Variational wave functions for multiband Hubbard models

Federico Becca

CNR IOM-DEMOCRITOS and International School for Advanced Studies (SISSA)

ICTP Trieste, November, 2017

C. de Franco (SISSA), L.F. Tocchio (Torino)

R. Kaneko (Tokyo), R. Valenti (Frankfurt)

イロト イポト イヨト イヨト

1 Variational wave functions for the Hubbard model

- The Jastrow-Slater wave functions
- · How to distinguish between metals and insulators

2 Results for the two-band Hubbard model

- The orbital-selective Mott transition on the square lattice
- Charge orders in organic charge-transfer salts

The one-band Hubbard Model

- Does it give rise to (high-temperature) superconductivity?
- Benchmark for several numerical methods (mostly in 2D):
 - Several quantum Monte Carlo techniques (variational, diffusion, path integral)
 - Density-matrix renormalization group and tensor networks (iPEPS)
 - Dynamical mean-field therory and cluster extensions
 - Embedding schemes (density-matrix embedding theory)

Le Blanc et al. (Simons collaboration), PRX (2015)

イロト イヨト イヨト

Motivations and strategy

GOAL: capture the ground state by variational wave functions

We want to construct flexible variational states that may describe:

- Metals and superconductors
- Phases with charge and/or spin order, both metallic and insulating
- Mott insulators without any local order
- (Topologocal phases, including chiral spin liquids are also possible)

We employ Jastrow-Slater wave functions and Monte Carlo sampling

Cambridge University Press (November 2007)

Non-interacting (Slater or BCS) determinant

Long-range Jastrow factor

Capello, Becca, Fabrizio, Sorella, and Tosatti, PRL (2005)

Kaneko, Tocchio, Valenti, Becca, and Gros, PRB (2016)

(Backflow correlations and Lanczos steps)

ヘロト 人間ト ヘヨト ヘヨト

Tocchio, Becca, Parola, and Sorella, PRB (2008)

Tocchio, Becca, and Gros, PRB (2011)

Becca and Sorella, PRL (2001)

Prehistory of correlated wave functions for Mott insulators

Gutzwiller wave function

$$|\Phi_g\rangle = \mathrm{e}^{-g\sum_i n_{i,\uparrow} n_{i,\downarrow}} |\Psi_0\rangle$$

Gutzwiller, PRL (1963)

Yokoyama and Shiba, JPSJ (1987)

・ロト ・雪 ト ・ヨ ト ・ ヨ ト

It does not correlate empty and doubly occupied sites Metallic for $g \neq \infty$ (any finite U/t)

Empty and doubly occupied sites play a crucial role for the conduction

They must be correlated otherwise an electric field would induce a current

naa

The low-energy properties reflect the long-distance behavior We must change the density-density correlations of $|\Psi_0\rangle$ at large distance

$$|\Psi
angle = \mathcal{J}|\Psi_0
angle$$

$$\mathcal{J} = \exp\left(-\frac{1}{2}\sum_{i,j} \mathbf{v}_{i,j} n_i n_j\right) = \exp\left(-\frac{1}{2}\sum_q \mathbf{v}_q n_{-q} n_q\right)$$

 $|\Psi_0\rangle$ is an uncorrelated determinant obtained from a non-interacting Hamiltonian:

$$\mathcal{H}_{0} = \sum_{i,j,\sigma} t_{i,j} c_{i,\sigma}^{\dagger} c_{j,\sigma} + \sum_{i,j} \Delta_{i,j} c_{i,\uparrow}^{\dagger} c_{j,\downarrow}^{\dagger} + h.c.$$

$$|\Psi_0
angle = \exp\left\{\sum_{i,j} f_{i,j} c^{\dagger}_{i,\uparrow} c^{\dagger}_{j,\downarrow}
ight\} \; |0
angle$$

For $v_{i,i} \rightarrow \infty$ The RVB physics is recovered Anderson, Science (1987)

Find the optimal set of parameters $v_{i,j}$, $t_{i,j}$ and $\Delta_{i,j}$ which minimizes the energy

Sorella, PRB (2005)

Federico Becca (CNR and SISSA)

Ξ シへへ ICTP 6 / 30

Metal or insulator?

