorem:

Continuous symmetries cannot be spontaneously broken at finite 
temperature in systems with short-range interactions and �

dimensions d ≤ 2. 

Bogoliubov (1962), Mermin, Wagner (1966), Hohenberg (1967), Coleman (1973)

Consequence: 
No off-diagonal long range order in two dimensions at finite T, no BEC



Berezinski-Kosterlitz-Thouless 

Berezinski-Kosterlitz-Thouless superfluid for T<Tc 
- algebraic long range order:

Normal fluid for T>Tc 
- exponential decay of correlations:

What happens when you add spin-orbit coupling?
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Synthetic spin-orbit coupling 

entity, but when many such entities are brought together in a spin–
orbit-coupled system, the weirdness increases further. As the temper-
ature is lowered, the bosons tend to condense, but in contrast to the
conventional BEC, where the zero-momentum state is the unique
state with lowest energy (the ground state is non-degenerate), spin–
orbit bosons can have energy-momentum dispersion with several
lowest-energy states (the ground state is degenerate). For example,
for Rashba and Dresselhaus SOC (Fig. 2c) there are two such minima;
for pure Rashba SOC there is a continuous ring of minima (Fig. 1d);
for the Weyl-type SOC there is a sphere of minima10. This is in
contrast with the more conventional case of spinor BECs, which include
two or more spin states, but do not alter the energy–momentum dis-
persion relation.

The bosons’ ‘indecisiveness’ about what state to condense into is
partially resolved by their interactions, which limits the states with low-
est energy. But unless the interactions break a ‘synthetic time-reversal’
(Kramers) symmetry, some degeneracy must remain, leading to the
possibility of exotic states. For example, repulsive bosons with a
non-equal combination of Rashba and Dresselhaus SOC are predicted
to condense into a strongly entangled many-body ‘‘cat’’ state, where the
whole condensate is simultaneously in a superposition of states with
equal and opposite momentum. Such many-body cat states have long
been sought in various experiments, but have never been convincingly
observed. The spin–orbit BECs, existing in a double-well ‘potential’ in
momentum space (for example, Fig. 1d) are promising in this regard

because robust arguments support the existence of many-body cat
states22: (1) the symmetry protection of the exact spin degeneracy from
splitting and (2) an argument based on the Heisenberg uncertainty
relation, which suggests that for the repulsive bosons to stay as far as
possible from each other in real space, they should be as close as possible
in dual momentum space. An experimental realization of such a many-
body cat state would be a major scientific development.

On the experimental front, there are already exciting developments,
which include the first realization of an Abelian SOC (corresponding to
the persistent spin helix symmetry point, where Rashba and Dresselhaus
SOCs are identical; see Box 2 for a discussion of the connection to
Abelian and non-Abelian gauge fields) and observation of a spin–
orbit-coupled BEC with rubidium atoms12,35,36. Exactly as expected,
the time-of-flight images of cold spin–orbit coupled bosons feature
two peaks that correspond to left- and right-moving condensates flying
apart in opposite directions. They however do not represent a cat state
(where all the atoms are either in the left-moving or all in the right-
moving condensate), but rather are either in a ‘striped’ state (where all of
the atoms are in the same state, which involves both positive and nega-
tive momenta), or in a phase-separated state of the right- and left-
moving condensates in the Abelian spin–orbit system12,40–42; see Fig. 2b.

Spin-orbit-coupled ultracold fermions are intriguing8: even the
behaviour of two interacting fermions is fundamentally altered with
the addition of SOC. Without SOC and in one spatial dimension, any
attraction between two fermions, no matter how weak, always gives
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Figure 3 | Generalized SOC. Going beyond current experiments, more
complicated forms of SOC may be created. These require both more laser
beams and more internal states. a, Coupling scheme. Each state is coupled by a
two-photon Raman transition, each produced by a pair of the beams shown in

b. The configuration depicted in a and b could realize a tunable combination of
Rashba and Dresselhaus SOC in the alkali atoms39; the outcome is equivalent to
that of the well-known tripod configuration6 with detuning, but practical in the
alkali atoms. c, Resulting coupled dispersion relation.
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Figure 2 | Laser coupling schemes. a, Typical level diagram. In our
experiments, a pair of lasers—often counter-propagating—couple together a
selected pair of atomic states labelled by :j i and ;j i that together comprise the
atomic ‘spin’. These lasers are arranged in a two-photon Raman configuration
that uses an off-resonant intermediate state (grey). These lasers link atomic
motion along the x direction to the atom’s spin creating a characteristic spin–
orbit coupled energy-momentum dispersion relation. b, Minima location.
Measured location of energy minimum or minima, where as a function of laser

intensity the characteristic double minima of SOC dispersion move together
and finally merge12. The uncertainties reflect the standard deviation of about 10
measurements. Taken from figure 1 in ref. 12. c, Dispersion measured in 6Li.
Complete dispersion before and after laser coupling measured in a 6Li Fermi gas
(data reproduced with permission of M. Zwierlein, from figure 2 of ref. 38),
compared with the predicted dispersion (white dashed curves), showing the
typical spin–orbit dispersion relations depicted in Fig. 1d.
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entity, but when many such entities are brought together in a spin–
orbit-coupled system, the weirdness increases further. As the temper-
ature is lowered, the bosons tend to condense, but in contrast to the
conventional BEC, where the zero-momentum state is the unique
state with lowest energy (the ground state is non-degenerate), spin–
orbit bosons can have energy-momentum dispersion with several
lowest-energy states (the ground state is degenerate). For example,
for Rashba and Dresselhaus SOC (Fig. 2c) there are two such minima;
for pure Rashba SOC there is a continuous ring of minima (Fig. 1d);
for the Weyl-type SOC there is a sphere of minima10. This is in
contrast with the more conventional case of spinor BECs, which include
two or more spin states, but do not alter the energy–momentum dis-
persion relation.

The bosons’ ‘indecisiveness’ about what state to condense into is
partially resolved by their interactions, which limits the states with low-
est energy. But unless the interactions break a ‘synthetic time-reversal’
(Kramers) symmetry, some degeneracy must remain, leading to the
possibility of exotic states. For example, repulsive bosons with a
non-equal combination of Rashba and Dresselhaus SOC are predicted
to condense into a strongly entangled many-body ‘‘cat’’ state, where the
whole condensate is simultaneously in a superposition of states with
equal and opposite momentum. Such many-body cat states have long
been sought in various experiments, but have never been convincingly
observed. The spin–orbit BECs, existing in a double-well ‘potential’ in
momentum space (for example, Fig. 1d) are promising in this regard

because robust arguments support the existence of many-body cat
states22: (1) the symmetry protection of the exact spin degeneracy from
splitting and (2) an argument based on the Heisenberg uncertainty
relation, which suggests that for the repulsive bosons to stay as far as
possible from each other in real space, they should be as close as possible
in dual momentum space. An experimental realization of such a many-
body cat state would be a major scientific development.

On the experimental front, there are already exciting developments,
which include the first realization of an Abelian SOC (corresponding to
the persistent spin helix symmetry point, where Rashba and Dresselhaus
SOCs are identical; see Box 2 for a discussion of the connection to
Abelian and non-Abelian gauge fields) and observation of a spin–
orbit-coupled BEC with rubidium atoms12,35,36. Exactly as expected,
the time-of-flight images of cold spin–orbit coupled bosons feature
two peaks that correspond to left- and right-moving condensates flying
apart in opposite directions. They however do not represent a cat state
(where all the atoms are either in the left-moving or all in the right-
moving condensate), but rather are either in a ‘striped’ state (where all of
the atoms are in the same state, which involves both positive and nega-
tive momenta), or in a phase-separated state of the right- and left-
moving condensates in the Abelian spin–orbit system12,40–42; see Fig. 2b.

Spin-orbit-coupled ultracold fermions are intriguing8: even the
behaviour of two interacting fermions is fundamentally altered with
the addition of SOC. Without SOC and in one spatial dimension, any
attraction between two fermions, no matter how weak, always gives
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Figure 3 | Generalized SOC. Going beyond current experiments, more
complicated forms of SOC may be created. These require both more laser
beams and more internal states. a, Coupling scheme. Each state is coupled by a
two-photon Raman transition, each produced by a pair of the beams shown in

b. The configuration depicted in a and b could realize a tunable combination of
Rashba and Dresselhaus SOC in the alkali atoms39; the outcome is equivalent to
that of the well-known tripod configuration6 with detuning, but practical in the
alkali atoms. c, Resulting coupled dispersion relation.
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Figure 2 | Laser coupling schemes. a, Typical level diagram. In our
experiments, a pair of lasers—often counter-propagating—couple together a
selected pair of atomic states labelled by :j i and ;j i that together comprise the
atomic ‘spin’. These lasers are arranged in a two-photon Raman configuration
that uses an off-resonant intermediate state (grey). These lasers link atomic
motion along the x direction to the atom’s spin creating a characteristic spin–
orbit coupled energy-momentum dispersion relation. b, Minima location.
Measured location of energy minimum or minima, where as a function of laser

intensity the characteristic double minima of SOC dispersion move together
and finally merge12. The uncertainties reflect the standard deviation of about 10
measurements. Taken from figure 1 in ref. 12. c, Dispersion measured in 6Li.
Complete dispersion before and after laser coupling measured in a 6Li Fermi gas
(data reproduced with permission of M. Zwierlein, from figure 2 of ref. 38),
compared with the predicted dispersion (white dashed curves), showing the
typical spin–orbit dispersion relations depicted in Fig. 1d.
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Data from Cheuk et al. PRL (2012)

Illustrations: Galitski and Spielman Nature (2013)
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Bose gas with 1D SOC:  NIST Yin et al. Nature (2011)
Fermi gas with 1D SOC:  MIT Cheuk et al. PRL (2012)

      Shanxi Wang et al. PRL (2012)

Bose gas with 2D SOC:  Shanghai Wu et al. Science (2016) 
Fermi gas with 2D SOC: Shanxi Huang et al. Nat. Phys. (2016)

Scheme for Rashba SOC



Bose-gas with SOC 
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functions over a wide range of temperatures. The attributes of
phase transitions in the total- and relative phases are verified
according to the behavior of the correlation functions and
the underlying physics is addressed. Concluding remarks are
given in Sec. IV, including a discussion on the experimental
implementation for measuring the hidden LRO of the system.
Finally, auxiliary calculations and derivations are placed in the
Appendix.

