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Quantum Phase Transition

• T=0 phase transition driven by an external parameter p
• Quantum critical point (QCP)

• Divergent correlation time — quantum coherence
• Quantum critical fan

• QCPs in metals
• Landau damping; non-Fermi liquid; emergent orders
• Signature in unconventional superconductors

� < kBT � > kBT� > kBT

Hertz, PRB 1976; Millis, PRB 1993
Sachdev, Quantum Phase Transitions

Nandi et al, PRL (2010)

Armitage et al, RMP (2010)



• QCPs not easily obtained from microscopic models

• Basic ingredients for a low-energy model

• Quantum critical order parameter fluctuations

• Fermi surface

• Minimal coupling — space-time local

• What do we look for? 

• Phase diagram

• Collective excitations

• Scaling behavior

• Comparison to experiments and other microscopic calculations

Even effective models are hard to solve! Need numerics!



Determinant Quantum Monte Carlo

Blanckenbecler, Scalapino & Sugar, PRD (1981)

• Partition function
Zs.f =

Z
D
h
 ̄, ; ~�

i
exp(�SF � SB � S�)

“fermion determinant”

• Electronic action is Gaussian:

Zs.f. =

Z
D[~�]⇢{~�(r, ⌧)}

⇢{~�(r, ⌧)} ⌘ det~� exp(�SB)

• Fermion sign problem: 
• fermion determinant is calculated 

from a time-ordered product
• in general complex; especially 

severe at low-T
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Figure 9: The d-wave pairfield susceptibility
Pd(T ) (red circles) for a 4 × 4 lattice with
U = 4t and ⟨n⟩ = 0.875 versus temperature
T measured in units of the hopping t. The
(blue squares) show the erroneous result that
is found if the fermion sign is ignored. (Loh
et al. [47])

Figure 10: The d-wave pair-field suscepti-
bility Pd(T ) is shown as the open (red) cir-
cles. The open (green) squares show results
for the “noninteracting” pair-field suscepti-
bility P d(T ) calculated using dressed single-
particle Green’s functions, Eq. 31, while the
dashed (blue) curve is the noninteracting
susceptibility Pd◦ calculated with the bare
Green’s functions. (White et al. [16])

holes. The fact that P d(T ) lays below Pd(T ) implies that there is an attractive dx2−y2-pairing

interaction between the holes. P d(T ) is shown as the (green) curve labeled with open squares

in Fig. 10.

In order to determine what happens at lower temperatures, Maier et al. [27] have deter-

mined Pd(T ) using a dynamic cluster approximation. In a systematic study, they provided

evidence that the doped Hubbard model contained a dx2−y2 pairing phase. In this work,

the authors adapted a cluster selection criteria originally introduced by Betts et al. [50] in

a numerical study of the 2D Heisenberg model. For the Heisenberg model, Betts et al. [50]

showed that an important selection criteria for a cluster was the completeness of the “al-

Scalapino, arXiv:cond-mat/0610710
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DQMC: 
• Construct a thermal ensemble by sampling;
• Unlimited by various approx. schemes
• Small system sizes; Finite size scaling

W1!2 W2!3 WN�1!N

• QCP tuned by bare boson mass

SB =
1

2

Z

r,⌧

1

v2s
(@⌧ ~�)

2 + (r~�)2 + r0~�
2 + u~�4



• Fermion sign problem is generic

Congjun Wu and Shou-Cheng Zhang, PRB (2005)

• e.g., negative-U Hubbard model; positive-U Hubbard model at half-filling

• Sign-free QMC due to Kramer’s symmetry:

Ũ
2 = �1; and [H, Ũ ] = 0

• Engineered models:
• Remove sign-problematic sector of the action
• Need to show they preserve the low-energy physics qualitatively

AFM QCP:
Berg, Metlitski & Sachdev, Science (2012)
Schattner, Gerlach, Trebst and Berg, PRL (2016)
Gerlach, Schattner, Berg and Trebst, PRB (2017)
XW, Schattner, Berg and Fernandes, PRB (2017)
XW, Wang, Schattner, Berg and Fernandes, arXiv

Ising-nematic QCP:
Schattner, Lederer, Kivelson and Berg, PRX (2016)
Lederer, Schattner, Kivelson and Berg, PRL (2017)