Ansatz for the low-energy excitations

Feynman, Phys. Rev. (1954)

$$|\Psi_q\rangle = n_q |\Psi
angle$$
 $N_q = \langle \Psi | n_{-q} n_q |\Psi
angle / \langle \Psi |\Psi
angle$

f-sum rule

$$\Delta E_q = \frac{\langle \Psi_q | (H - E_0) | \Psi_q \rangle}{\langle \Psi_q | \Psi_q \rangle} = \frac{\langle \Psi | [n_{-q}, [H, n_q]] | \Psi \rangle}{2N_q} \approx \frac{q^2}{N_q}$$

 $N_q \sim |q| \Rightarrow \Delta E_q \rightarrow 0 \Rightarrow \text{metal}$ $N_q \sim q^2 \Rightarrow \Delta E_q$ is finite \Rightarrow insulator

Example: 1D Hubbard model at half filling with U/t = 4 and 10

Gutzwiller WF

Long-range Jastrow WF

Two-dimensional (paramagnetic) Hubbard model

 N_q^0 is the uncorrelated structure factor $ert \Psi_{N-1}
angle = \mathcal{J} \, c_{k,\sigma} \, ert \Psi_0
angle$

- $U/t \lesssim 8.5$: $v_q \sim \frac{1}{|q|}$ with Z_k finite: **FERMI LIQUID**
- $U/t \gtrsim 8.5$: $v_q \sim \frac{1}{q^2}$ with vanishing Z_k : MOTT INSULATOR
- AF parameter in the Slater determinant: AF order for U > 0 (BAND INSULATOR)

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ●

The two-band Hubbard model on the square lattice

$${\cal H}_{
m kin} = -\sum_{\langle i,j
angle,lpha,\sigma} t_lpha c^{\dagger}_{i,lpha,\sigma} c_{j,lpha,\sigma} + {
m h.c.}$$

$$H_{\rm int} = U \sum_{i,\alpha} n_{i,\alpha,\uparrow} n_{i,\alpha,\downarrow} + (U - 2J) \sum_i n_{i,1} n_{i,2}$$

$$\mathcal{H}_{\mathrm{Hund}} = -J \sum_{i,\sigma,\sigma'} c^{\dagger}_{i,1,\sigma} c_{i,1,\sigma'} c^{\dagger}_{i,2,\sigma'} c_{i,2,\sigma} - J \sum_{i} c^{\dagger}_{i,1,\uparrow} c^{\dagger}_{i,1,\downarrow} c_{i,2,\uparrow} c_{i,2,\downarrow} + \mathrm{h.c.}$$

Tocchio, Arrigoni, Sorella, and Becca, J. of Phys.: Cond. Matter (2016)

- Half-filling (2 electrons/site)
- Rotational symmetry of degenerate orbitals
 U' = U 2J
 J' = J

イロト イポト イヨト イヨト

Kanamori, Prog. Theor. Phys. (1963)

• Small enough $R = t_2/t_1 \Rightarrow \text{OSMI}$ one orbital undergoes the MIT while the other remains metallic

$Ca_{2-x}Sr_{x}RuO_{4}$ ruthenate: an orbital selective state?

Maeno et al., Nature (1994)

- Coexistence of spin-1/2 moments and metallicity (M-M phase)
- Possible explanation: presence of both localized and delocalized bands

Anisimov, Nekrasov, Kondakov, Rice, and Sigrist, EPJB (2002)

Several works that used dynamical mean-field theory and slave-particle approaches

Eederico Becca (CNR and SISSA)	Multihand Hubbard models	ICTP	10 / 30
Inaba and Koga, PRB (2006)		▶ (三)	990
Rüegg, Indergand, Pilgram, and Sigrist, EPJB (2005)			
Arita and Held, PRB (2005)			
de Medici, Georges, and Biermann, PRB (2005)			
Ferrero, Becca, Fabrizio, and Capone, PRB (2005)			
Koga, Kawakami, Rice, and Sigrist, PRL (2004)			
Liebsch, PRL (2003)			

The non-magnetic variational wave function

$$|\Psi
angle = \mathcal{J}|\Psi_0
angle$$

$$\mathcal{J} = \exp\left(-\frac{1}{2}\sum_{i,j}\sum_{\alpha\beta}v_{i,j}^{\alpha\beta}\mathbf{n}_{i,\alpha}\mathbf{n}_{j,\beta}\right)$$

 $|\Psi_0\rangle$ is the ground state of a non-interacting Hamiltonian with

Intra-orbital hopping

$$\sum_{k,\alpha,\sigma} \left\{-2\tilde{t}_{\alpha}(\cos k_{x}+\cos k_{y})-\mu_{\alpha}\right\} c_{k,\alpha,\sigma}^{\dagger} c_{k,\alpha,\sigma}$$