II. FORMULAS

The system under study is described by the Hamiltonian

Ĥ =
∫

d2r

[
!̂

†
Ĥsp!̂ + g11

2
(!̂†

1!̂1)2 + g22

2
(!̂†

2!̂2)2

+ g12!̂
†
1!̂1!̂

†
2!̂2

]
, (1)

where !̂ = (!̂1,!̂2)T is the two-component spinor field
operator and Ĥsp = −h̄2∇2/2m + κxp̂x σ̂x + κyp̂y σ̂y is the
single-particle Hamiltonian with κx,y the spin-orbit coupling
strengths along different directions and σ̂x,y are the Pauli ma-
trices. The inter- and intraspecies atomic interaction strengths
are characterized by g12 and gii (i = 1,2), respectively. For
simplicity, we will assume that the intra-species interactions
are identical, i.e., g11 = g22 ≡ g, and note that g12 ! g is a
necessary condition to obtain a miscible ground state. It is
worth mentioning that for the fully anisotropic SOC (κx = 0 or
κy = 0) the SOC term in Eq. (1) can be gauged away when all
coupling constants are equal (g12 = g) leading to trivial results.
In the following we will therefore assume g12 < g (strictly
smaller), and the spin-dependence of the coupling constants
will be relevant for the physical outcomes. The assumption
g12 ! g11 = g22 is a good approximation to the situation in
experiments with 87Rb [9].

Diagonalizing the single-particle Hamiltonian yields two
dispersion branches, ϵ± = p2/2m ± (κ2

xp2
x + κ2

yp2
y)1/2, and

the corresponding eigenvectors, φ±
k = (1, ± eiϕk )Teip·x/h̄/

√
2,

where ϕk = arg(κxpx + iκypy) [37]. For anisotropic SOC
(κx ̸= κy) the single-particle ground state lies in the
lower branch, and is twofold degenerate at k =

±mκxex (±mκyey) for |κx | > |κy | (|κx | < |κy |). On the
other hand the single-particle ground state is infinitely
degenerate on the Rashba ring of radius |p| = mκ in momen-
tum space for isotropic SOC (|κx | = |κy | ≡ κ).

For an interacting gas, depending on the interatomic
interaction strengths, the ground state phases are characterized
by the plane waves corresponding to the minima of the
single-particle dispersion. For g > g12, the ground state is a
single plane-wave (PW) state while for g < g12 the ground
state is a standing wave created by the superposition of two
plane waves carrying opposite momenta [37]. In the following
calculation, we shall work in the dimesionless units where
the length, time, and energy are scaled by ah =

√
h̄/mω0,

1/ω0, and h̄ω0, respectively, with m the atomic mass and
ω0 the transverse trapping frequency. In the following, the
dimensionless interatomic interaction strengths and SOC
strengths are denoted by g̃ij and κ̃x,y , respectively.

Within the framework of mean-field theory, the dynamics
of Bose gases is determined by the Gross-Pitaevskii energy
functional E[!∗,!] = ˆ⟨H ⟩, where the Bose fields in Eq. (1)
are replaced by the complex classical-field wave functions,
!j = ⟨!̂j ⟩. The Gross-Pitaevskii equation, ih̄∂t!j = Lj!j ,
can be derived via the Hartree variational principle (see the
Appendix). For definiteness and to assure the validity of the
mean-field approach, we will consider anisotropic SOC and
focus on the PW state in what follows, which avoids the
degeneracies and ambiguities of scenarios with higher sym-
metry [15]. At zero temperature, the PW state wave function is
!0 = (!0

1 ,!0
2 )T =

√
ne−iκ̃xx(1,1)T where we assume that the

condensation occurs at p = (−|κ̃x |,0) and n is the total particle
density. Furthermore, the PW state is characterized by a
nonvanishing pseudospin density, S =

∑
α,β !∗

ασ αβ!β , along
x direction, S0 = nex . To investigate the low-lying excitations,
we adopt the Bogoliubov formulation where the total wave
function is decomposed as !j = e−iµt e−iκ̃xx(!0

j + δ!j ) with
µ the chemical potential and δ!j the low-lying excitation. In-
serting δ!j =

∑
q(uq

j e
i(q·r−ωt) − v

q∗
j e−i(q·r−ωt))/

√
A, where

A is the area of system and ω is the excitation energy
of the mode with momentum q, into the Gross-Pitaevskii
equation yields the Bogoliubov–de Gennes equation (also see
the Appendix)

⎛

⎜⎜⎜⎜⎝

L0 − κ̃xqx −g̃n g̃12n + hsoc − κ̃2
x −g̃12n

g̃n −L0 − κ̃xqx g̃12n h∗
soc + κ̃2

x − g̃12n

g̃12n + h∗
soc − κ̃2

x −g̃12n L0 − κ̃xqx −g̃n

g̃12n hsoc + κ̃2
x − g̃12n g̃n −L0 − κ̃xqx

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

u
q
1

v
q
1

u
q
2

v
q
2

⎞

⎟⎟⎟⎠
= ω

⎛

⎜⎜⎜⎜⎝

u
q
1

v
q
1

u
q
2

v
q
2

⎞

⎟⎟⎟⎟⎠
, (2)

whereL0 = q2/2 + g̃n + κ̃2
x , hsoc = κ̃xqx − iκ̃yqy , and u

q
j , v

q
j satisfy the normalization condition

∑
j |uq

j |2 − |vq
j |2 = 1. For the

fully anisotropic SOC (κ̃y = 0), Eq. (2) is solved with the two distinct energy dispersion relations of the excitation:

ω
q
t =

√(
ξ

q
t

)2 − (g̃ + g̃12)2n2, (3)

with ξ
q
t = q2/2 + (g̃ + g̃12)n and the eigenvector δ!

q
t ∼

(uq
t ,v

q
t ,u

q
t ,v

q
t )T;

ωq
r = −2qx κ̃x +

√(
ξ

q
r
)2 − (g̃ − g̃12)2n2, (4)

with ξ
q
r = q2/2 + (g̃ − g̃12)n + 2κ̃2

x and the eigenvector
δ!q

r ∼ (uq
r ,v

q
r , − u

q
r , − v

q
r )T.

Equation (3) represents a gapless mode corresponding to
the total-phase excitation that is immune to SOC. On the
other hand, Eq. (4) indicates a mode corresponding to the
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relative-phase spin excitation where the effect of SOC acts
to open a gap but also shift the minimum of the dispersion.
For nonvanishing κy the eigenenergies and eigenvectors can
be calculated numerically and the above conclusion remains
valid.

III. RESULTS AND DISCUSSIONS

To study the phase fluctuations in the spin-orbit-coupled
Bose gas, the Bose field can be expressed as [38]

!̂ =
(

"̂1(r′)
"̂2(r′)

)
=

√
neiφ̂t(r′)

(
eiφ̂r(r′)

e−iφ̂r(r′)

)
, (5)

where φ̂t,r denote the total- and relative-phase operators,
respectively, and we have neglected the density fluctuations.
For small fluctuations, Eq. (5) can be expanded to the first
order which gives φ̂t,r =

∑
q[(U q

t,r +V q
t,r)α̂

q
t,r − H.c.]/2i

√
n,

where α̂
q
t,r (α̂q†

t,r ) is the annihilation (creation) operator that
destroys (creates) the excitation in the corresponding branch
ω

q
t,r and (U q

t,r,V q
t,r) = (uq

t,r,v
q
t,r)e

iq·r/
√

A is the amplitude
of Bogoliubov excitation. In the linear approximation, the
total- and relative-phase operators are decoupled and can
be expressed in terms of the excitations δ!

q
t and δ!q

r ,
respectively. The two-point phase correlation functions are
given by

Gt,r(r′,r′′) = ⟨eiφ̂t,r(r′)−iφ̂t,r(r′′)⟩ = e−⟨('φt,r)2⟩/2, (6)

where ⟨· · · ⟩ denotes the ensemble average and 'φt,r =
φ̂t,r(r′) − φ̂t,r(r′′). The thermal average can be expressed in
terms of the Bogoliubov amplitudes

⟨('φt,r)2⟩ =
∫

d2q

πn

(
N

q
t,r + 1

2

)(
u

q
t,r + v

q
t,r

)2sin2 q · r
2

, (7)

where N
q
t,r = 1/[exp(ωq

t,r/T ) − 1] is the Bose-Einstein distri-
bution function with T the temperature measured in units
of h̄ω0/kB . Due to translational invariance the averaged
phase fluctuations and the correlation function only depend
on the separation |r| = |r′ − r′′|. The Bogoliubov amplitudes
in the integrand are (uq

t + v
q
t )2 = [ξq

t + (g̃ + g̃12)n]/2ω
q
t and

(uq
r + v

q
r )2 = [ξq

r + (g̃ − g̃12)n]/2(ωq
r + 2κ̃xqx). The total-

phase fluctuation shown in Eq. (7) exhibits an infrared
divergence similar to that of a 2D scalar Bose gas. Accordingly,
the total-phase correlation function is shown in Fig. 4 in the
Appendix. In the thermodynamic limit it is expected that
the long-range correlation lim|r|→∞ e−⟨('φr)2⟩/2 would be de-
stroyed by the total-phase fluctuations, leading to the BKT-type
physics which is characterized by the quasi-LRO as discussed
in Ref. [17]. The BKT transition temperature for the 2D scalar
Bose gas is given by T ∞

