Ultracold dipolar atoms in two dimensions: From Wigner crystal to pair superfluidity and ferromagnetism

S. Giorgini (BEC Trento)

Frontiers in Two-Dimensional Quantum Systems Trieste ICTP, November 13 – 17 2017

CNR – Istituto Nazionale di Ottica Research and Development Center on Bose-Einstein Condensation Dipartimento di Fisica – Università di Trento

Outline

Introduction to ultracold dipolar gases

> Single layer of dipolar fermions

• **QPT from Fermi liquid to Wigner crystal**

> <u>Dipolar Fermi polaron in bilayers</u>

• Interlayer coupling between impurity and FL or WC

Bilayer of dipolar fermions and bosons

- Fermions: Novel type of BCS-BEC crossover
- Bosons: Single-particle to pair superfluidity

Single layer of two-component dipolar fermions

• Ferromagnetic instability

Cold gases: interactions are s-wave and short range

typical range of interaction $R_0 \approx 10 \text{ nm}$ typical interparticle distance $1/k_F \approx 100 \text{ nm}$ s-wave scattering is sufficient to describe interactions

• With dipoles interactions are anisotropic and long range

Dipoles aligned along z

$$V(\mathbf{r}) = \frac{d^2}{r^3} \left(1 - 3\cos^2 \theta \right)$$

→ electric dipole d
 → magnetic dipole d=µ

<u>Strength of interaction</u> typical length $r_0 = md^2/\hbar^2$

Leads to new interesting many-body effects

Observation of Fermi surface deformation in a dipolar quantum gas

K. Aikawa,¹ S. Baier,¹ A. Frisch,¹ M. Mark,¹ C. Ravensbergen,^{1,2} F. Ferlaino^{1,2}* Science, 345 (2014)

Observation of quantum droplets in a strongly dipolar Bose gas Igor Ferrier-Barbut, Holger Kadau, Matthias Schmitt, Matthias Wenzel, and Tilman Pfau Phys. Rev. Lett., 116 (2016)

Extended Bose-Hubbard models with ultracold magnetic atoms

S. Baier, ¹ M. J. Mark, ^{1,2} D. Petter, ¹ K. Aikawa, ¹* L. Chomaz, ^{1,2} Z. Cai, ² M. Baranov, ² P. Zoller, ^{2,3} F. Ferlaino^{1,2}†

Science, 352 (2016)

Observation of the Roton Mode in a Dipolar Quantum Gas

L. Chomaz¹, R. M. W. van Bijnen², D. Petter¹, G. Faraoni^{1,3}, S. Baier¹, J. H. Becher¹, M. J. Mark^{1,2}, F. Wächtler⁴, L. Santos⁴, F. Ferlaino^{1,2,*}

arXiv:1705.06914 (2017)

- o Atomic species with large magnetic moment
 - Chromium: Stuttgart $-\mu=6\mu_B \rightarrow d=0.06D (r_0=2.4 \text{ nm})$
 - Dysprosium: Stanford, Stuttgart μ =10 μ_B \rightarrow d=0.09D (r₀=21 nm)
 - Erbium: Innsbruck $-\mu=7\mu_B$ (r₀=10 nm)

$$k_F r_0 = 0.02 - 0.2$$

• Heteronuclear molecules with large electric moment

 \circ ⁴⁰K-⁸⁷Rb: JILA → d=0.57D - (r₀= 611 nm) \circ ²³Na-⁴⁰K: MIT, Hannover → d=2.7D - (r₀=6800 nm) \circ ⁶Li-¹³³Cs: Heidelberg → d=5.5D - (r₀= 62 µm) \circ

$$k_{\rm F}r_0 = 6 - 600$$

In 2D enhanced stability

$$V(\mathbf{r}) = \frac{d^2}{r^3} \left(1 - 3\sin^2 \theta_0 \cos^2 \varphi \right)$$

if $\theta_0 = 0$ interaction purely repulsive

- i. avoids bad chemistry $KRb + KRb \rightarrow K_2 + Rb_2 + energy$
- ii. avoids clusterization due to head to tail attraction

Single-layer systems

- perpendicular dipoles
 - fluid to solid transition
 For bosons:
 Astrakharchik et al., Buechler et al.
 - hexatic phase (Lechner et al.)

- tilted dipoles
 - CDW (stripe) phase

(Bruun and Taylor, Parish and Marchetti)

- p-wave Fermi superfluidity

(Sieberer and Baranov)

<u>Hamiltonian</u>

(r₀>>a_z transverse confinement) $H = -\frac{\hbar^2}{2m} \sum_{i=1}^N \nabla_i^2 + \sum_{i < j} \frac{d^2}{r_{ij}^3}$

One dimensionless parameter: k_Fr₀

$$k_F = \sqrt{4\pi n} \quad r_0 = \frac{md^2}{\hbar^2}$$

Use FN-DMC: projection method

$$\psi_0 e^{-\tau E_0} = \lim_{\tau \to \infty} e^{-\tau H} \psi_T = \lim_{n \to \infty} \underbrace{e^{-\delta \tau H} \dots e^{-\delta \tau H}}_{n \text{ times}} \psi_T$$

Nodal surface of ψ_T kept fixed during time evolution
 → E₀ upper bound of ground-state energy

