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Figure 8. Frequency dependence of the magnetic (top) and
charge (bottom) channel for t0 = �0.32, U = 4t and T =
0.08t. Top left : Magnetic channel M⇤

Q,⌦(⌫1, ⌫2) with self-
energy feedback at the instability vector and for vanishing
frequency transfer, for doping x = 0.025. Top right : Magnetic
channel M⇤

Q,⌦(⌫1, ⌫2) without self-energy feedback at the in-
stability vector and for vanishing frequency transfer, for dop-
ing x = 0.4. Bottom left : Frequency dependence of the charge
channel C⇤

Q,⌦(⌫1, ⌫2) with self-energy feedback at Q = (0, 0)
and frequency transfer ⌦ = 2⇡T , for doping x = 0.025.
Bottom right : Frequency dependence of the charge channel
C⇤
Q,⌦(⌫1, ⌫2) without self-energy feedback at Q = (0, 0) and

frequency transfer ⌦ = 2⇡T , for doping x = 0.4.

(at fixed bosonic frequency) is approximated by its lower
value, as will be shown in the next paragraph. Second, in
the static approximation the feedback of the other chan-
nels is overestimated, see below. For x � 0.34 there is
no divergence in any channel for the temperature consid-
ered.

In the same figure, the dashed green and the solid blue
line denote the value of the maximum of the d-wave chan-
nel D⇤ at ⇤c in the static and dynamic implementation,
respectively. In both cases the d-wave is not the leading
instability at the temperature under consideration,25 but
in the static approximation D

⇤c is orders of magnitude
larger than in the dynamic case. This effect of the vertex
frequency dependence can be understood from Eqs. (A4)
and (A6), where, neglecting the frequency structure, one
does not take into account the decay of the magnetic
channel for large (particle-hole) transfer frequencies.

B. Frequency dependence of vertex

We now discuss the remarkable frequency dependence
of the vertex. In particular, we will look at the chan-
nels that show a divergence, that is, the charge and the
magnetic instabilities observed in Fig. 2, while we refer
to Appendix B for the pairing channels.

As mentioned in the previous section, the divergences
of the charge and magnetic channels are quite different.
The charge channel diverges for a finite frequency trans-
fer, and only when we neglect the self-energy feedback.
Since the dependence on the transfer momentum and fre-
quency (Q,⌦) has already been discussed in Ref. 12, we
focus on the dependence on the fermionic frequencies.
Therefore we present various color plots for fixed (Q,⌦),
showing the dependence on ⌫1 and ⌫2.

In the top left panel of Fig. 8 we show the magnetic
channel M⇤c

Q,⌦(⌫1, ⌫2) in the small doping region, where
antiferromagnetism is the leading instability. The results
shown have been calculated with self-energy feedback,
but the frequency structures we discuss do not depend
strongly on the presence of the self-energy. For clarity
we restrict the plots to the first 20 positive and negative
Matsubara frequencies, larger frequencies can be deduced
by the asymptotic behavior.14 When only one channel
in Eq. (9) is taken into account, the fRG equations are
equivalent to the RPA . The magnetic channel calculated
with RPA would depend only on the frequency and mo-
mentum transfer, not on ⌫1 and ⌫2. Hence any varia-
tion in the frequency structure has to be ascribed to the
presence of the other channels in the fRG. The channel
competition suppresses the magnetic channel: the largest
value of M is reduced compared to the RPA, and the
frequency dependent structure at the center is further
reduced compared to the asymptotic values at large ⌫1,
⌫2.

In the bottom left panel of Fig. 8 we show the fre-
quency dependence of the charge channel C⇤c

Q,⌦(⌫1, ⌫2) for
a finite frequency transfer ⌦ = 2⇡T , related to the charge
instability discussed in Ref. 12 and above. The frequency
structure is completely different from the magnetic chan-
nel. The charge channel has its maximum for frequencies
⌫1 = ⇡T and ⌫2 = �⇡T . This structure cannot be ex-
plained in terms of standard ladder diagrams. It might
be related to the behavior of the retarded interaction de-
scribed in Ref. 26.

In the two right panels of Fig. 8 we show the same
quantities but for x = 0.4 and without self-energy feed-
back. In this case, the localized peak in the charge chan-
nel is the leading interaction. The position and shape of
the frequency structures are similar to the one described
above.

C. Origin of charge singularity

To gain insight into the origin of the singular frequency
structures observed in the charge channel, we identify a
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Motivation: CuO2 high temperature superconductors

➡ Antiferromagnetism in undoped case

➡ d-wave superconductivity for sufficient doping

Interest due to:

➡ Competition of instabilities 

➡ Strong correlations 

➡ Quantum criticality

be the most important open problem in the understanding of quantum
materials, and it is here that radically new ideas, including those derived
from recently developed non-perturbative studies in string theory, may
be useful.