BKT,scalar = 2π h̄2n/{mkB ln[(380 ±
3)/g̃0]} with g̃0 the dimensionless interaction strength [39,40].
Comparing the excitation spectrum of the 2D scalar Bose gas
with the in-phase excitation energy ω

q
t , the BKT transition

temperature T ∞
BKT for the total-phase degree of freedom can

be estimated by replacing g̃0 with g̃ + g̃12. On the contrary
the fluctuation ⟨('φr)2⟩ is suppressed due to the gapped
and anisotropic excitation energy, leading to the existence of
true LRO in the relative-phase correlation. The relative-phase
fluctuations evaluated from Eq. (7) are shown in Fig. 1.
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FIG. 1. Relative-phase fluctuations from Bogoliubov theory at
two different temperatures. Panels (a) and (d) show the relative-
phase fluctuations ⟨('φr)2⟩ from Eq. (6) where the axes denote the
separations x = x ′ − x ′′ and y = y ′ − y ′′. A plateau is seen to develop
at large separation. The fluctuations ⟨('φr)2⟩ are also shown in panels
(b) and (e) while panels (c) and (f) depict the correlation function Gr

from Eq. (7). The magenta (grey) lines are plotted along the x-axis
and black lines along the y-axis for panels (b), (c), (e), and (f). The
temperature is set to T/T ∞

BKT ≈ 0.44 for panels (a), (b), (c) and to
T/T ∞

BKT ≈ 1.33 for panels (d), (e), (f), and µ = 13, g̃12/g̃ = 0.9 and
(κ̃x,κ̃y) = (1,0).

Plateaus of constant fluctuation and correlation are visible
at a separation |r| larger than ≈ 4 = 4κ̃−1

x ≈ 20ξ , where
ξ = 1/

√
2µ is the zero-temperature healing length in scaled

units. It is remarkable that the length scale for plateau
formation is independent of temperature while the magnitude
decreases with increasing temperature. Additionally, the effect
of anisotropic SOC appears in the spatial variation at short
length scales as clearly seen in Fig. 1.

To verify the analytical prediction, we numerically calculate
the first-order correlation functions by evolving the stochastic
projected Gross-Pitaevskii equation [33–36]

d"j = P{−iLj"j dt + *(µ −Lj )"j dt + dWj }, (8)

where P is the projection operator restricting the evolution to
the region of E < ϵcut, µ is the chemical potential, * is the
growth rate, and dWj is the complex white noise satisfying
the fluctuation-dissipation relation ⟨dW ∗

j (r′,t)dWk(r′′,t)⟩ =
2*T δ(r′,r′′)δjkdt . The phase correlation function of Eq. (6)
can be numerically computed via the expression Gt, r(r′,r′′) =
1
Ns

∑Ns

j=1 exp[iφt,r(r′,tj ) − iφt,r(r′′,tj )], where tj is a set of Ns

times at which the field is sampled after the system reaches
equilibrium [6,33]. In the numerical simulation, we consider
the parameters µ = 13, ϵcut ≈ 42, g̃12/g̃ = 0.9, and (κ̃x,κ̃y) =
(1,0) at various temperatures. To obtain an equilibrated sample
for calculating the correlation function, we let the system
evolve for a sufficiently long time (≫1/*) and then take 103

samples to implement the averaging.
Figure 2 depicts the total-phase profile and correlation at

various temperatures. At low temperatures the total-phase ex-
hibits the periodic structure shown in Fig. 2(a), a consequence
of the PW state entailing the phase factor e−2iκ̃xx . At high
temperatures, the increasing thermal fluctuations smear out the
quasiperiodic structure in Fig. 2(a) and results in a fluctuating
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Phase (I) occurs within the triangle shown in Fig. 3,
bounded by the lines xyc ! yxc ¼ xcyc. The region exists

only when !c > 0, which means sin"<
ffiffiffiffiffiffiffiffi
2=3

p
. Otherwise,

interaction effect will drive the condensate into a single
dressed state. In phase (I), the amplitudes are

jao!j2 ¼
1

2

"
1! #= cos"

2# 2!# ð1þ !Þtan2"

#
; (20)

and Go ¼ Gðaoþ; aoþÞ ¼ # #2

2ð2#2!#ð1þ!Þtan2"Þ þ ð1þ !Þ'
ð1þ 1

2 sin
2"Þ. The relative phase between Aþ and A#,

however, cannot be determined within the GP approach.
This phase can be fixed by perturbations such as field
gradient the breaks the symmetry Eq. (6), or by quantum
fluctuation effects that go beyond GP. As discussed before,
the density of each of the spin component n1 and n0 of this
phase has a stripe structure. The case # ¼ 0 (g11 ¼ g00) is

special. In that case, we have jAþj ¼ jA#j for !< !c.
For !> !c, the two dressed states $ðpþÞ and $ðp#Þ are
degenerate.
In the presence of a harmonic trap VðrÞ ¼ 1

2M!2
Tr

2 with

harmonic length d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi@=ðM!Þ

p
( 2%=q, the wavelength

of the stripe, we can apply Thomas-Fermi approximation,
and the condensatewave function is given by Eq. (14), (18),
and (20) with chemical potential & in Eq. (18) replaced by
&ðrÞ ¼ &# VðrÞ, i.e., for Phase (I),

!m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
&ðrÞ # Eo

Go

s 2
4aoþeipþx

i sin"2

cos"2

 !

þ ei'ao#e
ip#x

i cos"2

sin"2

 !3
5: (21)

The density profile n1ðrÞ for the m ¼ 1 spin component
along ŷ is shown in Fig. 4 for, e.g., " ¼ 1

4%,N ¼ 2:5' 105.
Apart from the stripe structure, the presence of these

phases can be detected by measuring the displacement of
the atom cloud after expansion when the trap is turned off.
For the condensate with two dressed states, after expan-
sion, the cloud will separate into two atom clouds moving
with different momenta. In contrast, for the condensate in a
single dressed state, the cloud will expand in one direction,
depending on the momentum p!.
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[9] G. Juzeliūnas, J. Ruseckas, A. Jacob, L. Santos, and
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FIG. 4 (color online). The upper figure is the column density
~n1ðx; yÞ ¼

R
dzn1ðx; y; zÞ. The lower frame is ~n1ðx; 0Þ. The

period of oscillation is %=k0. The contrast of oscillation at the
center is 70%. Our calculation is performed for 87Rb with
N ¼ 2:5' 105 atoms, q ¼ 1:56' 107 m#1, " ¼ 1

4%, @"R ¼
h' 7:1 KHz, cloud size RTF ¼ 20 &m [1]. The values ! and
# used are given by ! ¼ 1

4!c and # ¼ 1
4#c. The length dis-

played is in units of the laser wavelength 804.3 nm in Ref. [1].
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More SOCed quantum gases (not 2D) 

3D Bose-Einstein condensate and 3D SOC
•  Rich ground state phase diagram with �

first and second order phase transitions, �
 tetracritical point�
R Liao, O Fialko, U Zülicke, JB, PRA (2015) �
�

Bose gas in ring trap with Rashba SOC and spin-invariant 
interactions
•  SOC can be “gauged away” and put into boundary 

conditions
•  Vector NLS with “Manakov” solitons: �

magnetisation precession�
O Fialko, U Zülicke, JB, PRA (2012)

MULTICRITICALITY, METASTABILITY, AND THE . . . PHYSICAL REVIEW A 92, 043633 (2015)
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FIG. 2. (Color online) Phase diagram controlled by varying the
parameter g̃ that measures anisotropy of spin-dependent interaction
strengths and the quantity γ 2 related to anisotropy of spin-orbit
coupling. Four possible phases exist—PW polar, SP polar, PW axial,
and SP axial—that intersect at the tetracritical point Qc. For polar
(axial) phases, the condensate momentum has a finite (vanishing) z

component. In the PW (SP) phases, condensation occurs into a single
(a superposition of two) plane-wave state(s).

and γ = 1. At this high-symmetry point, the system is invariant
with respect to simultaneous SU(2) spin rotation and rotation
of the momentum of the atoms. The observed behavior at Qc
in our system contrasts with that exhibited in the presence of
a tight harmonic trapping potential where Skyrmion textures
are stabilized in the ground state [27].

The lowest dynamically stable metastable states are shown
in Fig. 3. They gradually disappear as the parameter γ 2

approaches zero, in the sense that local minima in Fig. 1
cease to exist at this point. This means that metastable phases
literally emerge in Bose-Einstein condensates with 3D SOC
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FIG. 3. (Color online) The phase diagram of metastable states
controlled by g̃ and γ 2. White regions indicate parameter combina-
tions for which no dynamically stable metastable phases exist, i.e.,
where the Hessian matrix in Eq. (4) is not positive definite.

only. The presence of metastable phases along with the true
ground states creates the opportunity to simulate false-vacuum
decay. Proposed by Coleman for modeling phase transitions
in the universe [43], decay from a false vacuum into a true one
plays a key role in numerous physical contexts. For example,
it occurs in a superheated liquid, where the false vacuum is
the liquid state, while the true one is gaseous [44]. Thermody-
namic fluctuations trigger the continuous appearance of vapor
bubbles in the liquid. Eventually, growing bubbles swallow
the entire system. More speculative manifestations of the
phenomena exist also in modern cosmology [48,49]. Due to the
its high tunability, our system provides an easy route toward
testing the false-vacuum quantum decay. The system can be
prepared initially in one of the metastable phases of Fig. 3.
Quantum fluctuations are then expected to trigger quantum
decay accompanied with nucleation of bubbles of one of the
lower-lying true ground states.