Intra-orbital singlet pairing with d-wave symmetry

$$\sum_{k,\alpha} 2\Delta_{\alpha} (\cos k_{x} - \cos k_{y}) \left(c_{k,\alpha,\uparrow}^{\dagger} c_{-k,\alpha,\downarrow}^{\dagger} + c_{-k,\alpha,\downarrow} c_{k,\alpha,\uparrow} \right)$$

• Inter-orbital triplet pairing (finite Hund's coupling)

$$\Delta_{\perp}^t \sum_i \left(c_{i,1,\uparrow}^\dagger c_{i,2,\downarrow}^\dagger - c_{i,2,\uparrow}^\dagger c_{i,1,\downarrow}^\dagger + c_{i,2,\downarrow} c_{i,1,\uparrow} - c_{i,1,\downarrow} c_{i,2,\uparrow}
ight)$$

t
₂, Δ_α, Δ^t_⊥ and μ_α are variational parameters to be optimized (t
₁ = 1)
 no further inter-orbital hopping t_⊥ can be stabilized in the wave function t_⊥ Σ_{i,σ} (c[†]_{i,1,σ}c_{1,2,σ} + c[†]_{i,2,σ}c_{i,1,σ})

Federico Becca (CNR and SISSA)

The phase diagram for decoupled bands

The two orbitals are decoupled and each one undergoes a MIT independently trivial OSMI

Do they still have separated MIT when they are no longer decoupled?

Federico Becca (CNR and SISSA)

ICTP 12 / 30

999

<ロト < 回 > < 注 > < 注 > … 注

The phase diagram for J = 0

$$H = -\sum_{\langle i,j\rangle,\alpha,\sigma} t_{\alpha} c_{i,\alpha,\sigma}^{\dagger} c_{j,\alpha,\sigma} + \text{h.c.} + U \sum_{i,\alpha} n_{i,\alpha,\uparrow} n_{i,\alpha,\downarrow} + U \sum_{i} n_{i,1} n_{i,2}$$

Inaba and Koga, PRB (2006) see also: de Medici, Georges, and Biermann, PRB (2005) and Ferrero, Becca, Fabrizio, and Capone PRB (2005)

イロト イポト イヨト イヨト

The presence of the inter-band U favors a metallic phase

Federico Becca (CNR and SISSA)

Multiband Hubbard models

ICTP 13 / 30

- $N^{\alpha}(q) = \langle n_q^{\alpha} n_{-q}^{\alpha} \rangle \sim q^2$ for $|q| \to 0$: band α is insulating (gapped)
- N^α(q) = ⟨n^α_qn^α_{-q}⟩ ∼ q for |q| → 0: band α is metallic (gapless)

Three phases can be found:

- Metal (e.g., $U/t_1 = 6, R = 0.5$)
- Mott (e.g., $U/t_1 = 8, R = 0.5$)
- OSMI (e.g., $U/t_1 = 7, R = 0.3$)
- Small *R*: smooth metal-OSMI-Mott transitions

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

• Large *R*: first-order metal-Mott transition

The phase diagram at J/U = 0.1

$$\begin{split} H &= -\sum_{\langle i,j\rangle,\alpha,\sigma} t_{\alpha} c_{i,\alpha,\sigma}^{\dagger} c_{j,\alpha,\sigma} + \text{h.c.} + U \sum_{i,\alpha} n_{i,\alpha,\uparrow} n_{i,\alpha,\downarrow} + U \sum_{i} n_{i,1} n_{i,2} \\ &- J \sum_{i,\sigma,\sigma'} c_{i,1,\sigma}^{\dagger} c_{i,1,\sigma} c_{i,2,\sigma'} c_{i,2,\sigma} - J \sum_{i} c_{i,1,\uparrow}^{\dagger} c_{i,1,\downarrow}^{\dagger} c_{i,2,\uparrow} c_{i,2,\downarrow} + \text{h.c.} \end{split}$$

Variational Monte Carlo

Inaba and Koga, PRB (2006)

(日) (四) (注) (注)

The Hund's coupling J favors the Mott phase at half filling

de Medici PRB (2011)

Federico Becca (CNR and SISSA)

Multiband Hubbard models

ICTP 15 / 30

3

DQC

- N^α(q) = ⟨n^α_qn^α_{-q}⟩ ∼ q² for |q| → 0: band α is insulating (gapped)
- N^α(q) = ⟨n^α_qn^α_{-q}⟩ ∼ q for |q| → 0: band α is metallic (gapless)

