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Todays talk

e Thanks A /Profs. Xia-ji Liu, Chris Vale, Paul Dyke, Jia Wang, Lianyi He,
and Hui Hu for our collaborative work

e Thanks to our PhD students Umberto Toniolo, Sebastian Schaffer,
Xiao-Long Chen, and Christopher Hoegaard for all their hard work

e BEC-BCS crossover in two dimensions
e The equation of state: Breathing mode in 2D gases
e BKT transition
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ongly interacting Fermi gases?

Strongly interacting Fermi gases with balanced populations very difficult to solve

e Strongly correlated Fermi systems are a playground for many-body physics
e They are stable on long timescales and for strong interactions

Temperature T [MeV]

Net Baryon Density

neutron stars & nuclear matter high-T, materials ultracold atoms
Figure: Xia-Ji Liu Physics Reports 524 (2), 37-83.

e They play a fundamental role in very different areas or physics
e Lower dimensions increase the fluctuations, quantum effects are larger
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Two dimensional BCS-BEC crossover

2D scattering always allows a bound state and is energy dependent,

4 R?
= g =
f@ In (1/a2pq?) + i i maZ,

No unitary regime but interactions can be changed from the BEC - BCS side through
n = In (kpazp) = —% In (2Eg/eB)

BCS side: weakly interacting pairs BEC side: Tightly bound bosonic molecules
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Fluctuations in 2D are larger:

This prevents long-range order [Mermin-Wagner-Hohenberg]|
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Experimental progress
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Equation of state

The equation of state shows the non-trivial E.O.S. even in the normal state
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Figure: Fenech et al PRL 116 045302 (2016) (Top) and Boettecher

et al PRL 116 045303 (2016) (Bottom).

‘We can use the E.O.S. to calculate the breathing mode anomaly
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2D breathing mode anomaly

Using the 2D equation of state we can explore the breathing mode anomaly:
Delta function Vop(r — r') = gpd(r — r’) interaction is the most important
interaction in a two-component Fermi gas scales as A2 in 2D, regularisation

destroys this scaling:

g2p — log(kraop)

Including a harmonic trap, Hyp = %mw2r2, breaks the scale invariance,
r — Ar, Hy,p — )\ZHtmp
However there is a hidden SO(2,1) symmetry

This symmetry can excite a breathing mode, wp = 2w — the quantum
anomaly will break this hidden symmetry J
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Realisation
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PRL 108, 070404 (2012) PHYSICAL REVIEW LETTERS 17 FEBRUARY 2012

Scale Invariance and Viscosity of a Two-Dimensional Fermi Gas

Enrico Vogt, Michael Feld, Bernd Frishlich, Daniel Pertot, Marco Koschorreck,* and Michael Kohl
Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 OHE, United Kingdom
(Received 4 November 2011; published 17 February 2012)

We investigate collective excitations of a trapped Fermi gas from the
collisionless (zero sound) ta the hydrodynamic (first sound) regime. The breathing mode, which is
sensitive (o the equation of state, is observed with an undamped amplitude at a frequency 2 times the
dipole mode frequency for a large range of interaction strengths and different temperatures, This provides
evidence for a dynamical SO(2,1) scaling symmetry of the two-dimensional Fermi gas. Moreover, we
investigate the quadrupole mode to measure the shear viscosity of the two-dimensional gas and study its
temperature dependence.

DOL 10.1103/PhysRevLei.108.070404 PACS numbers: 67.85.~d, 03.75.5s
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Theoretical results

Using the hydrodynamic formalism and equation of state:

Equation of state and the local density approximation, p(r) = g — Viap(r),

n(r))\zzfn< u ) P(r)\2 :f”(kBLT)’ H® _,

ksT)’ “keT dx
1 VVi VVi OP
-3 fnfomn om0 (Ti0) 20 ) 0 (2) 0]
No significant result at finite temperature — we do see damping J
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Theoretical results

Using the hydrodynamic formalism and equation of state:
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Theoretical results

Using the hydrodynamic formalism and equation of state:

Equation of state and the local density approximation, p(r) = g — Viap(r),

2?2 d
5@ = %/dr [wzpou — (Voo -u) (vap -u) +2 (Po v]‘;’a" ~u) (V-u) — po (%I;)K(Vm)z}

There is a strange behaviour of the breathing mode in the high temperature regime
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Figure: The breathing mode anomaly for T/Tg = 0.8



Path integral 1/3

Strongly interacting Fermi gases with balan(ied populations, well studied, very difficult to J
solve.