More unique to the copper oxides is the behaviour observed in a range
of temperatures immediately above Tc in what is referred to as the
‘pseudogap’ regime. It is characterized by a substantial suppression of the
electronic density of states at low energies that cannot be simply related to
the occurrence of any form of broken symmetry. Although much about
this regime is still unclear, convincing experimental evidence has recently
emerged that there are strong and ubiquitous tendencies towards several
sorts of order or incipient order, including various forms of charge-
density-wave, spin-density-wave, and electron-nematic order. There is
also suggestive, but far from definitive, evidence of several sorts of novel
order—that is, never before documented patterns of broken symmetry—
including orbital loop current order and a spatially modulated super-
conducting phase referred to as a ‘pair-density wave’. There are many
fascinating aspects of these ‘intertwined orders’ that remain to be under-
stood, but their existence and many aspects of their general structure were
anticipated by theory7. Superconducting fluctuations also have an important
role in part of this regime, although to an extent that is still much debated.

The high-temperature superconducting phase itself has a pattern of
broken symmetry that is distinct from that of conventional superconduc-
tors. Unlike in conventional s-wave superconductors, the superconduct-
ing wavefunction in the copper oxides has d-wave symmetry8,9, that is, it
changes sign upon rotation by 90u. Associated with this ‘unconventional
pairing’ is the existence of zero energy (gapless) quasiparticle excitations
at the lowest temperatures, which make even the thermodynamic prop-
erties entirely distinct from those of conventional superconductors (which
are fully gapped). The reasons for this, and its relation to a proximate anti-
ferromagnetic phase, are now well understood, and indeed were also anti-
cipated early on by some theories10–12. However, while various attempts

to obtain a semiquantitative estimate of Tc have had some success13, there
are important reasons to consider this problem still substantially unsolved.

Highly correlated electrons in the copper oxides
The chemistry of the copper oxides amplifies the Coulomb repulsions
between electrons. The two-dimensional copper oxide layers (Fig. 3) are
separated by ionic, electronically inert, buffer layers. The stoichiometric
‘parent’ compound (Fig. 2, zero doping) has an odd-integer number of
electrons per CuO2 unit cell (Fig. 3). The states formed in the CuO2 unit
cells are sufficiently well localized that, as would be the case in a collec-
tion of well-separated atoms, it takes a large energy (the Hubbard U) to
remove an electron from one site and add it to another. This effect pro-
duces a ‘traffic jam’ of electrons14. An insulator produced by this classical
jamming effect is referred to as a ‘‘Mott insulator’’15. However, even a
localized electron has a spin whose orientation remains a dynamical degree
of freedom. Virtual hopping of these electrons produces, via the Pauli
exclusion principle, an antiferromagnetic interaction between neighbour-
ing spins. This, in turn, leads to a simple (Néel) ordered phase below room
temperature, in which there are static magnetic moments on the Cu sites
with a direction that reverses from one Cu to the next16,17.

The Cu-O planes are ‘doped’ by changing the chemical makeup of
interleaved ‘charge-reservoir’ layers so that electrons are removed (hole-
doped) or added (electron-doped) to the copper oxide planes (see the
horizontal axis of Fig. 2). In the interest of brevity, we will confine our
discussion to hole-doped systems. Hole doping rapidly suppresses the
antiferromagnetic order. At a critical doping of pmin, superconductivity
sets in, with a transition temperature that grows to a maximum at popt,
then declines for higher dopings and vanishes for pmax (Fig. 2). Materials
with p , popt are referred to as underdoped and those with popt , p are
referred to as overdoped.

It is important to recognize that the strong electron repulsions that
cause the undoped system to be an insulator (with an energy gap of 2 eV)
are still the dominant microscopic interactions, even in optimally doped
copper oxide superconductors. This has several general consequences. The
resulting electron fluid is ‘highly correlated’, in the sense that for an elec-
tron to move through the crystal, other electrons must shift to get out of
its way. In contrast, in the Fermi liquid description of simple metals, the
quasiparticles (which can be thought of as ‘dressed’ electrons) propagate
freely through an effective medium defined by the rest of the electrons.
The failure of the quasiparticle paradigm is most acute in the ‘strange metal’
regime, that is, the ‘normal’ state out of which the pseudogap and the
superconducting phases emerge when the temperature is lowered. None-
theless, in some cases, despite the strong correlations, an emergent Fermi
liquid arises at low temperatures. This is especially clear in the overdoped
regime (Fig. 2). But recently it has been shown that even in underdoped
materials, at temperatures low enough to quench superconductivity by
the application of a high magnetic field, emergent Fermi liquid behaviour
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Figure 2 | Phase diagram. Temperature versus hole doping level for the
copper oxides, indicating where various phases occur. The subscript ‘onset’
marks the temperature at which the precursor order or fluctuations become
apparent. TS, onset (dotted green line), TC, onset and TSC, onset (dotted red line for
both) refer to the onset temperatures of spin-, charge and superconducting
fluctuations, while T* indicates the temperature where the crossover to the
pseudogap regime occurs. The blue and green regions indicate fully developed
antiferromagnetic order (AF) and d-wave superconducting order (d-SC)
setting in at the Néel and superconducting transition temperatures TN and Tc,
respectively. The red striped area indicates the presence of fully developed
charge order setting in at TCDW. TSDW represents the same for incommensurate
spin density wave order. Quantum critical points for superconductivity and
charge order are indicated by the arrows.
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Figure 3 | Crystal structure. Layered copper oxides are composed of CuO2

planes, typically separated by insulating spacer layers. The electronic structure
of these planes primarily involves hybridization of a 3dx2 { y2 hole on the
copper sites with planar-coordinated 2px and 2py oxygen orbitals.