Three phases can be found:

- Metal (e.g., $U/t_1 = 4, R = 0.5$)
- Mott (e.g., $U/t_1 = 7, R = 0.5$)
- OSMI (e.g., $U/t_1 = 4, R = 0.3$)

< □ > < □ > < □ >

For J = 0, intra-orbital singlet pairing with *d*-wave symmetry (similarly to the one-band Hubbard model: RVB picture)
 Anderson, Science (1987)
 ∑_{k,α} 2Δ_α(cos k_x - cos k_y) (c[†]_{k,α,1}c[†]_{-k,α,↓} + c_{-k,α,↓}c_{k,α,↑})

 For J > 0, also inter-orbital triplet pairing
 (to favor spin alignment from the Hund's coupling)

$$\Delta_{\perp}^{t}\sum_{i}\left(c_{i,1,\uparrow}^{\dagger}c_{i,2,\downarrow}^{\dagger}-c_{i,2,\uparrow}^{\dagger}c_{i,1,\downarrow}^{\dagger}+c_{i,2,\downarrow}c_{i,1,\uparrow}-c_{i,1,\downarrow}c_{i,2,\uparrow}\right)$$

Federico Becca (CNR and SISSA)

イロト イポト イヨト イヨト

The organic charge-transfer salts κ -(ET)₂X

- Layers of organic ET molecules (bis(ethylenedithio)tetrathiafulvalene)
- Insulating anion sheets X=Cu[N(CN)₂]Cl
- κ packing of ET molecules with strong dimerization
- 3/4 filling within the ET layers (3 electrons per dimer)

M. Lang et al., IEEE Trans. Magn. (2014)

< ロト < 同ト < ヨト < ヨト

• Ferroelectric transition (peak in the dielectric constant)

Lunkenheimer et al., Nature Mat. (2012)

- At the ferroelectric transition the hole per dimer localizes on one molecule
- No spin-driven mechanism for ferroelectricity (data do not depend on an external magnetic field)
- The critical temperature is similar to the one for magnetic order Shimizu et al., PRL (2003)

イロト イポト イヨト イヨト

Kino and Fukuyama, JPSJ (1996); Seo, JPSJ (2000)

Hotta, PRB (2010)

Watanabe, Seo, and Yunoki, JPSJ (2017)

Kaneko, Tocchio, Valenti, and Becca, NJP (2017)

イロト イポト イヨト イヨト

Sar

An ad hoc two-band Hubbard model on the square lattice

- 2 orbitals per site
- 3/4 filling (3 electrons/site)
- No Hund coupling

•
$$t_{b1} = 1, t_{b2} = 0.359,$$

 $t_p = 0.539, t_q = 0.221$
For κ -(ET)₂Cu[N(CN)₂]Cl

 $\mathcal{H} = \mathcal{H}_t + \mathcal{H}_V + \mathcal{H}_U$

$$\begin{aligned} \mathcal{H}_{t} &= t_{b1} \sum_{i,\sigma} c_{i,\sigma}^{\dagger} f_{i,\sigma} + t_{b2} \sum_{i,\sigma} c_{i,\sigma}^{\dagger} f_{i+x+y,\sigma} + t_{q} \sum_{i,\sigma} (c_{i,\sigma}^{\dagger} f_{i+x,\sigma} + c_{i,\sigma}^{\dagger} f_{i+y,\sigma}) \\ &+ t_{p} \sum_{i \in \mathcal{A}, \sigma} (c_{i,\sigma}^{\dagger} c_{i+x,\sigma} + c_{i,\sigma}^{\dagger} c_{i-y,\sigma} + f_{i,\sigma}^{\dagger} f_{i-x,\sigma} + f_{i,\sigma}^{\dagger} f_{i+y,\sigma}) + \text{h.c.} \\ \mathcal{H}_{V} &= V_{b1} \sum_{i} n_{i}^{c} n_{i}^{f} + V_{b2} \sum_{i} n_{i}^{c} n_{i+x+y}^{f} + V_{q} \sum_{i} (n_{i}^{c} n_{i+x}^{f} + n_{i}^{c} n_{i+y}^{f}) + V_{p} \sum_{i \in \mathcal{A}} (n_{i}^{c} n_{i+x}^{c} + n_{i}^{c} n_{i-x}^{c} + n_{i}^{f} n_{i+y}^{f}) \\ \mathcal{H}_{U} &= U \sum_{i} (n_{i,\uparrow}^{c} n_{i,\downarrow}^{c} + n_{i,\uparrow}^{f} n_{i,\downarrow}^{f}) \end{aligned}$$

