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Motivation 



Where all started: high-Tc superconductors 

Pseudogap: suppression of spectral weight about the Fermi energy. 
Competing “phase” or precursor of superconducting gap? 

S. Huefner et al., Rep. Prog. Phys. 71, 062501 (2008) 



Pseudogap vs gap: density of states 

O. Fischer et al., Rev. Mod. Phys. 79, 353 (2007) 



Dispersions in the gapped region of the Brillouin zone (cut 1 in (e)). The full 
circles are the two branches of the dispersion  at 49K, open circles correspond 
to the same cut but at 12K..  

Pseudogap and ARPES spectra 

Triangles and diamonds 
are the dispersions at 
49K along cuts closer to 
the anti-nodal points. 

Fermi-function  
divided spectra   

Underdoped La1.895Sr0.105CuO4 at T=49K > Tc=30 K   

I(k,ω)∝ A(k,ω) f (ω)

M. Shi et al., EPL  88, 
27008 (2009) 



Ø  Physics of high-Tc superconductors motivates the study of models where 
pseudogap and precursor effects are driven by a strong pairing attraction (one 

     of the two main scenarios).       
 
 
Normal phase of a superconductor/superfluid undergoing the BCS-BEC crossover. 
 
Ø  Not an easy problem for theorists: finite temperature, strong interaction, 

dynamical (frequency- dependent).  

 

Ø  Experiments with ultra-cold gases addressing this problem: three-dimensions  
    (D. Jin’s group), two-dimensions (M. Koehl’s, S. Jochim’s groups).  
 
    Still, difficulties in the experiments and its interpretation: averages over trap       
or momentum, final state effects…      
   

Logical path 



Theoretical approach 



T-matrix self-energy  (sum of ladder diagrams): 

where, for a contact potential: 
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Inclusion of pairing fluctuations above Tc 
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Single particle spectral function and density of states 

N(ω) = dk
(2π )3

A(k,ω)∫

nk = A(k,ω) f (ω)dω
−∞

+∞

∫

Spectral function determined by analytic continuation to the real axis 
of the temperature Green’s function: 
 
 
 
 
 
 
 
 
The continuation to real  axis can be performed exactly, without resorting  
to approximate methods (such as MaxEnt, Padé …).  

G(k, iωn )→G(k,ω + i0+ ) ≡GR (k,ω)

A(k,ω) = − 1
π
ImGR (k,ω) = (−1/π )ImΣ(k,ω)

[ω −ξ (k)−ReΣ(k,ω)]2 + ImΣ(k,ω)2
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density of states 

momentum distribution 



Why T-matrix self-energy?   

•  It allows for exact analytic continuation 
 
•   In condensed matter physics, often implementing self-consistency worsens 
the calculation of dynamical properties like the spectral weight-functions 
[see e.g. B. Holm and U. von Barth, PRB 57, 2018 (1998);  D. Rohe and W. 
Metzner PRB 63, 224509 (2001).] 
 

It recovers the correct asymptotic theories: 

Why non-self-consistent? 

•   For weak coupling and T<< T_F: Galistkii in 3D; Bloom (1975), 
Engelbrecht & Randeria (1992) in 2D (provided T is not too low). 
 
•   For strong coupling and T << ε0: non interacting Bose gas 
 
•   At high temperature: virial expansion till second order 
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The critical temperature can’t be reached (both in self-consistent and non-
self-consistent schemes). Sometimes in the literature connected to Mermin-
Wagner theorem forbidding long-range order. But at the BKT transition the large 
distance decay of the pair-pair correlation function changes form exponential to 
algebraic          the particle-particle propagator Γ should diverge! 

Shortcomings of T-matrix in two dimensions   

 At the critical temperature 

Γ0 (Ων = 0,q)∝
1
q2

d 2q
(2π )2∫ Γ0 (Ων = 0,q)=∞ Σ(k)

Unphysical behavior of the chemical 
potential in non-self-consistent scheme 
at low T because at given coupling strength  
η the curve µ(T)  wants to avoid the curve   
Γ0(0,0; µ,Τ)-1 = 0. 

η ≡ ln 1
kFa2D

"

#
$

%

&
'=
1
2
ln ε0
2EF

"

#
$

%

&
'

  diverges at all k 



RF spectroscopy 



How does the spectral function enters in RF spectroscopy?   

In the absence of final state interaction, linear response theory yields for the  
RF experimental signal: 
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where      is the detuning of the RF probe with respect to the frequency of the  
atomic transition               .   

δω
32 →

With the tomographic technique introduced at MIT, the trap average can be 
eliminated: 
 
 
 
but average over k remains. 
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where                                 is the “single-particle energy”.  
 
It’s the technique which is closest to ARPES spectra in solids: 

Momentum-resolved RF spectroscopy 

Average over k can be eliminated (technique pioneered by D. Jin’s group):  
 
 
 
but then trap average remains…  

)]([));(,();( 22
32 rEfrrEkArdkEkRF sss µµ −−= ∫

Momentum resolved RF spectrum proportional to:  
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I(k,ω)∝ A(k,ω) f (ω)



Theory: 
F. Marsiglio et al., PRB 91, 054509 (2015) 

Validation of the theory against exp. data 
Experiment (momentum-resolved RF): 
M. Feld et al., Nature (London) 480, 75 (2011) 

Local coupling and temperature at trap center 

η ≡ − ln kFa2D( )

ü  Theory validated at these (not too low)  temperatures. 



pairing effects in the normal 
phase of 2D homogeneous 
Fermi gas 
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Homogeneous system: density of states and pseudogap 

F. Marsiglio et al., PRB 91, 054509 (2015) 
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BCS mean-field DOS in the BEC limit 

η ≡ − ln kFa2D( )



Crossover pairing temperature T* 

M. Ries et al., PRL 114,  
230401 (2015). 
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Criterion: at T* a minimum appears   
in the DOS about ω = 0. 



P. A. Murthy et al., arXiv:1705.10577  

P. A. Murthy et al., arXiv:1705.10577  

Comparison with recent Heidelberg group experiment 

T /TF = 0.5 T /TF = 0.5

η = +0.2 η = −1

Pairing (pseudo)gap was found  in an extended coupling range at fixed temperature T=0.5 TF.  

F. Marsiglio et al., PRB 91, 054509 (2015) 
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Boundary of the pseudogap region  
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Molecules 

P. A. Murthy et al., 
 arXiv:1705.10577  

Dispersion back-bends at wave vector              
in the presence of an underlying Fermi surface. 
When            : boundary between the pseudogap 
and molecular regimes.    

F. Marsiglio et al., PRB 91, 054509 (2015) 

kL ≈ kF

kL ≈ 0
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Mapping between 3D and 2D  
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How to compare results obtained in 2D with 3D 
results? Use the ratio between pair size ξpair and 
average inter-particle distance dn [given by 4πn/3)-1/3  
in 3D and by (πn)-1/2 in 2D]. 
 
Strong enhancement of  pairing fluctuations due to 
reduced dimensionality is evident from this comparison.  



Thank you! 