Many others:
Li, Jiang and Yao, PRL (2016)
Dumitrescu, Serbyn, Scalettar, Vishwanath, PRB (2017)
Xu, Sun, Schattner, Berg and Meng, PRX (2017) …



AFM QCP and Spin-fermion model



Spin-fermion model
Abanov, Chubukov & Schmalian, Adv. in Phys. (2003)
Metlitski & Sachdev, PRB (2010) …

• Electrons near the Fermi surface coupled to quantum critical 
antiferromagnetic fluctuations

-π � π
-π

�

π
-π � π

-π

�

π

• Fermi surface

SF =

Z

⌧

X

k↵

 ̄k↵(@⌧ + "k�µ) k↵ SB =

Z

q,i⌦
��1
0 (q, i⌦)~�q · ~��q

• Spin fluctuation peaked at Q

��1
0 (q, i⌦) = r0 + (q�Q)2 +

⌦2

v2s

Q = (⇡,⇡)
kx

ky

Néel order

r0 < 0 :r0 > 0 :

Spin-fermion coupling:

S� = �

Z

x,⌧

~� ·  ̄↵~�↵� �



Abanov, Chubukov & Schmalian, Adv. in Phys. (2003)
Metlitski & Sachdev, PRB (2010) …

• Hot spots: Points on the Fermi surface that couple strongly to spin fluctuations

Q = (⇡,⇡)
kx

ky

Q = π,π( )

• Low-energy physics governed by linearized hot spot approximation:

"i,k ⇡ v(i)
F · (k� k(i)

hs ); i = 1, 2

~v(1)F

~v(2)F
✓hs

1

2



• Emergent SU(2) symmetry at each pair of hot spots

Metlitski & Sachdev, PRB (2010)
Wang, Agterberg & Chubukov, PRB (2015)

✓
 i,k"
 i,k#

◆
!
 
 †
i,�k#

� †
i,�k"

!
; i = 1, 2

• Enlarged order parameter O(4): complex SC and CDW
• Relevant to hole-doped cuprates?

�1,CDW = h 1," 
†
10," +  1,# 

†
10,#i

�1,SC = h 1," 10,# �  1,# 10,"i

1

1’

1

�1,SC
�1,CDW



-π � π
-π

�

π
-π � π

-π

�

π

• Low frequency spin fluctuations are strongly renormalized 
due to the hot spots — Landau damping

1

�
/ �2

v2f sin(✓hs)
�(q, i⌦n) =

1

r0 + (q�Q)2 + ⌦2
n/v

2
s + |⌦n|/�

Abanov, Chubukov & Schmalian, Adv. in Phys. (2003)
Metlitski & Sachdev, PRB (2010)
Mross et al, PRB (2010) …

Polarization bubble:

e, k + q

e, k

�q ��q



• How to study SC and non-FL due to quantum critical spin fluctuations? 
—Hot-spot Eliashberg approximation

Regular part of the self-energy

⌃(!) ⇠
p
!

damped spin fluct.

Tc /
✓
�2

vF

◆2

� ⇠ �2 sin(✓hs)

Anomalous part of the self-energy

Abanov, Chubukov & Schmalian, Adv. in Phys. (2003)
Metlitski & Sachdev, PRB (2010) …

Q = π,π( )
~v(1)F

~v(2)F

✓hs

• How to understand the angle dependence of Tc?
•               Spin fluct. strongly damped; insufficient to mediate pairing✓hs ! 0 :



How to achieve sign-free QMC?

• How to avoid the fermion sign problem?
• Two electron bands
• Spin fluct. couple inter-band

• Kramer’s symmetry:

Ũ = i�2 ⌦ ⌧3C

Berg, Metlitski & Sachdev, Science (2012)

• Hot spots dominate low-energy physics

Q Q

1

2

1

2



Schattner et al, PRL (2016); Gerlach et al, PRB (2017)

Numerical characterization of low-energy properties
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8  L  14
0.00  |�n|  1.08 *
0.00  |q�Q|  1.05

28,638 data points, �2
dof =6.5

(c) � = 2

FIG. 5. Comparison between the inverse SDW susceptiblity ��1 and
the functional form ��1