naa

< ロト < 同ト < ヨト < ヨト

The atomic limit $t_{b1} = t_{b2} = t_p = t_q = 0$

Look at simple and relevant cases that show regular patterns of charge order

$$egin{array}{rcl} E_{
m polar} &=& E+V_q \ E_{
m polar'} &=& E+V_p \ E_{
m nonpolar} &=& E+rac{1}{2}(V_{b1}+V_{b2}) \end{array}$$

where $E = U + 2V_{b1} + 4V_p + 4V_q + 2V_{b2}$

Federico Becca (CNR and SISSA)

590

<ロト <部ト < 注ト < 注ト = 注

The variational wave functions

$$|\Psi
angle = \mathcal{J}|\Psi_0
angle$$

$$\mathcal{J} = \exp\left(-\frac{1}{2}\sum_{i,j}\sum_{\alpha\beta}v_{i,j}^{\alpha\beta}\mathbf{n}_{i,\alpha}\mathbf{n}_{j,\beta}\right)$$

 $|\Psi_0
angle$ is the ground state of a non-interacting Hamiltonian with

- The kinetic part described by t_{b1} , t_{b2} , t_p , and t_q
- A staggered charge-order pattern

$$\sum_{i} e^{i\mathbf{Q}\cdot\mathbf{R}_{i}} (\mu^{c} n_{i}^{c} + \mu^{f} n_{i}^{f})$$

• An antiferromagnetic pattern

$$\sum_{i} [m_{i}^{c}(c_{i,\uparrow}^{\dagger}c_{i,\downarrow}+c_{i,\downarrow}^{\dagger}c_{i,\uparrow})+m_{i}^{f}(f_{i,\uparrow}^{\dagger}f_{i,\downarrow}+f_{i,\downarrow}^{\dagger}f_{i,\uparrow})]$$

$$\begin{aligned} \mathbf{Q} &= (\pi, \pi) \text{ with } \mu^c = \mu^f \implies \text{the NPCOI} \\ \mathbf{Q} &= (\pi, \pi) \text{ with } \mu^c = -\mu^f \implies \text{the PCOI} \\ \mathbf{Q} &= (\mathbf{0}, \mathbf{0}) \text{ with } \mu^c = -\mu^f \implies \text{the PCOI'} \end{aligned}$$

$$m_i^{\alpha} = \begin{cases} m_1^{\alpha} & \text{if } e^{i\mathbf{Q}\cdot\mathbf{R}_i}\mu^{\alpha} < 0\\ m_2^{\alpha} & \text{if } e^{i\mathbf{Q}\cdot\mathbf{R}_i}\mu^{\alpha} > 0 \end{cases}$$

Federico Becca (CNR and SISSA)

ICTP 23 / 30

SQA

◆□ > ◆□ > ◆豆 > ◆豆 > .

Strong-coupling phases

We fix $U/t_{b1} = 10$, $V_{b1}/t_{b1} = 4$, and $V_{b2}/t_{b1} = 2$, and vary V_p and V_q

- The dimer-Mott insulator (DMI) intrudes between polar phases
- Polar states acquire ferromagnetic correlations between molecules
- Non-polar state shows antiferromagnetic correlations between molecules

< ロト < 同ト < ヨト < ヨト

Charge correlations

ICTP 25 / 30

- (E

is not driven by magnetism

Variational wave function without AF order (imposing $m_i^{\alpha} = 0$)

0.2 0.4 0.6 0.8

 q_x/π

0.2 0.4 0.6 0.8

 q_x/π

SQA

Charge correlations

ICTP 27 / 30

Э

局▶ ▲ 重

Phase transitions: variational parameters

ICTP 28 / 30

Phase transitions: correlations

Federico Becca (CNR and SISSA)

ICTP 29 / 30

Conclusions

Jastrow-Slater wave functions can be easily defined in multiband models

- They can be easily treated within Monte Carlo sampling
- They can be flexibly parametrized in order to reproduce different phases: Metals and superconductors charge/spin ordered states
 Pure Mott insulators
 - ... more exotic states (with orbital order, currents)

Initial benchmarks are promising

- The OSMT is observed within a two-band model
- The Mott transitions in isotropic models are obtained (and triplet superconductivity for J > 0)
- Polar and nonpolar insulators are found in a two-band model

SQC

(日)