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Todays talk

• Thanks A/Profs. Xia-ji Liu, Chris Vale, Paul Dyke, Jia Wang, Lianyi He,
and Hui Hu for our collaborative work

• Thanks to our PhD students Umberto Toniolo, Sebastian Scha�er,
Xiao-Long Chen, and Christopher Hoegaard for all their hard work

• BEC-BCS crossover in two dimensions

• The equation of state: Breathing mode in 2D gases

• BKT transition
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Why strongly interacting Fermi gases?

Strongly interacting Fermi gases with balanced populations very di�cult to solve

• Strongly correlated Fermi systems are a playground for many-body physics

• They are stable on long timescales and for strong interactions

Figure: Xia-Ji Liu Physics Reports 524 (2), 37-83.

• They play a fundamental role in very di�erent areas or physics

• Lower dimensions increase the �uctuations, quantum e�ects are larger
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Two dimensional BCS-BEC crossover
2D scattering always allows a bound state and is energy dependent,

f (q) =
4π

ln
(
1/a2

2Dq2
)

+ iπ
, εB =

~2

ma2
2d

No unitary regime but interactions can be changed from the BEC - BCS side through
η = ln (kFa2D) = − 1

2 ln (2EF/εB)

BCS side: weakly interacting pairs BEC side: Tightly bound bosonic molecules

Fluctuations in 2D are larger:
This prevents long-range order [Mermin-Wagner-Hohenberg]
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Experimental progress

Experimentalists can directly measure the equation of state (E.O.S) and
thermodynamic properties of the gas
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Equation of state

The equation of state shows the non-trivial E.O.S. even in the normal state

Figure: Fenech et al PRL 116 045302 (2016) (Top) and Boettecher et al PRL 116 045303 (2016) (Bottom).

We can use the E.O.S. to calculate the breathing mode anomaly
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2D breathing mode anomaly

Using the 2D equation of state we can explore the breathing mode anomaly:

Delta function V2D(r− r′) = g2Dδ(r− r′) interaction is the most important
interaction in a two-component Fermi gas scales as λ−2 in 2D, regularisation

destroys this scaling:

g2D → log(kFa2D)

Including a harmonic trap, Htrap = 1
2 mω2r2, breaks the scale invariance,

r→ λr, Htrap → λ2Htrap

However there is a hidden SO(2, 1) symmetry

This symmetry can excite a breathing mode, ωB = 2ω → the quantum
anomaly will break this hidden symmetry
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Realisation
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Theoretical results
Using the hydrodynamic formalism and equation of state:

Equation of state and the local density approximation, µ(r) = µ− Vtrap(r),

n(r)λ2 = fn

(
µ

kBT

)
,

P(r)λ2

kBT
= fp

(
µ

kBT

)
,

dfp(x)

dx
= fn(x)

S(2) =
1
2

∫
dr
[
ω2ρ0u− (∇ρ0 · u)

(
∇Vtrap

M
· u
)

+ 2
(
ρ0
∇Vtrap

M
· u
)

(∇ · u)− ρ0

(
∂P
∂ρ

)
s̄
(∇ · u)2

]
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No signi�cant result at �nite temperature → we do see damping
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Theoretical results
Using the hydrodynamic formalism and equation of state:

Equation of state and the local density approximation, µ(r) = µ− Vtrap(r),
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= fp
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∫
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[
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(
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M
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)

+ 2
(
ρ0
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M
· u
)

(∇ · u)− ρ0

(
∂P
∂ρ

)
s̄
(∇ · u)2

]
There is a strange behaviour of the breathing mode in the high temperature regime

Figure: The breathing mode anomaly for T/TF = 0.8
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Path integral 1/3

Strongly interacting Fermi gases with balanced populations, well studied, very di�cult to
solve.

To begin with we have the thermodynamic potential found through the partition function

Ω = −β−1 lnZ,

where the partition function and action are given by,

Z =

∫
D
[
ψ, ψ̄

]
e−S[ψ,ψ̄] and S =

∫ ~β

0
dτ

[∫
dr
∑
σ

ψ̄σ(x)∂τψσ(x) + H

]
,

and the action de�ned by a Hamiltonian is

S =

∫ ~β

0
dτ

[∫
dr
∑
σ

ψ̄σ(x)∂τψσ(x) + H

]
,

Decouple through the Hubbard-Stratonovich transformation:

Seff [∆,∆∗] =

∫
dx
[
|∆(x)|2

U0
− Tr ln [−G−1]

]
.