0 = aq(q � Q)
2
+ a!|!n| + ar(r � rc0),

which has been fitted for small frequencies !n and momenta q�Q
at low temperatures T and tuning parameters r > rc0 in the magnet-
ically disordered phase, for (a) � = 1, (b) � = 1.5, and (c) � = 2.
Data inside the superconducting phase has been excluded from the
fit. For temperatures T  2Tmax

c we restrict the fit to finite fre-
quencies |!n| > 0. The correspondence of ��1 with the fitted form
is shown in the form of 2D histograms over all data points, which
are normalized over the total area. In each fit we have minimized
�2
dof =

1
Ndof

Ph
��1���1

0
"

i2
, where Ndof is the number of degrees

of freedom of the fit and " is the statistical error of the data.

larger spread of the data points. This decreasing fit quality
may be a consequence of the smaller temperature window
available above the superconducting Tc, as well as the associ-
ated regime of superconducting fluctuations at T & Tc [27],
which increases with Yukawa coupling (see also Fig. 4).

With the data collapse of Fig. 5 asserting the general valid-
ity of the functional form (4), we now take a closer look at
its individual dependence on tuning parameter, frequency and
momentum. First, the dependence on the tuning parameter r is

FIG. 6. Bosonic SDW susceptibility ��1
(q = Q, i!n = 0) as a

function of the tuning parameter r for � = 1.5 at T = 0.1. The black
line is a linear fit for r > 0.7 and L = 14. Continuous colored lines
through data points have been obtained by a reweighting analysis.

illustrated for the inverse susceptibility �
�1(q = Q, i!n = 0)

in Fig. 6 (for � = 1.5 and T = 0.1). For tuning parame-
ters r & rc0 = 0.6 we find that the data for different system
sizes follows a linear dependence. The moderate deviation
from a perfect kink-like behavior at rc0 is likely a combina-
tion of finite-size and finite-temperature effects (see also the
finite-size trend shown in the inset of Fig. 6). A very similar
picture emerges for the two other coupling parameters � = 1
and � = 2, for which we show analogous plots in Fig. 19 of
Appendix B.

Turning to the frequency dependence of �
�1(q, i!n) next,

we find that for a range of values r � rc0 the frequency de-
pendence is linear for small Matsubara frequencies !n with an
apparent cusp at !n = 0, signaling overdamped dynamics of
the order parameter field. This holds both for q = Q and for
small finite momentum differences q � Q. See Fig. 7 for an
illustration at � = 1.5 and Appendix B with Fig. 20 for � = 1
and � = 2. At finite Matsubara frequencies !n, finite-size
effects are negligibly small, as evident in the data collapse of
�
�1 for different system sizes in the left panel in Fig. 7.

To establish the presence of a |!n| term in �
�1, we fit it at

low frequencies to the form b0 + b1|!n| + b2!
2
n. The fits are

shown in Fig. 7. The |!n| contribution is clearly dominant in
this frequency range. Inside the superconducting phase, the
|!n| term is suppressed (see Fig. 24 in Appendix B). This is
presumably due to gapping out of the fermions.

Third, for the same range of r the momentum dependence
of �

�1(q, i!n) is consistent with a quadratic form in q � Q,
which holds both for !n = 0 and small finite frequencies !n.
See Fig. 8 for � = 1.5 and appendix B with Fig. 21 for � = 1
and � = 2. Note that due to the discretization of the Brillouin
zone finite-size effects are more pronounced here than for the
frequency dependence.

Damping dynamics of spin fluct.
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FIG. 11. (a) Noninteracting Fermi surfaces. A pair of hot spots is connected by the magnetic ordering wavevector Q. The dashed curve
corresponds to the Fermi surface of the  x band, shifted by Q, with a hot spot now at the intersection with the  y band (b-d) Color-coded
Green’s function Gk(⌧ = �/2) evaluated for the  y fermions on a quadrant of the Brillouin zone, dotted in (a), for three values of the tuning
parameter r. The dashed curve in panel (c) corresponds to the shifted noninteracting  x Fermi surface. The parameters used here are L = 16,
T = 0.05, � = 1.5, and c = 3. Results of simulations with different boundary conditions are combined for enhanced momentum resolution.