Elementary excitations. The phases and phase transitions
in our system can be probed by studying the spectrum of
elementary excitations, e.g., by using Bragg spectroscopy
[50–53]. Here we consider the elementary excitations around
the PW-axial ground state; partly motivated by the fact that,
for the case of one-dimensional SOC, interesting roton-like
modes were found [20]. Physically, the roton mode signals a
system’s tendency to undergo a first-order phase transition to a
supersolid when the roton gap closes [20,54], and it is usually
the consequence of strong correlations in the system due to
the interplay of SOC and interactions. Our aim is to show that
these features persist also in the case of 3D SOC and that it
probes the rich phase diagram obtained above.

The PW axial phase has one condensation momentum
lying in the xy plane. Without loss of generality, we
choose the condensate momentum to be κ = λ

2 (−1,0,0).
Within the framework of imaginary-time functional inte-
gration, the partition function of the system reads [55]
Z =

∫
D[#∗,#] exp (−S[#∗,#]) with the action S[#∗,#] =∫ β

0 dτ [
∫

d3r
∑

σ #∗
σ ∂τ#σ + H − µN ], where β = 1/T is

the inverse temperature, and µ is the chemical potential
introduced to fix the total particle number. The Bose field
is split into the mean-field and fluctuating parts, #qσ =
(0σ |q=κ + φqσ . We then expand the action of the system
up to the quadratic order in fluctuating fields, obtaining
an effective action Seff ≃ S0 + Sg . Here S0 = V

∑
σ [(− λ2

4 −
µ)n0σ + (g + g↑↓)n2

0σ ] is the mean-field contribution, while
Sg = 1

2(
†
qG−1(q is the fluctuating contribution with a vector

field (q = (φκ⃗+q↑,φκ⃗+q↓,φ∗
κ⃗−q↑,φ∗

κ⃗−q↓)T . G−1 is the inverse
Green’s function of the elementary excitations defined as

G−1 =

⎛

⎜⎜⎜⎝

−iwn+ϵ+
q Rq gn0 g↑↓n0

R∗
q −iwn+ϵ−

q g↑↓n0 gn0

gn0 g↑↓n0 iwn+ϵ+
−q R∗

−q

g↑↓n0 gn0 R−q iwn+ϵ−
−q

⎞

⎟⎟⎟⎠
,

(5)

where ϵ±
q = q2 + λ2

2 + λ(±γ qz − qx) + gn0 and Rq = g↑↓n0

+ λ(− λ
2 + qx − iqy).

The spectrum of the elementary excitations is determined
from the poles of the Green’s function. There are two branches
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FIG. 1. (Color online) Time evolution of a gray-bright soliton’s
magnetization in a ring-trapped BEC with Rashba spin-orbit cou-
pling. During a full cycle of the soliton’s motion on the ring,
the magnetization vector follows a trajectory on the surface of a
sphere. The magnetization vectors at the beginning and the end of
a cycle (indicated by arrows) differ by an angle ϑ that is related
to a spin-related geometric phase. Soliton parameters (see text):
vs/c = 0.5, tan η = 2, g = 100, κ = −0.01.

We use σ± ≡ (σx ± iσy)/2 to denote raising and lowering
operators for spin-1/2 components, E0 = h̄2/(2MR2) is the
energy scale for quantum confinement of atoms with mass M
in a ring of radius R, E0g is the two-body contact-interaction
strength, and tan η = 2MR αR/h̄2 is a dimensionless measure
of the spin-orbit coupling.

The effect of Rashba spin-orbit coupling in a ring ge-
ometry can be elucidated by performing a suitable SU(2)
transformation. Defining & = U χ and Hloc = U−1HU , with
U = e−iϕσz/2 eiησy/2 eiϕσz/(2 cos η), we find

Hloc = E0

[
−∂2

ϕ − (tan η)2

4
+ g

2
χ †χ

]
. (2)

The transformation U−1 amounts to a ϕ-dependent rotation
of the pseudospin quantization axis [26], followed by a spin-
dependent gauge transformation. We will refer to the original
representation where the spin-quantization axis coincides with
the axis of the ring as the laboratory frame, whereas the
representation in which the Hamiltonian of the system is
diagonal in pseudospin space [i.e., given by Hloc of Eq. (2)]
will be the local spin frame [26]. Note that the spinors & in
the laboratory frame are periodic functions of ϕ, whereas the
spinors χ = (χ+,χ−)T from the local spin frame have to satisfy
the boundary conditions χ±(ϕ) = χ±(ϕ + 2π )e±iA with a
spin-dependent phase twist originating from the spin-orbit
coupling, where

A = π

(
1

cos η
− 1

)
. (3)

Knowledge of the local-spin-frame spinors enables the
calculation of expectation values for any observables ac-
cessible to measurement in the laboratory frame. The total
density n = |ψ↑|2 + |ψ↓|2 ≡ |χ+|2 + |χ−|2 is obviously the
same irrespective of which representation is chosen in spin
space. The pseudospin-1/2 projections in the laboratory frame
correspond to definite atomic states, hence their density pro-
files n↑(↓) = &†([1 + (−)σz]/2)& are of interest. In addition,
we will consider the magnetization-density vector s = &†σ&
in the laboratory frame, with σ = (σx,σy,σz) being the vector
of Pauli matrices.

III. SOLITONS AND THEIR MAGNETIZATION

We analyze the properties of localized excitations in a spin-
orbit-coupled ring-trapped BEC based on the time-dependent
Gross-Pitaevskii equation [6] δE[χ ]/δχ∗

σ = ih̄ ∂χσ/∂t . After
rescaling to use the dimensionless time variable τ = tE0/h̄, it
has the form

i
∂χσ

∂τ
=

[
−∂2

ϕ + g (|χ+|2 + |χ−|2 − n0)
]
χσ (4)

for the two components of the spinor χ = (χ+,χ−)T , where
n0 = [µ + (tan η)2/4]/(gE0) is the uniform (background)
density consistent with the chemical potential µ. While
the spin-orbit coupling has formally disappeared from the
nonlinear equation (4), it is still implicitly present via the
boundary conditions that the individual components χ±(ϕ,τ )
must satisfy.

We have obtained several soliton solutions of Eqs. (4)
using established techniques [17,18,20] and implemented the
appropriate boundary conditions. Before giving further details,
we wish to summarize a few general features. The soliton
spinors in the local-spin-frame representation turn out to be of
the form

χ (s)
σ = ϒ (s)

σ (ϕ − vsτ ) eivbσ ϕ/2−iv2
bσ τ/4, (5)

where ϒ (s)
σ (ξ ) are complex amplitude functions encoding the

specific solitonlike density features, vs is the propagation speed
of the soliton, and vbσ are background flow velocities of the
individual spinor components that are necessary to implement
the boundary conditions arising due to the presence of spin-
orbit coupling. The density n

(s)
↑(↓) and magnetization density

s(s) exhibit spatially localized features. Subtracting s(s) from
the magnetization density s(s)

b of the condensate background
yields the magnetization density that is associated with the
soliton excitation only. Its integral S(s) =

∫
dϕ[s(s)

b − s(s)] is
the vector of total soliton magnetization, which is an additional
property of localized excitations in multicomponent BECs. For
soliton solutions of the form (5), S(s) has constant magnitude.
Its temporal evolution is most conveniently described by a set
of four angles as defined in Fig. 2(c). While the tilt angles β
and β ′ are time independent, the angles α and α′ vary linearly
in time, signifying the precession of S(s) around the tilted z′

axis with the universal result

β = η, α = vsτ + π. (6)

The z′ axis is tilted by the angle η characterizing the spin-
orbit coupling and it rotates around the z axis with the same
angular velocity vs that characterizes the soliton propagation.
The second tilt angle β ′ is found to depend only on details
of the soliton profiles ϒ±(ϕ), while the precession frequency
dα′/dτ has complicated dependences on the parameters of
the soliton solutions. Figure 2 shows exemplary magnetization
dynamics for gray-bright and gray-gray solitons. Interestingly,
we find that the magnetization vector is usually not parallel to
its initial direction after the soliton has completed a full cycle
of its motion around the ring as, e.g., seen in Fig. 1. The angle ϑ
between the magnetization directions at the start and the end of
a cycle turns out to be finite only as a consequence of spin-orbit
coupling, as it depends prominently on the phase A given
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More SOCed quantum gases (not 2D) 

Fermi superfluid with SOC – topological SF
•  Solitons, vortices have Majorana quasiparticles
•  Moving Majorana (dark) soliton has fixed phase relation
Zhou, Brand, Liu, Hu, PRL (2016) �
�

4

Figure 4: (color online). Majorana soliton. The two upper
panels report the time evolution of the magnitude |�(x, t)|
(left) and the phase �(x, t) (right) of the order parameter for
a Majorana soliton in a trapped topological Fermi superfluid
(h = 1.2E0

F > hc) with a maximum soliton velocity 0.07vF <

vh. The two lower panels show the density (left) and order
parameter (right) of a Majorana soliton in the homogeneous
configuration at di↵erent velocities with parameters � = 3.75,
h = 1.71EF and �kF /EF = 1.79.

dependent simulations with spin-orbit coupling therefore
indicate that the critical velocity of traveling solitons
could be significantly smaller than Landau critical ve-
locity v

pb

, which was found to be the relevant critical ve-
locity without spin-orbit coupling [9–11]. These results
are still consistent, since without spin-orbit coupling v

h

actually is close to the pair-breaking velocity [12].

