

Insulator to Superfluid/Superconductor Transition in 2 dimensions

Nandini Trivedi Physics Department The Ohio State University

trivedi.15@osu.edu http://trivediresearch.org.ohio-state.edu/

Conference on Frontiers in Two-Dimensional Quantum Systems, ICTP, Trieste Nov 13-17, 2017

Can an insulator become a SC? How does SC arise when there is **no** Fermi surface?

Roadmap:

Semi-Metal→ Topological SC

Insulator \rightarrow SC

BCS Prediction $\Delta/T_c = 1.8$

Binding energy of pair or Energy gap in single particle spectrum @T=0

	Tc(K)
Al	1.2
Pb	7.2
Nb	9.2
Nb ₃ Ge	20.0
MgB2	38.6
H ₃ S	203.0

1 meV ~ 10K

GAP vs Tc

Another way the BCS paradigm can break down if

Prakash, Kumar, Thamizhavel, Ramakrishnan, Science 355, 52–55 (2017)

How can the BCS paradigm break down?

(1) Strong coupling to glue: Fermi sphere greatly perturbed

 $T_c \not\rtimes \Delta$

(2) Non-adiabatic limit: electrons are *slower* than the mode

$$\Delta \not \propto E_m \ e^{-\frac{1}{g}}$$

Strong glue: BCS-BEC Crossover

weak attraction: pairing and coherence occur at the same temperature

BCS limit • cooperative Cooper pairing • pair size $\gg k_F^{-1}$

$$T_c = \min(\Delta_0, \rho_S)$$

strong attraction: pairing and coherence occur at different temperatures

BEC limit

• tightly bound molecules • pair size $\ll k_F^{-1}$

M. Randeria and E. Taylor, Ann. Rev. Cond. Mat. Phys. 5, 209 (2014)

Superfluid density and stiffness

 n_s = superfluid number density ρ_s = sf mass density ω_s = sf plasma frequency scale

$$\frac{4\pi n_s e^2}{m^*} = \omega_{p,s}^2 = \frac{c^2}{\lambda_L^2}$$

London penetration depth

$$F = \frac{1}{2} D_s \int d^d x |\nabla \theta|^2$$
$$[D_s] = \frac{Energy}{L^{d-2}}$$

directly related to the spectral weight in the delta function in the optical conductivity

dim=2

 $D_s \sim \frac{\hbar^2}{m^*} n_s$

Layered

 $D_s \sim \frac{\hbar^2 n_s^{2/3}}{\infty^*}$

dim=3

Insulator: charge cannot move

+ many other examples of insulators including disordered (localized) insulators

Superconductivity domes

<u>arXiv:1703.06369</u> A full superconducting dome of strong Ising protection in gated monolayer WS₂ J. M. Lu, O. Zheliuk, O. H. Chen, I. Leermakers, N. E. Hussey, U. Zeitler, J. T. Ye

Band Insulator

Loh, Randeria, Trivedi, Chen, Scalettar, : Superconductor-Insulator Transition and Fermi-Bose Crossovers" Phys. Rev. X 6, 021029 (2016)

Fixed attraction U

The Model

2D Fermion model for band-insulator \rightarrow SC transition

- Translationally invariant; no disorder
- (at least) 2 sites/orbitals per unit cell \rightarrow 2 bands in insulator
- Attractive interactions → SC local attraction -IUI → no sign-problem in QMC → possible to realize in cold atoms expts.
- Non-bipartite lattice \rightarrow suppress CDW order

The Model

Triangular bilayer attractive Hubbard model

Methods

Changing band structure t/t_{\perp}

LIMITS: t=0 ATOMIC

Atomic Limit: Insulators

Atomic

Pairing Instability in a Band Insulator

Determinental Quantum Monte Carlo

Attractive Hubbard -- Free of fermion sign-problem at all fillings

Single-Particle Density of States From QMC + Maximum Entropy

Intermediate coupling: QMC

Persistence of single-particle gap across the SC-Insulator transition Can see gap directly from imaginary time QMC data without analytic continuation

$$G(\mathbf{k}, \tau) = -\int_{-\infty}^{\infty} d\omega \, \frac{\exp(-\omega\tau)}{1 + \exp(-\beta\omega)} \, \mathcal{A}(\mathbf{k}, \omega)$$
$$T = 0.0803t_{\perp} \qquad 12 \times 12 \times 2 \quad \text{bilayer}$$