A Fermi liquid is usually characterized by the quasiparticle
weight ZkF and the Fermi velocity vkF . We note that these
quantities are only strictly defined at zero temperature. Given
that the zero-temperature ground state of our model is proba-
bly always superconducting, our strategy is to consider finite-
temperature proxies for ZkF and vkF , and study their behav-
ior over an intermediate temperature range EF > T > Tc.
Such proxies, Z

⌧
kF

(T ) and v⌧
kF

(T ), can be extracted by con-
sidering the imaginary time dependence of Gk(⌧) near ⌧ = �

2
and fitting it to the Fermi liquid form [40]

Gk(⌧ ⇠ �/2) = Z
⌧
k(T )

e
�✏k(⌧� �

2 )

2 cosh
⇣

�✏k
2

⌘ , (8)

where ✏k = v⌧
kF

(T ) · (k � kF ).
In a complementary approach we consider the Matsubara

frequency dependence of the Green’s function Gk(!n) =R �
0 d⌧ e

i!n⌧Gk(⌧). In a Fermi liquid at low temperatures we
have [44]

Gk(!n) ⇡ Zk [i!n � vkF · (k � kF )]�1 (9)

up to higher order terms in temperature, frequency or the dis-
tance from the Fermi surface. It is then natural to define the
finite-temperature quantities

Z
!
kF

(T ) =
!1

Im G
�1
kF

(!1)
(10)

and

v!
kF

(T ) = !1
@

@k

Re Gk(!1)

Im Gk(!1)

����
k=kF

, (11)

where !1 = ⇡T is the first Matsubara frequency at temper-
ature T . In the zero temperature limit, Z

!
kF

(T ! 0) =
Z

⌧
kF

(T ! 0) = ZkF , and similarly for vkF . We therefore
use the finite-temperature observables (10) and (11) as alter-
native proxies for the quasiparticle spectral weight and Fermi
velocity, respectively.
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FIG. 12. (a-b) The quasiparticle weight Z⌧
k(T = 0.05) in a quadrant

of the Brillouin zone. The dashed line in panel (a) corresponds to the
noninteracting Fermi surface of the  x fermions, shifted by Q. (c-d)
The quasiparticle weights Z⌧

k(T = 0.05) and Z!
k (T = 0.05) along

the Fermi surface. The location of the hot spot is indicated by the red
marker. Here we show data obtained for L = 16.

Figure 12 shows the momentum dependence of Z
⌧
k for tem-

perature T = 1/20. With r tuned close to the location of the
QCP at rc, Z

⌧
k is suppressed in the vicinity of the hot spots,

as shown for one quadrant of the Brillouin zone in Fig. 12(a)
and along the Fermi surface in Fig. 12(c). This stands in sharp
contrast to the featureless behavior of Z

⌧
k in the magnetically

disordered phase, as shown in Figs. 12(b,d). We find qualita-
tive agreement between the two proxies Z

⌧
k and Z

!
k through-

out, as illustrated in panels (c) and (d) of Fig. 12. Here, we
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FIG. 16. (a) Single-particle excitation energy Ek of the  y

fermions, as extracted from the imaginary-time evolution of the
Green’s function Gk(⌧) across the Brillouin zone, cf. Fig. 26 of the
appendix. (b) Single-particle gap �kx . For both panels data is for
parameters � = 3, c = 2, r = 10.2 and T = 0.025 ⇡ 0.3 Tc [27]
and a system size of L = 12. Several twisted boundary conditions
were combined for a four-fold enhancement of the resolution in k-
space, see appendix A.
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FIG. 17. Optimal pair amplitude  opt
k↵ with the band ↵ = y shown

in panel (a) and the band ↵ = x shown in (b). Data is calculated for
parameters � = 3, c = 2, r = 10.2 and T = 0.1 ⇡ 1.2 Tc and
system size L = 14.

in Fig. 16, which shows that, across the Brillouin zone, Ek has
a broad minimum in the vicinity of the noninteracting Fermi
surface. From these momentum-resolved energy bands we ex-
tract the superconducting gap�kx as the minimum of Ek with
respect to ky . As seen in Fig. 16 (b), the superconducting gap
�kx varies smoothly across momentum space, without any
significant features at the hot spots. In this section we choose
parameters � = 3 and c = 2, as in Ref. [27]. The maximal Tc

for this value of � is high enough to allow us to explore prop-
erties of the superconducting state significantly below Tc.