Topological phase. By increasing e↵ective Zeeman field
across h

c

' E
F

for a trapped Fermi cloud, the local en-
ergy gap (and hence the pair-breaking velocity) at the
trap center closes and then re-opens. A topological su-
perfluid emerges. The first sign of the existence of a
velocity-independent Majorana soliton comes from the
time-dependent simulations in harmonic traps, as shown
in the upper panel of Fig. 4. During the time evolution,
the dip minimum in |�(x, t)| remains at zero and the
phase jump ��(t) across the soliton is always pinned at
⇡ (see also the inset in Fig. 5). In the lower panel of
Fig. 4, we check more rigorously the velocity dependence
using Broyden’s approach. With increasing the soliton
velocity in the topological phase, the density and pairing
order parameter profiles remain essentially unchanged.

To show the presence of Majorana fermions at the soli-
ton core, we report in Fig. 5 the energy of the ABS as
a function of the traveling velocity. Although in the co-
moving frame the energy EMov

ABS

increases (linearly) with
the velocity, the energy in the laboratory frame, ELab

ABS

,

Figure 5: (color online). The ABS energy of the Majorana
soliton as a function of the soliton velocity in the co-moving
frame (upper panel) or in the laboratory frame (lower panel).
We note that in the topological phase, the number of the ABS
states decreases to one [31], if we count only positive energy
levels. The inset examines the ⇡-phase of Majorana solitons.
Parameters as in Fig. 4.

which is related to the co-moving energy by

ELab

ABS

= EMov

ABS

+

Z
d⇠�⇤

ABS

(�i~v
s

)@�
ABS

/@⇠, (6)

is precisely zero [48]. This is expected behavior for a
Majorana fermion, which must have zero energy due to
the particle-antiparticle symmetry. Together with the
observed continuity with the zero velocity case [30, 31],
we conclude that the moving soliton in the topological
phase indeed hosts Majorana fermions. The properties
of the Majorana soliton at finite velocity can be made
plausible from the universal relation (5), if we assume
its validity in the topological phase. We recall that the
density notch in Majorana solitons is absent [30, 31] and
hence the physical mass vanishes [9]. Equation (5) im-
mediately implies that the derivative of the phase jump
is zero, since the oscillation period should be finite. This
leads to a constant ⇡ phase jump, irrespective of the soli-
ton velocity. In turn, the magnitude of order parameter
should vanish at the soliton core.
2D Majorana solitons. We now turn to consider trav-

eling solitons in 2D topological Fermi superfluids. As
shown in the Supplemental Material, traveling Majorana
solitons exist both in a 2D spin-orbit coupled Fermi gas in
its topological phase and in a 2D p-wave Fermi superfluid.
In particular, time-dependent simulations in the case of
the 2D p-wave Fermi superfluid show that, the shapes of
both density profile and order parameter of the traveling
soliton remain the same during the time-evolution and
thus are independent of the velocity of travel, similar to
what happens in 1D spin-orbit coupled topological Fermi
superfluid. All these similarities strongly indicate that



Phase transitions in  
Spin-orbit coupled 2D Bose gas 

Earlier predictions: Jian, Zhai PRL (2011)
-  Stripe phase: 

-  stripe-order melting transition,
-  fractionalised vortex phase�

-  Plane-wave phase:
-  Isotropic SOC (Rashba): BKT transition 

temperature drops to zero�
[also Liao, Huang, Lin, Fialko, PRA (2014)]  

-  Anisotropic SOC: regular BKT transiton



Finite temperature simulations 

Using the commutation relation (6) the Heisenberg equation of motion for the
corresponding field operator takes the form

i!h
@ ̂ðxÞ
@t
¼
Z

d3x0 !Lðx$ x0Þ Hsp ̂ðx0Þ þ u ̂
y
ðx0Þ ̂ðx0Þ ̂ðx0Þ

! "
: ð8Þ

The main purpose of the methods discussed in this review is to simulate this equation in
various regimes.

2.2. Projection into the c-field region

2.2.1. Projection operators

In Section 2.1, we developed an effective field theory description of the cold-atom
Hamiltonian derived by eliminating states outside of the L region. The resulting effective
Hamiltonian (5) and equation of motion (8) are restricted to this space.

We now turn to a quantitative definition of the L region. This is accomplished by
expanding the coarse-grained field operator as

 ̂ðxÞ ¼
X

n2L
ân"nðxÞ, ð9Þ

where "n(x) are single-particle eigenstates of the basis Hamiltonian with energy #n, i.e.

#n"nðxÞ ¼ H0"nðxÞ: ð10Þ

The operators ân satisfy the usual Bose commutation relations, [âi, âj]¼ 0, and ½âi, â
y
j ' ¼ !ij.

The restriction of the summation in (9) to modes in L is defined by L¼ {n : #n(Emax}.

Figure 2. Schematic view of the c-field region, the incoherent region and eliminated states for
a harmonic trap. The c-field atoms require a quantum description and incoherent atoms may be
treated using quantum kinetic theory.
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Simulations are done with effective 
field theory projected to low-
energy region (c-field region).

HIDDEN LONG-RANGE ORDER IN A SPIN-ORBIT- . . . PHYSICAL REVIEW A 95, 053629 (2017)

relative-phase spin excitation where the effect of SOC acts
to open a gap but also shift the minimum of the dispersion.
For nonvanishing κy the eigenenergies and eigenvectors can
be calculated numerically and the above conclusion remains
valid.

III. RESULTS AND DISCUSSIONS

To study the phase fluctuations in the spin-orbit-coupled
Bose gas, the Bose field can be expressed as [38]

!̂ =
(

"̂1(r′)
"̂2(r′)

)
=

√
neiφ̂t(r′)

(
eiφ̂r(r′)

e−iφ̂r(r′)

)
, (5)

where φ̂t,r denote the total- and relative-phase operators,
respectively, and we have neglected the density fluctuations.
For small fluctuations, Eq. (5) can be expanded to the first
order which gives φ̂t,r =

∑
q[(U q

t,r +V q
t,r)α̂

q
t,r − H.c.]/2i

√
n,

where α̂
q
t,r (α̂q†

t,r ) is the annihilation (creation) operator that
destroys (creates) the excitation in the corresponding branch
ω

q
t,r and (U q

t,r,V q
t,r) = (uq

t,r,v
q
t,r)e

iq·r/
√

A is the amplitude
of Bogoliubov excitation. In the linear approximation, the
total- and relative-phase operators are decoupled and can
be expressed in terms of the excitations δ!

q
t and δ!q

r ,
respectively. The two-point phase correlation functions are
given by

Gt,r(r′,r′′) = ⟨eiφ̂t,r(r′)−iφ̂t,r(r′′)⟩ = e−⟨('φt,r)2⟩/2, (6)

where ⟨· · · ⟩ denotes the ensemble average and 'φt,r =
φ̂t,r(r′) − φ̂t,r(r′′). The thermal average can be expressed in
terms of the Bogoliubov amplitudes

⟨('φt,r)2⟩ =
∫

d2q

πn

(
N

q
t,r + 1

2

)(
u

q
t,r + v

q
t,r

)2sin2 q · r
2

, (7)

where N
q
t,r = 1/[exp(ωq

t,r/T ) − 1] is the Bose-Einstein distri-
bution function with T the temperature measured in units
of h̄ω0/kB . Due to translational invariance the averaged
phase fluctuations and the correlation function only depend
on the separation |r| = |r′ − r′′|. The Bogoliubov amplitudes
in the integrand are (uq

t + v
q
t )2 = [ξq

t + (g̃ + g̃12)n]/2ω
q
t and

(uq
r + v

q
r )2 = [ξq

r + (g̃ − g̃12)n]/2(ωq
r + 2κ̃xqx). The total-

phase fluctuation shown in Eq. (7) exhibits an infrared
divergence similar to that of a 2D scalar Bose gas. Accordingly,
the total-phase correlation function is shown in Fig. 4 in the
Appendix. In the thermodynamic limit it is expected that
the long-range correlation lim|r|→∞ e−⟨('φr)2⟩/2 would be de-
stroyed by the total-phase fluctuations, leading to the BKT-type
physics which is characterized by the quasi-LRO as discussed
in Ref. [17]. The BKT transition temperature for the 2D scalar
Bose gas is given by T ∞

BKT,scalar = 2π h̄2n/{mkB ln[(380 ±
3)/g̃0]} with g̃0 the dimensionless interaction strength [39,40].
Comparing the excitation spectrum of the 2D scalar Bose gas
with the in-phase excitation energy ω

q
t , the BKT transition

temperature T ∞
BKT for the total-phase degree of freedom can

be estimated by replacing g̃0 with g̃ + g̃12. On the contrary
the fluctuation ⟨('φr)2⟩ is suppressed due to the gapped
and anisotropic excitation energy, leading to the existence of
true LRO in the relative-phase correlation. The relative-phase
fluctuations evaluated from Eq. (7) are shown in Fig. 1.
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FIG. 1. Relative-phase fluctuations from Bogoliubov theory at
two different temperatures. Panels (a) and (d) show the relative-
phase fluctuations ⟨('φr)2⟩ from Eq. (6) where the axes denote the
separations x = x ′ − x ′′ and y = y ′ − y ′′. A plateau is seen to develop
at large separation. The fluctuations ⟨('φr)2⟩ are also shown in panels
(b) and (e) while panels (c) and (f) depict the correlation function Gr

from Eq. (7). The magenta (grey) lines are plotted along the x-axis
and black lines along the y-axis for panels (b), (c), (e), and (f). The
temperature is set to T/T ∞

BKT ≈ 0.44 for panels (a), (b), (c) and to
T/T ∞

BKT ≈ 1.33 for panels (d), (e), (f), and µ = 13, g̃12/g̃ = 0.9 and
(κ̃x,κ̃y) = (1,0).