This is true for general dimension, where
∫

dx =
∫

ddrdτ and U0 is regularised appropriately.
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Path integral 2/3

Strongly interacting Fermi gases with balanced populations, well studied, very di�cult to
solve.

Expand the thermodynamic potential by taking the Bose �eld ∆(r, t) about its saddle point
∆0,

∆(r, t) = ∆0 + ϕ(r, t),

The action is expanded in order of ∆0 and the thermodynamic potential is

Ω = ΩMF + ΩGF.

Extend to the general case condensed pairs �ow with a wavevector Q: ∆eiQ·r

In this case, the mean-�eld thermodynamic potential is given by

ΩMF (Q) =
∆2

U
+
∑

k

[
ξ̃k − Ek −

2
β

ln
(

1 + eβE+
k
)]
,

and the mean-�eld gap equation,

∑
k

 1− 2f
(

E+
k

)
2Ek

−
1

~2k2/M + εB

 = 0.

H. Hu, X.-J. Liu, P. D. Drummond, Europhys. Lett. 74, 574 (2006)

R. B. Diener, R. Sensarma, and M. Randeria, Phys. Rev. A 77, 023626 (2008)

Taylor, A. Gri�n, N. Fukushima, and Y. Ohashi, Phys. Rev. A 74, 063626 (2006)
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Path integral 3/3

The thermodynamic potential for gaussian pair �uctuations (GPF) is:

ΩGF (Q) = kBT
∑

Q≡(q,iνl)

S (Q) eiνl0
+
,

S (Q) =
1
2

ln

[
1−

M2
12 (Q)

M11 (Q) M11 (−Q)

]
+ ln M11 (Q) ,

See our recent paper PRA 96 053608 (2017) for the long de�nitions of M11 and M12

This is di�cult to solve below Tc, the Matsubara summation is tricky, instead we use:

1
β

∑
|l|>l0

Sη (q, iνl) = −
1
π

∫ +∞

−∞
dω

ImSη (q, ω + iγ)

eβω + 1

where Sη(q, iνl) ≡ S(q, iνl)eiνlη and γ = (2l0 + 1)π/β for arbitrary positive integer l0

L. He, H. Lü, G. Cao, H. Hu, and X.-J. Liu, Phys.Rev. A 92, 023620 (2015)

J. Tempere, S. N. Klimin, J. T. Devreese, and V. V. Moshchalkov, Phys. Rev. B 77, 134502 (2008)
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Two-dimensional Fermi gas

To illustrate the importance of our full treatment of the GPF we �nd the E.O.S.

Figure: Comparing the results to experiment and Luttinger-Ward T-matrix theory PRA 96 053608 (2017)

The GPF understimates the pressure but has a super�uid order parameter
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Equation of state and superfluid density in 2D

The super�uid density can be found by adding a twist, giving the density to be

ns =
4m
~2

[
∂2Ω(Q)

∂Q2

]
Q=0

We can now look at the strongly correlated BCS side in 2D

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

∆
MF

∆
GPF

n
s,GPF

∆
/ε

F
an

d 
n s

/n

T/T
F

Figure: The behaviour of the order parameter and super�uid fraction in 2D for εB/εF = 0.1

There is a region where ns = 0 and ∆GPF > 0
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Superfluid density in 2D

The Kosterlitz-Thouless criterion de�nes the BKT transition temperature:

kBTBKT =
π

2
~2

4m
ns(T)

Figure: The order parameter and super�uid fraction in 2D for εB/εF = 0.1 and other theoretical attempts
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Superfluid density in 2D
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Figure: Critical chemical potential as a function
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We can de�ne a critical chemical potential, which can be measured directly in experiment

Critical chemical potential → critical radius : µc = µ− V(rc)
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Superfluid density in 2D
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We can de�ne a critical chemical potential, which can be measured directly in experiment

Critical chemical potential → critical radius : µc = µ− V(rc)

Brendan Mulkerin (Theoretical Condensed Matter Physics Swinburne University )Superfluid density and critical velocity near the fermionic Berezinskii-Kosterlitz-Thouless transition 17 / 20



Unambiguously find the BKT transition

An unambiguous method �nd the BKT transition: use the LDA µg = µ− V(r)
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Figure: The critical velocity vc = ~Q/(2m) as a function of dimensionless chemical potential
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Summary

• The breathing mode is damped as a function of temperature and is
signi�cant in the high temperature regime

• We have explicitly included pairing �uctuations in the calculation of the
super�uid density

• Through stiring the gas we can �nd an unambiguos method to measure
the BKT transition
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Thank you

Thank you for your attention today
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