At higher temperatures, close to Tc, additional information
can be obtained by considering the momentum-resolved su-
perconducting susceptibility

Pk↵;k0↵0 =

Z �

0
d⌧ h k↵(⌧) †

k0↵0(0)i, (12)

where  k↵ = 1
2 ( k↵" �k↵# �  k↵# �k↵") is the singlet

superconducting pair amplitude on the band ↵ = x, y. Here
we focus on the intraband, spin-singlet channel since it is the
leading instability [17, 27]. Figure 17 shows the optimal pair
amplitude  opt

k↵, corresponding to the maximal eigenvalue of
the matrix Pk↵;k0↵0 at a temperature slightly above Tc. The
pair amplitude of the band ↵ = y, shown in Fig. 17 (a), is of
the opposite sign to the amplitude on the band ↵ = x, shown

in Fig. 17 (b). In fact, the two amplitudes are related precisely
by a ⇡/2 rotation, highlighting the d-wave symmetry of the
superconducting order parameter. The optimal pair amplitude
is found to be maximal around the (noninteracting) Fermi sur-
face. The variation of  opt

k↵ along the Fermi surface is weak,
again showing no strong features at the hot spots.

VI. DISCUSSION

In this work, we have explored the properties of a metal
on the verge of an SDW transition. We focused on the criti-
cal regime upon approaching the transition, characterized by
a rapid growth of the SDW correlations, but still above the
superconducting transition temperature. Our main conclusion
is that, in this regime, the SDW correlations are remarkably
well described by a form similar to that predicted by Hertz-
Millis theory, Eq. (1) (although the temperature dependence
of the SDW susceptibility deviates from the expected form).
This holds both for the correlations of the bosonic SDW order
parameter field, and for an SDW order parameter defined in
terms of a fermion bilinear. In the same regime, we find evi-
dence for strong scattering of quasiparticles near the hotspots,
leading to a breakdown of Fermi liquid theory at these points
on the Fermi surface. The scattering rate at the hotspots (ex-
tracted from the fermion self energy) is only weakly temper-
ature and frequency dependent, down to T ⇡ 2Tc, where we
suspect that superconducting fluctuations begin to play a role;
it is out of this unusual metallic state that the superconducting
phase emerges.

In addition, we have studied the structure of the super-
conducting gap near the SDW transition. Unlike the single-
fermion Green’s function in the normal state, it does not have
a sharp feature at the hot spots; rather, it is found to vary
smoothly across the Fermi surface. Experimentally, a broad
maximum of the superconducting gap near the hot spots was
observed in a certain electron doped cuprate [45]. Eliashberg
theory predicts a peak of the gap function at the hot spots at
weak coupling [46] and it remains to be seen whether such
behavior appears in our model at weaker coupling.

It is interesting to discuss our results in the context of the
existing theories of metallic SDW transitions. First, the fact
that Hertz-Millis theory successfully describes many features
of our data is non-trivial, in view of the fact that it has no for-
mal justification, even in the large N limit [12, 14]. However,
as we saw, an extension of the Hertz-Millis analysis to finite
temperature predicts that at criticality, �(T ) ⇠ 1/T , in ap-
parent disagreement with our data. This may be due to the
limited temperature window we can access without hitting the
superconducting Tc, or to effects beyond the one-loop approx-
imation.

An important conclusion of our study is that the SDW crit-
ical point is always masked by a superconducting phase [47].
As a result, it seems likely that the critical metallic regime
is never parametrically broad, and one cannot sharply de-
fine scaling exponents within the metallic phase [48]. As
mentioned above, the SDW correlations follow a Hertz-Millis
form – and hence it is tempting to associate with them critical

Electrons lose coherence near hot spots

SC gap function k-independent

Q



• Are the SC properties governed by the hot spots?
• Is Eliashberg approximation valid?