Plateaus of constant fluctuation and correlation are visible
at a separation |r| larger than ≈ 4 = 4κ̃−1

x ≈ 20ξ , where
ξ = 1/

√
2µ is the zero-temperature healing length in scaled

units. It is remarkable that the length scale for plateau
formation is independent of temperature while the magnitude
decreases with increasing temperature. Additionally, the effect
of anisotropic SOC appears in the spatial variation at short
length scales as clearly seen in Fig. 1.

To verify the analytical prediction, we numerically calculate
the first-order correlation functions by evolving the stochastic
projected Gross-Pitaevskii equation [33–36]

d"j = P{−iLj"j dt + *(µ −Lj )"j dt + dWj }, (8)

where P is the projection operator restricting the evolution to
the region of E < ϵcut, µ is the chemical potential, * is the
growth rate, and dWj is the complex white noise satisfying
the fluctuation-dissipation relation ⟨dW ∗

j (r′,t)dWk(r′′,t)⟩ =
2*T δ(r′,r′′)δjkdt . The phase correlation function of Eq. (6)
can be numerically computed via the expression Gt, r(r′,r′′) =
1
Ns

∑Ns

j=1 exp[iφt,r(r′,tj ) − iφt,r(r′′,tj )], where tj is a set of Ns

times at which the field is sampled after the system reaches
equilibrium [6,33]. In the numerical simulation, we consider
the parameters µ = 13, ϵcut ≈ 42, g̃12/g̃ = 0.9, and (κ̃x,κ̃y) =
(1,0) at various temperatures. To obtain an equilibrated sample
for calculating the correlation function, we let the system
evolve for a sufficiently long time (≫1/*) and then take 103

samples to implement the averaging.
Figure 2 depicts the total-phase profile and correlation at

various temperatures. At low temperatures the total-phase ex-
hibits the periodic structure shown in Fig. 2(a), a consequence
of the PW state entailing the phase factor e−2iκ̃xx . At high
temperatures, the increasing thermal fluctuations smear out the
quasiperiodic structure in Fig. 2(a) and results in a fluctuating
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relative-phase spin excitation where the effect of SOC acts
to open a gap but also shift the minimum of the dispersion.
For nonvanishing κy the eigenenergies and eigenvectors can
be calculated numerically and the above conclusion remains
valid.

III. RESULTS AND DISCUSSIONS

To study the phase fluctuations in the spin-orbit-coupled
Bose gas, the Bose field can be expressed as [38]

!̂ =
(

"̂1(r′)
"̂2(r′)

)
=

√
neiφ̂t(r′)

(
eiφ̂r(r′)

e−iφ̂r(r′)

)
, (5)

where φ̂t,r denote the total- and relative-phase operators,
respectively, and we have neglected the density fluctuations.
For small fluctuations, Eq. (5) can be expanded to the first
order which gives φ̂t,r =

∑
q[(U q

t,r +V q
t,r)α̂

q
t,r − H.c.]/2i

√
n,

where α̂
q
t,r (α̂q†

t,r ) is the annihilation (creation) operator that
destroys (creates) the excitation in the corresponding branch
ω

q
t,r and (U q

t,r,V q
t,r) = (uq

t,r,v
q
t,r)e

iq·r/
√

A is the amplitude
of Bogoliubov excitation. In the linear approximation, the
total- and relative-phase operators are decoupled and can
be expressed in terms of the excitations δ!

q
t and δ!q

r ,
respectively. The two-point phase correlation functions are
given by

Gt,r(r′,r′′) = ⟨eiφ̂t,r(r′)−iφ̂t,r(r′′)⟩ = e−⟨('φt,r)2⟩/2, (6)

where ⟨· · · ⟩ denotes the ensemble average and 'φt,r =
φ̂t,r(r′) − φ̂t,r(r′′). The thermal average can be expressed in
terms of the Bogoliubov amplitudes

⟨('φt,r)2⟩ =
∫

d2q

πn

(
N

q
t,r + 1

2

)(
u

q
t,r + v

q
t,r

)2sin2 q · r
2

, (7)

where N
q
t,r = 1/[exp(ωq

t,r/T ) − 1] is the Bose-Einstein distri-
bution function with T the temperature measured in units
of h̄ω0/kB . Due to translational invariance the averaged
phase fluctuations and the correlation function only depend
on the separation |r| = |r′ − r′′|. The Bogoliubov amplitudes
in the integrand are (uq

t + v
q
t )2 = [ξq

t + (g̃ + g̃12)n]/2ω
q
t and

(uq
r + v

q
r )2 = [ξq

r + (g̃ − g̃12)n]/2(ωq
r + 2κ̃xqx). The total-

phase fluctuation shown in Eq. (7) exhibits an infrared
divergence similar to that of a 2D scalar Bose gas. Accordingly,
the total-phase correlation function is shown in Fig. 4 in the
Appendix. In the thermodynamic limit it is expected that
the long-range correlation lim|r|→∞ e−⟨('φr)2⟩/2 would be de-
stroyed by the total-phase fluctuations, leading to the BKT-type
physics which is characterized by the quasi-LRO as discussed
in Ref. [17]. The BKT transition temperature for the 2D scalar
Bose gas is given by T ∞

BKT,scalar = 2π h̄2n/{mkB ln[(380 ±
3)/g̃0]} with g̃0 the dimensionless interaction strength [39,40].
Comparing the excitation spectrum of the 2D scalar Bose gas
with the in-phase excitation energy ω

q
t , the BKT transition

temperature T ∞
BKT for the total-phase degree of freedom can

be estimated by replacing g̃0 with g̃ + g̃12. On the contrary
the fluctuation ⟨('φr)2⟩ is suppressed due to the gapped
and anisotropic excitation energy, leading to the existence of
true LRO in the relative-phase correlation. The relative-phase
fluctuations evaluated from Eq. (7) are shown in Fig. 1.
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FIG. 1. Relative-phase fluctuations from Bogoliubov theory at
two different temperatures. Panels (a) and (d) show the relative-
phase fluctuations ⟨('φr)2⟩ from Eq. (6) where the axes denote the
separations x = x ′ − x ′′ and y = y ′ − y ′′. A plateau is seen to develop
at large separation. The fluctuations ⟨('φr)2⟩ are also shown in panels
(b) and (e) while panels (c) and (f) depict the correlation function Gr

from Eq. (7). The magenta (grey) lines are plotted along the x-axis
and black lines along the y-axis for panels (b), (c), (e), and (f). The
temperature is set to T/T ∞

BKT ≈ 0.44 for panels (a), (b), (c) and to
T/T ∞

BKT ≈ 1.33 for panels (d), (e), (f), and µ = 13, g̃12/g̃ = 0.9 and
(κ̃x,κ̃y) = (1,0).

Plateaus of constant fluctuation and correlation are visible
at a separation |r| larger than ≈ 4 = 4κ̃−1

x ≈ 20ξ , where
ξ = 1/

√
2µ is the zero-temperature healing length in scaled

units. It is remarkable that the length scale for plateau
formation is independent of temperature while the magnitude
decreases with increasing temperature. Additionally, the effect
of anisotropic SOC appears in the spatial variation at short
length scales as clearly seen in Fig. 1.

To verify the analytical prediction, we numerically calculate
the first-order correlation functions by evolving the stochastic
projected Gross-Pitaevskii equation [33–36]

d"j = P{−iLj"j dt + *(µ −Lj )"j dt + dWj }, (8)

where P is the projection operator restricting the evolution to
the region of E < ϵcut, µ is the chemical potential, * is the
growth rate, and dWj is the complex white noise satisfying
the fluctuation-dissipation relation ⟨dW ∗

j (r′,t)dWk(r′′,t)⟩ =
2*T δ(r′,r′′)δjkdt . The phase correlation function of Eq. (6)
can be numerically computed via the expression Gt, r(r′,r′′) =
1
Ns

∑Ns

j=1 exp[iφt,r(r′,tj ) − iφt,r(r′′,tj )], where tj is a set of Ns

times at which the field is sampled after the system reaches
equilibrium [6,33]. In the numerical simulation, we consider
the parameters µ = 13, ϵcut ≈ 42, g̃12/g̃ = 0.9, and (κ̃x,κ̃y) =
(1,0) at various temperatures. To obtain an equilibrated sample
for calculating the correlation function, we let the system
evolve for a sufficiently long time (≫1/*) and then take 103

samples to implement the averaging.
Figure 2 depicts the total-phase profile and correlation at

various temperatures. At low temperatures the total-phase ex-
hibits the periodic structure shown in Fig. 2(a), a consequence
of the PW state entailing the phase factor e−2iκ̃xx . At high
temperatures, the increasing thermal fluctuations smear out the
quasiperiodic structure in Fig. 2(a) and results in a fluctuating
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relative-phase spin excitation where the effect of SOC acts
to open a gap but also shift the minimum of the dispersion.
For nonvanishing κy the eigenenergies and eigenvectors can
be calculated numerically and the above conclusion remains
valid.