<u>Fermi-liquid phase</u> $\psi_T(\mathbf{r}_1,...,\mathbf{r}_N) = \prod_{i < j} f(r_{ij}) \det(e^{i\mathbf{k}_{\alpha} \cdot \mathbf{r}_i})$

Crystal phase

 \mathbf{R}_{m} are the lattice points of the WC

liquid

crystal

Equation of state

• FL to WC transition at $k_F r_0 = 25 \pm 3$ (in bosons $k_F r_0 \approx 60$)

<u>Bilayer system</u> (no interlayer tunneling)

- bound state of two particles (analogy with electron-hole exciton)
- Fermions: interlayer superfluidity and BCS-BEC crossover as a function of separation λ (Pikovski et al.)
 (analogy with electron-hole bilayer and two bilayer graphene quest for high-Tc superconductivity)

Polaron problem in bilayer system

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \nabla_i^2 + \sum_{i < j} \frac{d^2}{r_{ij}^3} + \sum_{i=1}^{N} V(r_{ip})$$

where

$$V(r_{ip}) = \frac{d^2(r_{ip}^2 - 2\lambda^2)}{(r_{ip}^2 + \lambda^2)^{5/2}}$$

- Bound state always exists for 2 particles
- Many-body problem depends on:
 - a. $k_F r_0$ (interaction in lower layer)
 - b. $k_F \lambda$ (interlayer coupling)

Polaron energy

$$\mu_P = E_{N+pol} - E_N$$

a) In units of Fermi energy varies by orders of magnitude as a function of $k_F \lambda$ b) At strong interlayer coupling (small $k_F \lambda$) \rightarrow 2-body binding energy

Polaron effective mass

$$\frac{m}{m^*} = \lim_{\tau \to \infty} \frac{\langle |\mathbf{r}_{imp}(\tau) - \mathbf{r}_{imp}(0)|^2 \rangle}{4D\tau}$$

Bilayer system with balanced populations $(N_a = N_b)$

$$H = -\frac{\hbar^2}{2m} \left(\sum_{i=1}^{N_a} \nabla_i^2 + \sum_{j=1}^{N_b} \nabla_\alpha^2 \right) + \sum_{i < i'} \frac{d^2}{r_{ii'}^3} + \sum_{j < j'} \frac{d^2}{r_{jj'}^3} + \sum_{i,j} V(r_{ij})$$

where

$$V(r_{ij}) = \frac{d^2(r_{ij}^2 - 2\lambda^2)}{(r_{ij}^2 + \lambda^2)^{5/2}}$$

Fermions: Effective 2D system (always dimer bound state)

Mean-field result

•
$$\mu = \varepsilon_F + \frac{E_b}{2}$$

•
$$\Delta = \sqrt{2\varepsilon_F |E_b|}$$

Equation of state

- weak intra-layer repulsion k_Fr₀=0.5
- ➢ dimer binding energy E_b is the largest scale in the BEC regime

In the BEC regime E_b provides dominant contribution to gap

Schematic phase diagram

- BCS to BEC separation when $\mu_{sl} \sim |E_b|/2$
- At small $k_F \lambda$ critical density of WC transition reduced by factor 8 with respect to Bose single layer ($k_F r_0 \sim 60$)

Bosons (DMC method provides exact ground state)

<u>**T=0 equation of state:</u>** in-plane interaction $nr_0^2=1$ Energy per particle as a function of interlayer distance h</u>

At small interlayer distance: stable gas of pairs

Quantum phase transition from single-particle to pair superfluidity

• Atomic condensate from OBDM

$$\left\langle \psi_{u(d)}^{\dagger}(\vec{r})\psi_{u(d)}(\vec{r}')\right\rangle \rightarrow n_{0}$$

• Intrinsic molecular condensate from TBDM

$$\left\langle \psi_{u}^{+}(\vec{r})\psi_{d}^{+}(\vec{r})\psi_{d}(\vec{r}')\psi_{u}(\vec{r}')\right\rangle - n_{0}^{2} \rightarrow n_{M}$$

 Superfluid response of single atoms from winding number (super-counterfluid density)

$$\rho_s = \lim_{\tau \to \infty} \frac{\langle (\mathbf{W}_u(\tau) - \mathbf{W}_d(\tau))^2 \rangle}{6N\tau}$$

Pairing gap in single-particle excitations

T=0 schematic phase diagram

<u>Single-layer two-component Fermi gas (N_a=N_b)</u>

Itinerant ferromagnetism

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \nabla_i^2 + \sum_{i < j} \frac{d^2}{r_{ij}^3}$$

•

Ferromagnetic state

Paramagnetic state

Analogy with Coulomb gas

Figure 1 Phase diagram of the electron gas. The two colours divide the classical (blue) from the quantum (yellow) regimes. The phase transition boundaries are estimates from ref. 6. The dot is the transition temperature measured by Young *et al.*¹.

Preliminary results using VMC

Compare FM with PM ground state

- Use DMC with fixed node approximation
- Add backflow to improve PM wave function

Thank you for your attention!

Collaborators

LPMMC Grenoble

Markus Holzmann

Trento BEC group

Natalia Matveeva

Tommaso Comparin

UPC Barcelona

Adrian Macia

Ferran Mazzanti

Jordi Boronat

Grigori Astrakharchik