• Phys. Rev. B 95, 174520 (2017)

Superconductivity near QCP



Band structure
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• For each band parameter       : 

Spin-fermion interaction:
System sizes:

Temperatures:

�2 = 8t

L = 8, 10, 12, 14

T � 0.04t

�/t
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T/t
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• QMC procedure:
• Locate AF QCP by varying 

bare mass r0 of spin fluct.
• Obtain Tc via BKT criterion 

⇢s(Tc) =
2Tc

⇡
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• For each band parameter       : 

Spin-fermion interaction:
System sizes:

Temperatures:

�2 = 8t

L = 8, 10, 12, 14

T � 0.04t

�/t • QMC procedure:
• Locate AF QCP by varying 

bare mass r0 of spin fluct.
• Obtain Tc via BKT criterion 

⇢s(Tc) =
2Tc

⇡

thermodynamic 
limit (estimate)

lower bound
value



• Tc is not correlated with density of states at the Fermi energy

-π 0 π
-π

0

π
-π 0 π

-π

0

π

δ/t=0.2

-π 0 π
-π

0

π
-π 0 π

-π

0

π

δ/t=0.3

-π 0 π
-π

0

π
-π 0 π

-π

0

π

δ/t=0.5

-π 0 π
-π

0

π
-π 0 π

-π

0

π

δ/t=0.8

θhs

-π 0 π
-π

0

π
-π 0 π

-π

0

π

δ/t=0.2

-π 0 π
-π

0

π
-π 0 π

-π

0

π

δ/t=0.3

-π 0 π
-π

0

π
-π 0 π

-π

0

π

δ/t=0.5

-π 0 π
-π

0

π
-π 0 π

-π

0

π

δ/t=0.8

θhs



TEliash
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• Tc is strongly correlated with the relative angle between Fermi 
velocities at a pair of hot spots



• Static pair susceptibility:

�pair =
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• Scaled susceptibilities collapse onto a single universal curve 
• The curve is fitted well by hot spot Eliashberg approximation

• Static pair susceptibility:

�pair =

Z

r,⌧
h�̂(r, ⌧)�̂†(0, 0)i �̂(r, ⌧) ⇠  "(r, ⌧) #(r, ⌧)



• Tc dependence on the spin-fermion interaction strength: unbounded?
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• Damped spin fluct. propagator: 

• The whole Fermi surface becomes “hot”
• Tc saturates at crossover from hot-spot 

dominated to Fermi-surface dominated 
pairing.

|q�Q| ⇠ p0

�ph.s.
�ph.s.
p0

⇠ 1

(�ph.s.)
2

��1(q, i⌦n) = r0 + (q�Q)2 +
|⌦n|
�



Brief Summary

• Hot spots govern SC properties near AF QCP up to large interactions 
comparable with fermionic bandwidth

• Tc saturates to a few percent of the bandwidth at the crossover from hot-spot 

dominated to Fermi-surface dominated pairing

• Despite uncontrolled, Eliashberg approximation shows quantitative agreement 
with numerical results

• Why are vertex corrections absent?

• Phys. Rev. B 95, 174520 (2017)



Emergent low-energy symmetry

• arXiv:1710.02158 

• Emergent low-energy symmetry from the hot spots

• Near-degeneracy between CDW and SC

• Robust symmetry against perturbations?

• Can it be responsible for CDW in cuprates?

• Exotic charge order not relying on Fermi surface 
nesting

1

1’

1

�1,SC
�1,CDW



• Bipartite lattice at half-filling: exact SU(2) symmetry
• SC and (π,π) CDW transform like a three-component order parameter
• Similar symmetries have been studied, e.g., negative-U Hubbard 

model
Moreo & Scalapino, PRL (1991)
Chakravarty, Laughlin, Morr & Nayak, PRB (2001)

• Away from half-filling, exact lattice symmetry is broken, however 
emergent hot spot symmetry is still present



• Half-filling
• Results unchanged by band dispersion
• d-wave SC and CO enhanced by AFM 
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• Away from Half-filling
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Fradkin, Kivelson, Tranquada, RMP (2015)

• Charge order always subleading to SC
• Emergent symmetry not found

• Symmetry breaking terms at lattice level are relevant 



Summary

• Sign-problem-free DQMC is a useful tool to study metallic QCP physics

• Hot spots govern SC properties near AF QCP up to large interactions 
comparable with fermionic bandwidth

• Tc saturates to a few percent of the bandwidth at the crossover from hot-spot 
dominated to Fermi-surface dominated pairing

• Despite uncontrolled, hot spot Eliashberg approximation works very well up to 
moderately strong coupling

• The emergent hot spot symmetry does not play a role in enhancing charge 
correlations

• Need to look for charge order in more sophisticated models

• Phys. Rev. B 95, 174520 (2017)
• arXiv:1710.02158 