III. RESULTS AND DISCUSSIONS

To study the phase fluctuations in the spin-orbit-coupled
Bose gas, the Bose field can be expressed as [38]

!̂ =
(

"̂1(r′)
"̂2(r′)

)
=

√
neiφ̂t(r′)

(
eiφ̂r(r′)

e−iφ̂r(r′)

)
, (5)

where φ̂t,r denote the total- and relative-phase operators,
respectively, and we have neglected the density fluctuations.
For small fluctuations, Eq. (5) can be expanded to the first
order which gives φ̂t,r =

∑
q[(U q

t,r +V q
t,r)α̂

q
t,r − H.c.]/2i

√
n,

where α̂
q
t,r (α̂q†

t,r ) is the annihilation (creation) operator that
destroys (creates) the excitation in the corresponding branch
ω

q
t,r and (U q

t,r,V q
t,r) = (uq

t,r,v
q
t,r)e

iq·r/
√

A is the amplitude
of Bogoliubov excitation. In the linear approximation, the
total- and relative-phase operators are decoupled and can
be expressed in terms of the excitations δ!

q
t and δ!q

r ,
respectively. The two-point phase correlation functions are
given by

Gt,r(r′,r′′) = ⟨eiφ̂t,r(r′)−iφ̂t,r(r′′)⟩ = e−⟨('φt,r)2⟩/2, (6)

where ⟨· · · ⟩ denotes the ensemble average and 'φt,r =
φ̂t,r(r′) − φ̂t,r(r′′). The thermal average can be expressed in
terms of the Bogoliubov amplitudes

⟨('φt,r)2⟩ =
∫

d2q

πn

(
N

q
t,r + 1

2

)(
u

q
t,r + v

q
t,r

)2sin2 q · r
2

, (7)

where N
q
t,r = 1/[exp(ωq

t,r/T ) − 1] is the Bose-Einstein distri-
bution function with T the temperature measured in units
of h̄ω0/kB . Due to translational invariance the averaged
phase fluctuations and the correlation function only depend
on the separation |r| = |r′ − r′′|. The Bogoliubov amplitudes
in the integrand are (uq

t + v
q
t )2 = [ξq

t + (g̃ + g̃12)n]/2ω
q
t and

(uq
r + v

q
r )2 = [ξq

r + (g̃ − g̃12)n]/2(ωq
r + 2κ̃xqx). The total-

phase fluctuation shown in Eq. (7) exhibits an infrared
divergence similar to that of a 2D scalar Bose gas. Accordingly,
the total-phase correlation function is shown in Fig. 4 in the
Appendix. In the thermodynamic limit it is expected that
the long-range correlation lim|r|→∞ e−⟨('φr)2⟩/2 would be de-
stroyed by the total-phase fluctuations, leading to the BKT-type
physics which is characterized by the quasi-LRO as discussed
in Ref. [17]. The BKT transition temperature for the 2D scalar
Bose gas is given by T ∞

BKT,scalar = 2π h̄2n/{mkB ln[(380 ±
3)/g̃0]} with g̃0 the dimensionless interaction strength [39,40].
Comparing the excitation spectrum of the 2D scalar Bose gas
with the in-phase excitation energy ω

q
t , the BKT transition

temperature T ∞
BKT for the total-phase degree of freedom can

be estimated by replacing g̃0 with g̃ + g̃12. On the contrary
the fluctuation ⟨('φr)2⟩ is suppressed due to the gapped
and anisotropic excitation energy, leading to the existence of
true LRO in the relative-phase correlation. The relative-phase
fluctuations evaluated from Eq. (7) are shown in Fig. 1.

(a)

x
-8 0 8

y

-8

0

8

0.2

0.4

0.6

distance
0 8 16

<(
∆

φ
r)2 >

0

4

8 (b)

distance
0 8 16

G
r

0.6

0.8

1 (c)

(d)

x
-8 0 8

y

-8

0

8

0.5

1

1.5

2

distance
0 8 16

<(
∆

φ
r)2 >

0

1

2
(e)

distance
0 8 16

G
r

0.2

0.6

1 (f)

×10-1

FIG. 1. Relative-phase fluctuations from Bogoliubov theory at
two different temperatures. Panels (a) and (d) show the relative-
phase fluctuations ⟨('φr)2⟩ from Eq. (6) where the axes denote the
separations x = x ′ − x ′′ and y = y ′ − y ′′. A plateau is seen to develop
at large separation. The fluctuations ⟨('φr)2⟩ are also shown in panels
(b) and (e) while panels (c) and (f) depict the correlation function Gr

from Eq. (7). The magenta (grey) lines are plotted along the x-axis
and black lines along the y-axis for panels (b), (c), (e), and (f). The
temperature is set to T/T ∞

BKT ≈ 0.44 for panels (a), (b), (c) and to
T/T ∞

BKT ≈ 1.33 for panels (d), (e), (f), and µ = 13, g̃12/g̃ = 0.9 and
(κ̃x,κ̃y) = (1,0).

Plateaus of constant fluctuation and correlation are visible
at a separation |r| larger than ≈ 4 = 4κ̃−1

x ≈ 20ξ , where
ξ = 1/

√
2µ is the zero-temperature healing length in scaled

units. It is remarkable that the length scale for plateau
formation is independent of temperature while the magnitude
decreases with increasing temperature. Additionally, the effect
of anisotropic SOC appears in the spatial variation at short
length scales as clearly seen in Fig. 1.

To verify the analytical prediction, we numerically calculate
the first-order correlation functions by evolving the stochastic
projected Gross-Pitaevskii equation [33–36]

d"j = P{−iLj"j dt + *(µ −Lj )"j dt + dWj }, (8)

where P is the projection operator restricting the evolution to
the region of E < ϵcut, µ is the chemical potential, * is the
growth rate, and dWj is the complex white noise satisfying
the fluctuation-dissipation relation ⟨dW ∗

j (r′,t)dWk(r′′,t)⟩ =
2*T δ(r′,r′′)δjkdt . The phase correlation function of Eq. (6)
can be numerically computed via the expression Gt, r(r′,r′′) =
1
Ns

∑Ns

j=1 exp[iφt,r(r′,tj ) − iφt,r(r′′,tj )], where tj is a set of Ns

times at which the field is sampled after the system reaches
equilibrium [6,33]. In the numerical simulation, we consider
the parameters µ = 13, ϵcut ≈ 42, g̃12/g̃ = 0.9, and (κ̃x,κ̃y) =
(1,0) at various temperatures. To obtain an equilibrated sample
for calculating the correlation function, we let the system
evolve for a sufficiently long time (≫1/*) and then take 103

samples to implement the averaging.
Figure 2 depicts the total-phase profile and correlation at

various temperatures. At low temperatures the total-phase ex-
hibits the periodic structure shown in Fig. 2(a), a consequence
of the PW state entailing the phase factor e−2iκ̃xx . At high
temperatures, the increasing thermal fluctuations smear out the
quasiperiodic structure in Fig. 2(a) and results in a fluctuating
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relative-phase spin excitation where the effect of SOC acts
to open a gap but also shift the minimum of the dispersion.
For nonvanishing κy the eigenenergies and eigenvectors can
be calculated numerically and the above conclusion remains
valid.

III. RESULTS AND DISCUSSIONS

To study the phase fluctuations in the spin-orbit-coupled
Bose gas, the Bose field can be expressed as [38]

!̂ =
(

"̂1(r′)
"̂2(r′)

)
=

√
neiφ̂t(r′)

(
eiφ̂r(r′)

e−iφ̂r(r′)

)
, (5)

where φ̂t,r denote the total- and relative-phase operators,
respectively, and we have neglected the density fluctuations.
For small fluctuations, Eq. (5) can be expanded to the first
order which gives φ̂t,r =

∑
q[(U q

t,r +V q
t,r)α̂

q
t,r − H.c.]/2i

√
n,

where α̂
q
t,r (α̂q†

t,r ) is the annihilation (creation) operator that
destroys (creates) the excitation in the corresponding branch
ω

q
t,r and (U q

t,r,V q
t,r) = (uq

t,r,v
q
t,r)e

iq·r/
√

A is the amplitude
of Bogoliubov excitation. In the linear approximation, the
total- and relative-phase operators are decoupled and can
be expressed in terms of the excitations δ!

q
t and δ!q

r ,
respectively. The two-point phase correlation functions are
given by

Gt,r(r′,r′′) = ⟨eiφ̂t,r(r′)−iφ̂t,r(r′′)⟩ = e−⟨('φt,r)2⟩/2, (6)

where ⟨· · · ⟩ denotes the ensemble average and 'φt,r =
φ̂t,r(r′) − φ̂t,r(r′′). The thermal average can be expressed in
terms of the Bogoliubov amplitudes

⟨('φt,r)2⟩ =
∫

d2q

πn

(
N

q
t,r + 1

2

)(
u

q
t,r + v

q
t,r

)2sin2 q · r
2

, (7)

where N
q
t,r = 1/[exp(ωq

t,r/T ) − 1] is the Bose-Einstein distri-
bution function with T the temperature measured in units
of h̄ω0/kB . Due to translational invariance the averaged
phase fluctuations and the correlation function only depend
on the separation |r| = |r′ − r′′|. The Bogoliubov amplitudes
in the integrand are (uq

t + v
q
t )2 = [ξq

t + (g̃ + g̃12)n]/2ω
q
t and

(uq
r + v

q
r )2 = [ξq

r + (g̃ − g̃12)n]/2(ωq
r + 2κ̃xqx). The total-

phase fluctuation shown in Eq. (7) exhibits an infrared
divergence similar to that of a 2D scalar Bose gas. Accordingly,
the total-phase correlation function is shown in Fig. 4 in the
Appendix. In the thermodynamic limit it is expected that
the long-range correlation lim|r|→∞ e−⟨('φr)2⟩/2 would be de-
stroyed by the total-phase fluctuations, leading to the BKT-type
physics which is characterized by the quasi-LRO as discussed
in Ref. [17]. The BKT transition temperature for the 2D scalar
Bose gas is given by T ∞

BKT,scalar = 2π h̄2n/{mkB ln[(380 ±
3)/g̃0]} with g̃0 the dimensionless interaction strength [39,40].
Comparing the excitation spectrum of the 2D scalar Bose gas
with the in-phase excitation energy ω

q
t , the BKT transition

temperature T ∞
BKT for the total-phase degree of freedom can

be estimated by replacing g̃0 with g̃ + g̃12. On the contrary
the fluctuation ⟨('φr)2⟩ is suppressed due to the gapped
and anisotropic excitation energy, leading to the existence of
true LRO in the relative-phase correlation. The relative-phase
fluctuations evaluated from Eq. (7) are shown in Fig. 1.
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FIG. 1. Relative-phase fluctuations from Bogoliubov theory at
two different temperatures. Panels (a) and (d) show the relative-
phase fluctuations ⟨('φr)2⟩ from Eq. (6) where the axes denote the
separations x = x ′ − x ′′ and y = y ′ − y ′′. A plateau is seen to develop
at large separation. The fluctuations ⟨('φr)2⟩ are also shown in panels
(b) and (e) while panels (c) and (f) depict the correlation function Gr

from Eq. (7). The magenta (grey) lines are plotted along the x-axis
and black lines along the y-axis for panels (b), (c), (e), and (f). The
temperature is set to T/T ∞

BKT ≈ 0.44 for panels (a), (b), (c) and to
T/T ∞

BKT ≈ 1.33 for panels (d), (e), (f), and µ = 13, g̃12/g̃ = 0.9 and
(κ̃x,κ̃y) = (1,0).

Plateaus of constant fluctuation and correlation are visible
at a separation |r| larger than ≈ 4 = 4κ̃−1

x ≈ 20ξ , where
ξ = 1/

√
2µ is the zero-temperature healing length in scaled

units. It is remarkable that the length scale for plateau
formation is independent of temperature while the magnitude
decreases with increasing temperature. Additionally, the effect
of anisotropic SOC appears in the spatial variation at short
length scales as clearly seen in Fig. 1.

To verify the analytical prediction, we numerically calculate
the first-order correlation functions by evolving the stochastic
projected Gross-Pitaevskii equation [33–36]

d"j = P{−iLj"j dt + *(µ −Lj )"j dt + dWj }, (8)

where P is the projection operator restricting the evolution to
the region of E < ϵcut, µ is the chemical potential, * is the
growth rate, and dWj is the complex white noise satisfying
the fluctuation-dissipation relation ⟨dW ∗

j (r′,t)dWk(r′′,t)⟩ =
2*T δ(r′,r′′)δjkdt . The phase correlation function of Eq. (6)
can be numerically computed via the expression Gt, r(r′,r′′) =
1
Ns

∑Ns

j=1 exp[iφt,r(r′,tj ) − iφt,r(r′′,tj )], where tj is a set of Ns

times at which the field is sampled after the system reaches
equilibrium [6,33]. In the numerical simulation, we consider
the parameters µ = 13, ϵcut ≈ 42, g̃12/g̃ = 0.9, and (κ̃x,κ̃y) =
(1,0) at various temperatures. To obtain an equilibrated sample
for calculating the correlation function, we let the system
evolve for a sufficiently long time (≫1/*) and then take 103

samples to implement the averaging.
Figure 2 depicts the total-phase profile and correlation at

various temperatures. At low temperatures the total-phase ex-
hibits the periodic structure shown in Fig. 2(a), a consequence
of the PW state entailing the phase factor e−2iκ̃xx . At high
temperatures, the increasing thermal fluctuations smear out the
quasiperiodic structure in Fig. 2(a) and results in a fluctuating
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��t,r = �̂t,r(r
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Integral for total phase has infrared divergence: leads to algebraic decay of 
correlation function (for all temperatures; artifact of Bog theory).

The relative phase fluctuations freeze out due to gap in dispersion 
relation. 
 



Total phase correlation function from 
Bogoliubov theory 
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Relative phase fluctuations 
from Bogoliubov theory 
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Bogoliubov theory reproduces plateau and short-range 
oscillations; fluctuations of the relative phase are anisotropic



Single-particle density matrix 
Does off-diagonal long-range order of the relative phase imply 
Bose-Einstein condensation?

We would need to have a off-diagonal long-range order (a 
macroscopic eigenvalue) of the single-particle density matrix.
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FIG. 2. Total phase from stochastic simulations of Eq. (8).
Panels (a) and (b) depict the snapshot of the total-phase profile
arg(!1) + arg(!2) at T/T ∞

BKT ≈ 0.44 and 1.33 respectively. The
correlation function Gt(|r′ − r′′|) is shown on a doubly-logarithmic
scale in panels (c) and (d). Dots represent numerical data and solid
lines are algebraic fits for the lower temperatures in panel (c) and
exponential fits in panel (d). The temperatures are T/T ∞

BKT ≈ 0.44
(blue, top), 0.67 (orange, middle), 0.78 (black, bottom) in panel (c),
and 1.33 (green, top), 1.56 (magenta, middle) and 1.78 (red, bottom)
in panel (d).

total-phase profile as shown in Fig. 2(b). Further analyses of
the total-phase correlation are shown in Figs. 2(c) and 2(d).
For T < T ∞

BKT, the results are consistent with algebraic decay
of the correlation function while for T > T ∞

BKT the correlation
function decays exponentially, a defining feature of the BKT
transition.

The relative-phase profiles and the correlation functions
are shown in Fig. 3. Unlike the total-phase case, thermal
fluctuations in relative-phase sector are suppressed in the
low-temperature regime, as shown in Fig. 3(a), and the
corresponding correlation function shown in Fig. 3(c) develops
a plateau structure at large separation, implying an established
LRO. On the other hand, the strong thermal fluctuations in
the high-temperature regime completely randomize the phase
distribution, leading to an exponentially decaying correlation
function, as shown in Fig. 3(d). The value of phase correlation
decreases with increasing temperature and eventually vanishes
for T > T ∞

BKT, as shown in Figs. 3(d) and 3(e). We note that
in Fig. 3(c) the correlation function exhibits oscillations at
small separation along the x direction. This qualitatively agrees
with the oscillations in Figs. 1(c) and 1(f), which can be
attributed to the anisotropic SOC. We note that the analytical
and numerical calculations for the LRO are in close agreement
at low temperatures, but inconsistent at high temperatures
where Bogoliubov theory is expected to be inapplicable. In
Figs. 1(f) and 3(d), the analytical calculation predicts a nonzero
value whereas the numerical one gives a zero value. This
discrepancy is attributed to the fact that Bogoliubov theory
is poorly justified outside the perturbative low-temperature
regime.
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FIG. 3. Relative phase from stochastic simulations. Panels (a)
and (b) depict the snapshots of the relative-phase profile arg(!1) −
arg(!2) at T/T ∞

BKT ≈ 0.44 and 1.33 respectively. The correlation
function Gr is plotted in panels (c) and (d) along the SOC direction.
While plateaus are reached in (c) for T/T ∞

BKT ≈ 0.44 (blue, top),
0.67 (orange, middle), 0.78 (black, bottom), the correlation function
quickly decays to zero for the higher temperatures T/T ∞

BKT ≈ 1.33
(green, solid line), 1.56 (magenta, dashed line) and 1.78 (red, dotted
line) in panel (d). Panel (e) shows the plateau values for the phase
correlation Gr(|x ′ − x ′′| → ∞) versus temperature.

We have shown that LRO does exist in the relative-phase
sector. But would it imply the existence of an otherwise
different form of BEC? To address this problem, we inspect the
single-particle density matrix (SPDM) for the two-component
system defined in analogy with the scalar BEC (see the Ap-
pendix). Retaining the phase fluctuations, the matrix elements
of the generalized SPDM can be presented as a 2-by-2 matrix:

ρ(r′, r′′) = n

⎡

⎣ e− ⟨("φt )2⟩
2 − ⟨("φr )2⟩

2 e− ⟨("φt )2⟩
2 − ⟨("+φr )2⟩

2

e− ⟨("φt )2⟩
2 − ⟨("+φr )2⟩

2 e− ⟨("φt )2⟩
2 − ⟨("φr )2⟩

2

⎤

⎦, (9)

where "+φr = φ̂r(r′) + φ̂r(r′′) (see the Appendix). The matrix
elements of Eq. (9) represent various correlations between
atomic fields at different locations, where the diagonal
elements denote the prototypal SPDMs corresponding to
components 1 and 2 respectively. Note that all matrix elements
in Eq. (9) contain the prefactor e−⟨("φt)2/2⟩, which vanishes at
large distances. As a result, the off-diagonal long-range order
does not extend to the matrix elements of the SPDM implying
that there is no macroscopic eigenvalue and hence the 2D
spin-orbit-coupled Bose gas does not exhibit BEC, according
to a well-known criterion for BEC [41].
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Since the total phase correlation appears as a prefactor for 
the whole matrix, it vanishes for large r’’ – r’.
Hence, there is no macroscopic eigenvalue and no BEC.



Summary 

• Ising-type transition from exponential decaying correlations to 
long-range order of the relative phase in spin-orbit coupled 2D 
Bose gas in plane-wave phase

• The occurrence of long-range order in the relative phase 
seems to appear at the BKT transition temperature

• No BEC – Mermin Wagner is relevant

• Low-temperature correlation functions can be obtained from 
Bogoliubov theory



The end! 