QMC: Pairing structure factor

$$P_{s} = \frac{1}{N} \sum_{i,j} \langle c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} c_{j\downarrow} c_{j\uparrow} \rangle$$

off diagonal long range order

QMC: Superfluid density $\frac{D_s}{\pi} = \langle -k_x \rangle - \Lambda_{xx}(q_x = 0, q_y \to 0, i\omega = 0)$ $\Lambda_{xx}(r_i, r_j, t) = \langle j_x(r_i, t) j_x^{\dagger}(r_j, 0) \rangle$

How to identify the BCS & BEC regimes in the crossover?

2 Predictions:

- Topology of "Minimum Gap Locus"– ARPES (angle resolved photoemission spectroscopy)
- Gap-edge singularity in DOS tunneling

BCS: minimum gap locus at k_F

Minimum gap at $k=k_F$

$$A(k,\omega) = u_k^2 \delta(\omega - E_k) + v_k^2 \delta(\omega + E_k)$$
$$E_k = \pm \sqrt{\xi_k^2 + |\Delta_k|^2}$$
$$u_k^2 + v_k^2 = 1 \qquad v_k^2 = \frac{1}{2} \left(1 - \frac{\xi_k}{E_k}\right)$$

BEC regime ("strong pairing")

Minimum gap locus in k-space

or

or
$$k = "k_F"$$

Crossover from BCS to BEC regime

* Topology of "Minimum Gap Locus"* Gap-edge singularity in DOS

$$E_{\text{gap}} \equiv \min_{\varepsilon_k \ge 0} \left[(\varepsilon_k - \mu)^2 + |\Delta_k|^2 \right]^{1/2}$$

$$E_{gap} = \begin{cases} \Delta & \text{for } \mu > 0, \quad \leftarrow BCS \\ (\mu^2 + \Delta^2)^{1/2} & \text{for } \mu < 0, \quad \leftarrow BEC \end{cases}$$

How to identify the BCS & BEC regimes in the crossover?

* Topology of "Minimum Gap Locus"* Gap-edge singularity in DOS

Single particle gap

• $12 \times 12 \times 2$ • $10 \times 10 \times 2$ • $8 \times 8 \times 2$

BCS-BEC Crossover : Topology of Minimum gap locus

k=0

Example from Cold Atoms Experiment

k-resolved RF Spectroscopy (~ ARPES) of strongly interacting Fermi Gases

 $1/(k_F a) \approx 1$ BEC regime

Stewart, Gaebler & Jin, Nature 454, 744 (2008)

Summary of Insulator-Superconductor Transition:

Disorder-driven Insulator-Superconductor Transition

– Quantum phase transition

- Is the SIT "fermionic" or "bosonic"?

What is the nature of the insulator?

Haviland, Liu, Goldman, PRL 62,2180 (1989).

Conductor-Insulator Quantum Phase Transition (ed. V. Dobrosavljevic, N. Trivedi, and J. M. Valles) Oxford (2012)

K. Bouadim, Y. L. Loh, M. Randeria, and N. Trivedi, Nat. Phys., 7, 884 (2011). A. Ghosal, M. Randeria, and N. Trivedi, PRL 81, 3940 (1998); PRB 65, 014501 (2001).

Local gap and Local superfluid density

(1998)

(2011)

2

Experiment: Sacepe, et (2011), PRL 101, 157006 (2008) Bouadim et al, Nat. Phys. 7, 884

Insulator to SC

(A) *the insulator* has the "seeds" of the kind of SC that will be born

(B) non BCS SC:

- Pairing and Coherence separated
- Dome shape of Tc
- Topological transition from BEC-BCS

Roadmap for Superconductivity:

Semi-Metal \rightarrow Topological SC

Roadmap for Superconductivity:

