Probing superfluid and 2D Fermi gases

K. Hueck, L. Sobirey, N. Luick, J. Siegl, K. Morgener, W. Weimer, T. Lompe, H. Moritz

Homogeneous 2D Fermi gases

Equation of state

Momentum Distribution

Landau's critical velocity

BEC

 $\left(\frac{\epsilon(k)}{\hbar k}\right)$ $v_c = \min_k$

3

BEC-BCS crossover

The critical velocity

strong

correlations

knowing ground state not enough

performative aspect: v_c and T_c matter

3D BEC

2D Bose/BKT

3D Fermi

- 3D BEC:C. Raman et al., Phys. Rev. Lett. 83, 2502 (1999)2D BKT:R. Desbuquois et al., Nature Phys. 8, 645 (2012)
- 3D Fermi: D. E. Miller et al., Phys. Rev. Lett. 99, 070402 (2007)
- BEC rings A. Ramanathan et al., Phys. Rev. Lett. 106, 130401 (2011)

Critical velocity

Critical velocity and speed of sound

W. Weimer et al., PRL 114, 095301 (2015); V. Singh et al. PRA 93, 023634 (2016)

Simulations by Vijay Singh & Ludwig Mathey

Ground state from Monte Carlo, dynamics with truncated Wigner method,

Outline

Homogeneous 2D Fermi gases

Equation of state

Momentum Distribution

Reducing dimensions

Zwierlein, Thomas Jochim, Bakr, ...

focusing after release

after TOF

Creating a steep ring without disorder inside

x [µm]

75 img's averaged

0

x [µm]

50

x [µm]

 $V(x)=Ax^{\xi}=Ax^{87\pm5}$

 $\sigma_n=8.6\,\%$

1

 n_{2D}/\bar{n}_{2D}

Tunable potential landscapes

Digital micromirror array (DMD) imaged onto atoms

- 25 pixels per resolved spot → 25 gray scales
- A hardware extension was developed to generate truly static patterns^[K. Hueck et al., RSI 88, 016103 (2017)]
- Development of Matlab class to control the DMD^[GitHub]
- For transport measurements through 2D
 - Disordered media
 - Josephson barrier/oscillations
 - Driven systems
- Embedded systems, Interfaces

Outline

3D Critical velocity

Homogeneous 2D Fermi gases

Equation of state

Momentum Distribution

Equation of state $n(\mu, T)$ of ideal Fermi gas

2D EOS: Bose gases Chin & Dalibard groups, Fermi gases: Turlapov, Vale, Jochim groups

K. Hueck et al. arXiv:1704.06315 (2017)

Scale invariant equation of state $n(\mu, T)$

2D EOS: Bose gases Chin & Dalibard groups, Fermi gases: Turlapov, Vale, Jochim groups

K. Hueck et al. arXiv:1704.06315 (2017)

Outline

Homogeneous 2D Fermi gases

Equation of state

Momentum Distribution – a nonlocal probe

To momentum space and back ...

free evolution in HO = rotation in phase space

Matter wave focussing: Bose: Walraven, Cornell, Bouchoule, van Druten groups Fermions: Jochim group

K. Hueck et al. arXiv:1704.06315 (2017)

Thermometry: $n(k) = f(k, T, \mu)$

Pauli blocking in momentum space

box diameter D \Rightarrow single k-mode occupies area $A_k = 16\pi/D^2$ Measure n(k): If one atom per $A_k \Rightarrow$ unit occupation f(k) = 1

f(k) saturates for increasing $n \Rightarrow$ evidence for Pauli blocking

Interacting 2D gases

K. Hueck et al. arXiv:1704.06315 (2017)

Non-interacting expansion – remove one spin

K. H. et al. arXiv:1704.06315 (2017)

3D Critical velocity

Homogeneous 2D Fermi gases

Equation of state

Momentum Distribution – a nonlocal probe

Outlook

P. A. Murthy et al., PRL 115, 010401 (2015), Jochim group

Collaboration:Vijay Singh, Ludwig MatheyPrevious members:Wolf Weimer, Kai Morgener

Mesoscopic Fermi Gases

esotermi