To begin with we have the thermodynamic potential found through the partition function
Q=-p""hz,

where the partition function and action are given by,

z= / D [, 3] e=S07] and s = /0 " i [ / dr S Go ()00 () + H

)

and the action defined by a Hamiltonian is

KB B
S= / dr /erwd(x)aTwa(x) +H|,
0 o
Decouple through the Hubbard-Stratonovich transformation:

lA@*
U

Sur[A, A] = /a’x { Trin [fc—l]} .

This is true for general dimension, where fdx = fddl‘dT and Uy is regularised appropriately.J
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Path integral 2/3

Strongly interacting Fermi gases with balan(ied populations, well studied, very difficult to J
solve.

Expand the thermodynamic potential by taking the Bose field A(r,) about its saddle point
A07

A(L t) = AO + So(rz t)7
The action is expanded in order of Ay and the thermodynamic potential is
Q = Qmr + Qcr-

Extend to the general case condensed pairs flow with a wavevector Q: AeQT J

In this case, the mean-field thermodynamic potential is given by
A? . 2 +
— _ g _Z BE,
Qvr (Q) = U+§k [ék Ex ﬁln(1+e k)}

and the mean-field gap equation,

1-2r (5) |
2E) " 2KZ/M + e

k

H. Hu, X.-J. Liu, P. D. Drummond, Europhys. Lett. 74, 574 (2006)
R. B. Diener, R. Sensarma, and M. Randeria, Phys. Rev. A 77, 023626 (2008)
Taylor, A. Griffin, N. Fukushima, and Y. Ohashi, Phys. Rev. A 74,1063626 (2006)
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Path integral 3/3

The thermodynamic potential for gaussian pair fluctuations (GPF) is:

Qr(Q = kT > 8(Q)e,
Q=(q,iv)
1 P M, (Q)

S =3 M, (-9

5 +InM (Q),

See our recent paper PRA 96 053608 (2017) for the long definitions of M;; and M, J

This is difficult to solve below T, the Matsubara summation is tricky, instead we use:

1

5 > Sy(gim) = -

1 /+°° do ImS, (q,w + i)
|11>1o

; oo ePw +1

where S;(q,iv)) = S(q, iv)e™!™ and v = (2l + 1)« /B for arbitrary positive integer Iy J

L. He, H. Lii, G. Cao, H. Hu, and X.-J. Liu, Phys.Rev. A 92, 023620 (2015)
J. Tempere, S. N. Klimin, J. T. Devreese, and V. V. Moshchalkov, Phys. Rev. B-77, 134502 (2008)
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Two-dimensional Fermi gas

To illustrate the importance of our full treatment of the GPF we find the E.O.S. J
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Figure: Comparing the results to experiment and Luttinger-Ward T-matrix theory PRA 96 053608 (2017)

The GPF understimates the pressure but has a superfluid order parameter )
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Equation of state and superfluid density in 2D

The superfluid density can be found by adding a twist, giving the density to be

ng = hz —_—

- 56

We can now look at the strongly correlated BCS side in 2D
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Figure: The behaviour of the order parameter and superfluid fraction in 2D for eg/er = 0.1

There is a region where ny = 0 and Agpp > 0 J
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Superfluid density in 2D

The Kosterlitz-Thouless criterion defines the BKT transition temperature:
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Figure: The order parameter and superfluid fraction in 2D for eg/er = 0.1 and other theoretical attempts
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Superfluid density in 2D
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Figure: The superfluid fraction normalised by an
ideal gas
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Superfluid density in 2D
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Figure: The superfluid fraction normalised by an  Figure: Critical chemical potential as a function
of interaction strength for Swinburne (squares)

ideal gas
and Heidelberg (circles)

We can define a critical chemical potential, which can be measured directly in experiment

Critical chemical potential — critical radius : pe = p — V(r¢)
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Unambiguously find the BKT transition

An unambiguous method find the BKT transition: use the LDA p, = p — V(r)J
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Figure: The critical velocity v. = hQ/(2m) as a function of dimensionless chemical potential

Bu
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e The breathing mode is damped as a function of temperature and is
significant in the high temperature regime

o We have explicitly included pairing fluctuations in the calculation of the
superfluid density

e Through stiring the gas we can find an unambiguos method to measure
the BKT transition
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Thank you

Thank you for your attention today

ulkerin (Theoretical Condensed Matter P! perfluid density and critical velocity near the fermioni