RESEARCH REVIEW

1 8 0 | N A T U R E | V O L 5 1 8 | 1 2 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

Keimer et al., 
Nature (2015)

Phase diagram
Known phases:



Prototype: 2D Hubbard model Introduction

Prototype: Hubbard model

E�ective single-band model for CuO2-planes in HTSC:
(Anderson ’87, Zhang & Rice ’88)

t

t’

U

Hamiltonian H = Hkin + HI

Hkin =
ÿ

i,j

ÿ

‡

tij c†
i‡cj‡ =

ÿ

k,‡

‘k nk‡

HI = U
ÿ

j

njønj¿

Antiferromagnetism at/near half-filling for su�ciently large U

d-wave superconductivity away from half-filling
(perturbation theory, RG, cluster DMFT, variational MC, some QMC)

A. Eberlein and W. Metzner Spontaneous symmetry breaking in fermion systems 5

2

vergence without any plausible physical interpretation
was found in the charge channel at zero momentum and
finite frequency transfer.12

In this paper we present fRG flows for the two-particle
vertex without making any simplifying assumptions or
approximations on its frequency dependence. The two-
dimensional Hubbard model is used as a prototype
fermion system featuring strong and competing fluctua-
tions in several channels. We demonstrate the feasibility,
and in some respects, also the necessity of a computa-
tion with an unbiased frequency parametrization, even at
moderate coupling. Significant non-separable frequency
dependences appear. The various interaction channels
do not depend on the bosonic transfer frequencies only,
but also on the remaining two fermionic frequencies. We
recover the enigmatic charge instability discovered by
Husemann et al.,12 and reveal its mechanism as the im-
pact of a frequency dependent magnetic interaction on
the charge channel.

While a static vertex entails a static self-energy in the
one-particle irreducible fRG formalism, the implementa-
tion of the full dynamics allows us to compute the fre-
quency (and momentum) dependence of the self-energy.
Most interestingly, the feedback of the self-energy into
the flow equation for the vertex eliminates the unphysical
divergence in the charge channel. This is in contrast with
the widespread assumption that the self-energy feedback
plays a minor role at moderate interaction strengths.

The paper is structured as follows. In Sec. II we will
introduce the two-dimensional Hubbard model and the
fRG flow equations for the two-particle vertex and the
self-energy. After discussing the channel decomposition
and our parametrization of the two-particle vertex in
Sec. III, we will move on to the discussion of the main re-
sults in Sec. IV. Here we identify the leading instabilities,
and we discuss the flow of the frequency-dependent ver-
tex. For the charge divergence we provide a transparent
explanation, and we finally discuss the momentum and
frequency dependence of the self-energy. We draw our
conclusions in Sec. V. In the Appendix A we report all
the final expression for the vertex flow equations, while
in the Appendix B we show the frequency dependence
also in the pairing channel.

II. FORMALISM

A. Model

The Hubbard model18 describes spin- 12 fermions with
a local interaction:

H =
X

i,j,�

tijc
†
i,�cj,� + U

X

i

ni,"ni,#, (1)

where c†i,� (ci,�) creates (annihilates) a fermion on site i
with spin orientation � (" or #). We consider the two-
dimensional case on a square lattice and repulsive in-
teraction U > 0 at finite temperature T . The hopping

amplitude is restricted to tij = �t for nearest neighbors,
tij = �t0 for next-to-nearest neighbors. Fourier trans-
forming the hopping matrix yields the bare dispersion
relation

"k = �2t (cos kx + cos ky)� 4t0 cos kx cos ky. (2)

B. Flow equations

In the following paragraph we will provide some de-
tails about the functional renormalization group for in-
teracting fermion systems,2,19 defining in particular the
notation used for the vertex.

The fRG implements a scale-by-scale evaluation of
the functional integral describing the many-body system.
This is done by endowing the bare action with an addi-
tional dependence on a scale-parameter ⇤,

S
⇤[ , ] = �( , G⇤

0
�1
 ) + Sint, (3)

where Sint is the interaction part, and ( , ) denotes
the summation over all the quantum numbers of the
fermionic fields  and  . The scale dependence, acquired
through the non-interacting propagator G⇤

0 , generates
flow equations (with known initial conditions) for gen-
erating functionals. These are defined via functional in-
tegrals with the action S

⇤. Examples are the generating
functional for the connected Green’s function and its Leg-
endre transform, the so-called average effective action.3
The final result is recovered for some final ⇤-value restor-
ing the original bare propagator, G⇤f

0 = G0, so that the
physical action of interest is recovered.

We will apply this approach to the effective action,
whose expansions in the fields generates the one-particle
irreducible (1PI) vertex functions. By expanding the
functional flow equation,3 one obtains a hierarchy of flow
equations for the 1PI functions, involving vertices of arbi-
trarily high orders. We will restrict ourselves to the two-
particle level truncation by retaining only the two lowest
nonvanishing orders in the expansion, that is, we consider
the flow of the self-energy ⌃⇤ and of the two-particle
vertex V ⇤, neglecting the effects of higher order vertices.
This truncation restricts the applicability of the approach
to the weak-to-moderate coupling regime.20 It can be fur-
ther shown that, at the two-particle level trunctaion, the
fRG sums up efficiently, although approximately, the so-
called parquet-diagrams.21

Due to SU(2) spin-rotation symmetry, the self-energy
is diagonal in spin-space:

⌃⇤
��0(k) = ⌃⇤(k)��,�0 , (4)

where k = (k, ⌫), ⌫ is a fermionic Matsubara frequency
and k a momentum in the first Brillouin zone.

For the notation of the two-particle vertex function
V ⇤
�1�2�3�4

(k1, k2, k3) we refer to Fig. 1, where ki =
(ki, ⌫i). The momentum k4 = k1 + k2 � k3 is fixed by
momentum conservation. The SU(2) spin-rotation sym-
metry guarantees that the vertex vanishes for all spin

Effective model for HTSC Anderson (1987)
Zhang and Rice, 
PRB (1988)

➡ Low energy model: Cu and O hopping effectively included in t-t’ kinetic energy

CuO2 plane

➡ Lack of charge instability observed in cuprates
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vergence without any plausible physical interpretation
was found in the charge channel at zero momentum and
finite frequency transfer.12

In this paper we present fRG flows for the two-particle
vertex without making any simplifying assumptions or
approximations on its frequency dependence. The two-
dimensional Hubbard model is used as a prototype
fermion system featuring strong and competing fluctua-
tions in several channels. We demonstrate the feasibility,
and in some respects, also the necessity of a computa-
tion with an unbiased frequency parametrization, even at
moderate coupling. Significant non-separable frequency
dependences appear. The various interaction channels
do not depend on the bosonic transfer frequencies only,
but also on the remaining two fermionic frequencies. We
recover the enigmatic charge instability discovered by
Husemann et al.,12 and reveal its mechanism as the im-
pact of a frequency dependent magnetic interaction on
the charge channel.

While a static vertex entails a static self-energy in the
one-particle irreducible fRG formalism, the implementa-
tion of the full dynamics allows us to compute the fre-
quency (and momentum) dependence of the self-energy.
Most interestingly, the feedback of the self-energy into
the flow equation for the vertex eliminates the unphysical
divergence in the charge channel. This is in contrast with
the widespread assumption that the self-energy feedback
plays a minor role at moderate interaction strengths.

The paper is structured as follows. In Sec. II we will
introduce the two-dimensional Hubbard model and the
fRG flow equations for the two-particle vertex and the
self-energy. After discussing the channel decomposition
and our parametrization of the two-particle vertex in
Sec. III, we will move on to the discussion of the main re-
sults in Sec. IV. Here we identify the leading instabilities,
and we discuss the flow of the frequency-dependent ver-
tex. For the charge divergence we provide a transparent
explanation, and we finally discuss the momentum and
frequency dependence of the self-energy. We draw our
conclusions in Sec. V. In the Appendix A we report all
the final expression for the vertex flow equations, while
in the Appendix B we show the frequency dependence
also in the pairing channel.

II. FORMALISM

A. Model

The Hubbard model18 describes spin- 12 fermions with
a local interaction:

H =
X

i,j,�

tijc
†
i,�cj,� + U

X

i

ni,"ni,#, (1)

where c†i,� (ci,�) creates (annihilates) a fermion on site i
with spin orientation � (" or #). We consider the two-
dimensional case on a square lattice and repulsive in-
teraction U > 0 at finite temperature T . The hopping

amplitude is restricted to tij = �t for nearest neighbors,
tij = �t0 for next-to-nearest neighbors. Fourier trans-
forming the hopping matrix yields the bare dispersion
relation

"k = �2t (cos kx + cos ky)� 4t0 cos kx cos ky. (2)

B. Flow equations

In the following paragraph we will provide some de-
tails about the functional renormalization group for in-
teracting fermion systems,2,19 defining in particular the
notation used for the vertex.

The fRG implements a scale-by-scale evaluation of
the functional integral describing the many-body system.
This is done by endowing the bare action with an addi-
tional dependence on a scale-parameter ⇤,

S
⇤[ , ] = �( , G⇤

0
�1
 ) + Sint, (3)

where Sint is the interaction part, and ( , ) denotes
the summation over all the quantum numbers of the
fermionic fields  and  . The scale dependence, acquired
through the non-interacting propagator G⇤

0 , generates
flow equations (with known initial conditions) for gen-
erating functionals. These are defined via functional in-
tegrals with the action S

⇤. Examples are the generating
functional for the connected Green’s function and its Leg-
endre transform, the so-called average effective action.3
The final result is recovered for some final ⇤-value restor-
ing the original bare propagator, G⇤f

0 = G0, so that the
physical action of interest is recovered.

We will apply this approach to the effective action,
whose expansions in the fields generates the one-particle
irreducible (1PI) vertex functions. By expanding the
functional flow equation,3 one obtains a hierarchy of flow
equations for the 1PI functions, involving vertices of arbi-
trarily high orders. We will restrict ourselves to the two-
particle level truncation by retaining only the two lowest
nonvanishing orders in the expansion, that is, we consider
the flow of the self-energy ⌃⇤ and of the two-particle
vertex V ⇤, neglecting the effects of higher order vertices.
This truncation restricts the applicability of the approach
to the weak-to-moderate coupling regime.20 It can be fur-
ther shown that, at the two-particle level trunctaion, the
fRG sums up efficiently, although approximately, the so-
called parquet-diagrams.21

Due to SU(2) spin-rotation symmetry, the self-energy
is diagonal in spin-space:

⌃⇤
��0(k) = ⌃⇤(k)��,�0 , (4)

where k = (k, ⌫), ⌫ is a fermionic Matsubara frequency
and k a momentum in the first Brillouin zone.

For the notation of the two-particle vertex function
V ⇤
�1�2�3�4

(k1, k2, k3) we refer to Fig. 1, where ki =
(ki, ⌫i). The momentum k4 = k1 + k2 � k3 is fixed by
momentum conservation. The SU(2) spin-rotation sym-
metry guarantees that the vertex vanishes for all spin
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alized susceptibility, written in imaginary time in terms
of the one- and two-particle Green’s functions as [17] (see
Supplemental Material [18] for definition and notations)

χσ1σ2σ3σ4
(k1τ1, k2τ2, k3τ3, k4τ4) (2)

= G2,σ1...σ4
(k1τ1, k2τ2, k3τ3, k4τ4)

−Gσ1σ2
(k1τ1, k2τ2)Gσ3σ4

(k3τ3, k4τ4)

or as its Fourier transform

χωω′ν
ppσσ′ (k, k′, q) =

∫ β

0

∫ β

0

∫ β

0
dτ1dτ2dτ3 (3)

×χσσσ′σ′(kτ1, (q − k′)τ2, (q − k)τ3, k
′0)

×e−iωτ1ei(ν−ω′)τ2e−i(ν−ω)τ3

where ω and ω′ are fermionic Matsubara frequencies, ν is
a bosonic Matsubara frequency, σ and σ′ are ↑ or ↓ spin
labels and k, k′ and q are initial, final and transfer mo-
menta respectively, and pp denotes the Fourier transform
convention. With the difference between the σσ′ ≡↑↑ and
↑↓ susceptibilities defined as χpp↑↓ = χpp↑↑−χpp↑↓, linear
response theory relates χpp↑↓ to the response of a system
to a generating superconducting field η(k)

∫ β

0
dτ

δF (k′, τ = 0; η)

δη(k, τ)

∣

∣

∣

∣

η=0

=
1

β2

∑

ωω′

χωω′ν=0
pp↑↓

(k, k′, q = 0)

(4)
where F (k′, τ ; η) is the anomalous Green’s function com-
puted in the presence of an external superconducting
field. We note that the quantity on the left-hand side
is commonly referred to as the uniform pairing suscepti-
bility [19, 20].
Continuous phase transitions can be identified by the

point in phase space where the corresponding suscepti-
bility diverges. The susceptibility can then, using the
Bethe-Salpeter equation, be separated into a ‘bare’ con-
tribution

χωω′ν
0pp (k, k′, q) = −βGσ(k, iω)Gσ(q − k′, iν − iω′)δωω′δkk′ .

(5)

which never diverges and a part containing an irreducible
vertex function Γpp,

χωω′ν
pp↑↓

(k, k′, q) = χωω′ν
0pp (k, k′, q)−

1

β2
χωω′′ν
pp↑↓

(k, k′′, q)

×Γω′′ω′′′ν
pp↑↓

(k′′, k′′′, q)χω′′′ω′ν
0pp (k′′′, k′, q). (6)

In order to see the origin of the divergence in χωω′ν
pp↑↓

this

susceptibility can be expressed in matrix notation giving

χpp↑↓ =
χ0

1 + 1
β2Γpp↑↓χ0

. (7)

and the point of divergence of χ is identified as the point
where an eigenvalue of − 1

β2Γpp↑↓χ0 crosses 1, and the
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FIG. 1. Left panel: Superconducting critical temperature
of the Hubbard model with nearest neighbour hopping and
next nearest neighbour hopping t′ = −0.1t for U = 6t using
an Nc = 8 dynamical cluster approximation. Right panel:
Pd

x2−y2
at different temperatures with interaction strength

U = 6t and next nearest neighbour hopping t′ = −0.1t using
an Nc = 8 cluster.

symmetry of the eigenvector will identify the symmetry
of the order parameter.

In what follows we solve the Hubbard model within the
(paramagnetic) dynamical cluster approximation which
approximates the self-energy of the interacting model by
a number, Nc, of ‘coarse-grained’ frequency-dependent
but momentum-independent self-energy tiles. We pri-
marily present results for an Nc = 8 cluster since this is
the smallest DCA system that captures a clear distinc-
tion between nodal and antinodal physics [21–24]. Com-
parisons to larger and smaller Nc = 4 and Nc = 16 sys-
tems are shown in the supplemental materials [18]. An-
tiferromagnetic order is actively suppressed in our cal-
culations by enforcing paramagnetic spin symmetry, and
the presence or effect of charge order [25] has not been
investigated. The DCA calculation provides one- and
two-particle cluster Green’s functions, from which we ex-
tract cluster susceptibilities and, using the formalism out-
lined in Ref. [26], the coarse-grained lattice susceptibil-
ities χωω′ν

pp↑↓
(K,K ′, Q), where K, K ′ and Q are cluster

momenta. In order to analyze the angular dependence
of the superconducting order, one typically performs a
multipole expansion restricted to the D4h square lattice
symmetry.[27–29] Because of our limited momentum res-
olution we project out and analyze the leading contribu-
tion and are insensitive to higher order harmonics around
the Fermi surface. The accessible s−, p−, dxy or dx2−y2

symmetries are enforced by including symmetry factors
g(K)g(K ′) while summing over all initial K and final K ′

Chen et al., 
PRL (2015)

Nc=8 DCA

Raghu, Kivelson and 
Scalapino, PRB (2010)

ar
X

iv
:1

00
2.

05
91

v1
  [

co
nd

-m
at

.su
pr

-c
on

]  
3 

Fe
b 

20
10

Superconductivity in the repulsive Hubbard model: an asymptotically exact
weak-coupling solution

S. Raghu1, S. A. Kivelson1 and D. J. Scalapino1,2
1Department of Physics, Stanford University, Stanford, CA 94305-4045 and

2Department of Physics, UCSB, Santa Barbara, CA 93106-9530
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We study the phase diagram of the Hubbard model in the limit where U, the onsite repulsive
interaction, is much smaller than the bandwidth. We present an asymptotically exact expression for
Tc, the superconducting transition temperature, in terms of the correlation functions of the non-
interacting system which is valid for arbitrary densities so long as the interactions are sufficiently
small. Our strategy for computing Tc involves first integrating out all degrees of freedom having
energy higher than an unphysical initial cutoff Ω0. Then, the renormalization group (RG) flows
of the resulting effective action are computed and Tc is obtained by determining the scale below
which the RG flows in the Cooper channel diverge. We prove that Tc is independent of Ω0. Using
this method, we find a variety of unconventional superconducting ground states in two and three
dimensional lattice systems and present explicit results for Tc and pairing symmetries as a function
of the electron concentration.

PACS numbers: 74.20.-z, 74.20.Mn, 74.20.Rp, 74.72.-h

I. INTRODUCTION

The Hubbard model is widely studied as the paradig-
matic model of strongly correlated electrons1,2. However,
in more than one dimension (1D) there is controversy
concerning even the basics of the phase diagram of the
model. Most theoretical work on the model has focused
on intermediate to strong interactions, U ∼ W , since this
is the physically relevant range of parameters for any of
the intended applications of the model to real solid state
systems. (Here, U is the repulsion between two electrons
on the same site, and W is the bandwidth in the limit
U = 0.) However, for such strong interactions the only
well controlled solutions are numerical and the applica-
tion of determinental quantum Monte Carlo methods3

and the Density-Matrix-Renormalization-Group4 have
been limited by the fermion sign5 and two-dimensional
entanglement problems6 respectively.
Here, we study the limit of weak interactions, U/t → 0,

where we compute the phase diagram and obtain ex-
pressions for the critical temperatures which, assuming
the validity of certain assumptions discussed below, are
asymptotically exact. To be explicit, we consider the
Hubbard model

H = H0 + U
∑

i

c†i↑c
†
i,↓ci,↓ci,↑ (1)

H0 = −t
∑

<i,j>,σ

[c†i,σcj,σ + h.c.]− t′
∑

(i,j),σ

[c†i,σcj,σ + h.c.]

for a variety of lattice systems in two and three dimen-
sions. Here, c†i,σ creates an electron with spin polariza-
tion σ on lattice site i, and < i, j > and (i, j) signify,
respectively, pairs of nearest-neighbor and next-nearest-
neighbor sites.
Since the Cooper instability is the only generic insta-

bility of a Fermi liquid, except for certain fine tuned

values of t′/t and the electron density n, the only or-
dered states that can be stabilized by weak interactions
are superconducting states. For repulsive interactions,
W ≫ U > 0, the superconducting transition tempera-
ture has an asymptotic expansion

Tc ∼ W exp
{

−α2(t/U)2 − α1(t/U)− α0

}

×
[

1 +O(U/t)
]

∼ W exp {−1/ [ρVeff ]} [1 +O(U/t)] (2)

where αn are dimensionless functions of t′/t, n and ρ is
the density of states at the Fermi energy. The principal
result we report here is to give an explicit prescription
for computing α2 and α1 as a function of the electron
density, n, and the “band structure”. On the basis of the
present analysis, we conclude that the resulting phase
diagram is asymptotically exact in the sense that

lim
U→0

{

(U/t)2 ln[W/Tc]
}

= α2. (3)

We will also explain why we are unable to give a pre-
scription for computing α0. In the process of computing
α2, one determines the symmetry of the superconducting
ground state (e.g. s-wave, p-wave, d-wave, etc.) and the
form of the pair wavefunction.
There are, of course, special situations in which a vari-

ety of different non-superconducting ordered phases oc-
cur. While these situations are potentially significant in
what they imply about the behavior of the system at in-
termediate U , in the small U limit they always involve
a large degree of fine tuning of parameters. The canoni-
cal example is the case of a square lattice, in which the
model with t′ = 0 has a non-generic particle-hole sym-
metry which leads to perfect nesting of the Fermi surface
when the mean electron density per site is n = 1, where

n ≡ N−1
∑

jσ

< c†j,σcj,σ >, (4)

• SC d-wave phase in the limit U     0 



Functional renormalization group (fRG)

• Integrate degrees of freedom following hierarchy of energy scales 

• Exact flow from bare to the effective action 

• Unbiased channel competition (cuprate physics)

  

(functional) Renormalization Group idea

Using functional integral representation: Integrate degrees of freedom successively
Following a hierarchy of energy scales 

Review: Metzner et al.,RMP(2012)

Using functional integral representation: Integrate degrees of freedom successively
Following a hierarchy of energy scales 

➔ Flow from a solvable problem to the full interacting problem

➔ Bare actions differ in the non interacting propagator 

Scale dependent propagator:

Metzner et al. RMP (2012)

RG idea:

➡ Successive rescaling of the effective interaction

Equivalence between multi-loop fRG and parquet approx.

Kugler and von Delft, arXiv:1703.06505
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Fig. 3. Doping dependence of the charge order 
wavevector COQ  Data from REXS and STM on Bi2201 [this 
work and (7)]; bars represent peak widths, rather than errors. 
Also shown are the doping dependence of the Fermi 
surface-derived wavevectors ANQ  (antinodal nesting) and 

HSQ  (arc tips) measured from the ARPES spectral function 

PG( , )A k , as well as the wavevector 
el

Q  from the 
Hubbard-model-based electronic susceptibility (29). 

Fig. 2. ARPES and theory comparison on Bi2201. Modeled Fermi surface for 
hole-doping 0.12p  for (A) the non-interacting and (B) the interacting case, which 
is computed via the inclusion of the self-energy PGΣ ( , )k . A further Gaussian 
smearing (C), with Δ Δ 0.03  /x yk k a  representing the effective experimental 
resolution, allows comparison between the calculated and measured Fermi surface 
from UD15K Bi2201 (21). The antinodal (AN) nesting at ANQ  (white arrow) can be 
contrasted with the HSQ -vector associated with the tips of the Fermi arcs (hot-spots, 
HS), marked by the gold connector. 
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FIG. 1. Crystal, magnetic, and electronic structures of
Ca2RuO4. Ca2RuO4 crystallizes in the orthorhombic Pbca
space group, a distorted variant of the layered perovskite
structure with a quasi-two-dimensional square lattice. For
clarity, Ca ions are shown as small, light grey balls and oxygen
ions are not shown. The distortion involves 2% compression of
the RuO6 octahedra along the c-axis, and their rotation about
the c-axis and titling about an axis that lies in the ab plane5,6.
(⇡,⇡) magnetic order develops below TN ⇡ 110 K with the mo-
ment (orange arrow) aligned approximately along the b-axis.
The compressive distortion of the RuO6 leads to the split-
ting � between the orbitals of xy and yz/zx symmetry. If
� is much larger than the spin-orbit splitting (�), the or-
bital degrees of freedom are completely quenched and a S=1
Heisenberg magnet is obtained. In the other limit ���, a
non-magnetic singlet ground state is stabilized. These two
distinct phases exhibit qualitatively di↵erent magnetic exci-
tation spectra. See Figs. S1 and Fig. S2 for the evolution
of the electronic structure and the spin-wave dispersions be-
tween these two limiting cases.

gauged out by a suitable local coordinate transforma-
tion) and further-neighbor interactions. The coupling
constants resulting from fits of the model to the measured
spectra are provided in the caption of Fig. 2. We stress
that this model gives the unique minimal description of
the system, which we also derive explicitly starting from
the microscopic electronic structure (see Supplementary
Information).

We find that the single-ion term E overwhelms
all other coupling constants, particularly the nearest-
neighbor exchange coupling J , and thus confines the
pseudospins to the ab basal plane. This accounts for the
XY-like dispersion which has a maximum at q=(0,0).
This important aspect was missed in a recent INS study
of Ca2RuO4, because the dispersion along the path
(⇡/2,⇡/2)–(0,0) was not measured21. The large E also
acts toward suppressing the magnetic order by favor-
ing the Sz =0 singlet ground state—known in the liter-

En
er

gy
 (m

eV
)

 0

 10

 20

 30

 40

 50

 60

(π/2,π/2) (π,0) (π,π) (0,0) (π,0)
0

5

10

15

20

En
er

gy
 (m

eV
)

Momentum

 0

 10

 20

 30

 40

 50

 60

(π/2,π/2) (π,0) (π,π) (0,0) (π,0)
0

5

10

15

20

T

L

Tʹ

a

b

(½,0) (½,½) (1,0) (0,0) (½,½)

FIG. 2. Spin-wave dispersions strongly deviating from
the Heisenberg model. a, TOF INS spectra along high
symmetry directions measured at T =5K (see Fig. S3 for
more details). The dotted line is from panel b for direct
comparison between theory and experiment. b, The excita-
tion spectra of the model in eq. (1) calculated with the pa-
rameters E' 25meV, J ' 5.8meV, ↵=0.15, ✏' 4.0meV, and
A' 2.3meV. Transverse and longitudinal modes are labeled
as “T” and “L”, respectively, and their motions are depicted.
The T0 mode arises from back-folding of the T mode by the
magnetic (⇡,⇡) scattering. The L mode carries the Higgs am-
plitude oscillation. The black arrows show the momentum-
and energy-conserving decay process of the L mode into a
pair of T modes.

ature as ‘spin nematic’22—which is also consistent with
microscopic considerations (Fig. 1). Other terms play
a rather minor role; the pseudodipolar term accounts
for the small dispersion along the magnetic zone bound-
ary (⇡/2,⇡/2)-(⇡,0), and ✏ is responsible for gapping the
transverse mode, the significance of which will be dis-
cussed later. Our calculation (Fig. 2b) predicts in this
parameter regime an intense Higgs mode, visible as a
longitudinal spin wave, which heralds a proximate QCP.
Armed with this specific guidance, we pursue the Higgs

mode using spin-polarized INS, using the scattering ge-
ometry that maximizes its neutron cross section. We
use the standard XYZ-di↵erence method to filter out all
non-magnetic and incoherent scattering signals and to
resolve all three spin-wave polarizations: the longitudi-
nal mode (L) oscillates along the crystallographic b-axis,

Metzner et al. RMP (2012)
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constants resulting from fits of the model to the measured
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the system, which we also derive explicitly starting from
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ature as ‘spin nematic’22—which is also consistent with
microscopic considerations (Fig. 1). Other terms play
a rather minor role; the pseudodipolar term accounts
for the small dispersion along the magnetic zone bound-
ary (⇡/2,⇡/2)-(⇡,0), and ✏ is responsible for gapping the
transverse mode, the significance of which will be dis-
cussed later. Our calculation (Fig. 2b) predicts in this
parameter regime an intense Higgs mode, visible as a
longitudinal spin wave, which heralds a proximate QCP.
Armed with this specific guidance, we pursue the Higgs

mode using spin-polarized INS, using the scattering ge-
ometry that maximizes its neutron cross section. We
use the standard XYZ-di↵erence method to filter out all
non-magnetic and incoherent scattering signals and to
resolve all three spin-wave polarizations: the longitudi-
nal mode (L) oscillates along the crystallographic b-axis,
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ature as ‘spin nematic’22—which is also consistent with
microscopic considerations (Fig. 1). Other terms play
a rather minor role; the pseudodipolar term accounts
for the small dispersion along the magnetic zone bound-
ary (⇡/2,⇡/2)-(⇡,0), and ✏ is responsible for gapping the
transverse mode, the significance of which will be dis-
cussed later. Our calculation (Fig. 2b) predicts in this
parameter regime an intense Higgs mode, visible as a
longitudinal spin wave, which heralds a proximate QCP.
Armed with this specific guidance, we pursue the Higgs

mode using spin-polarized INS, using the scattering ge-
ometry that maximizes its neutron cross section. We
use the standard XYZ-di↵erence method to filter out all
non-magnetic and incoherent scattering signals and to
resolve all three spin-wave polarizations: the longitudi-
nal mode (L) oscillates along the crystallographic b-axis,

Metzner et al. RMP (2012)

One loop: improper inclusion of soft 
and amplitude modes

Salmhofer et al., PTP (2004)



2D Hubbard model seen by fRG

The RG equations are obtained as follows (for details,
see Salmhofer [8] and Ref. [9]). The infrared singularities
are regularized by introducing an infrared cutoff Λ > 0
into the bare propagator such that contributions from
momenta with |ϵk − µ| < Λ are suppressed. All Green
functions of the interacting system will then flow as a
function of Λ, and the true theory is recovered in the
limit Λ → 0. Salmhofer [8] has recently pointed out that
(amputated) Green functions obtained by expanding the
effective action of the theory in powers of normal ordered
monomials of fermion fields obey differential flow equa-
tions with a structure that is particularly convenient for
a power counting analysis to arbitrary loop order. With
the bare interaction as initial condition at the highest
scale Λ0 = max |ϵk − µ|, these flow equations determine
the exact flow of the effective interactions as Λ sweeps
over the entire Brillouin zone down to the Fermi surface.
The effective low-energy theory can thus be computed
directly from the microscopic model without introducing
any ad hoc parameters.

For a weak coupling stability analysis it is sufficient
to truncate the exact hierarchy of flow equations at 1-
loop level. The effective 2-particle interaction then re-
duces to the one-particle irreducible 2-particle vertex ΓΛ,
and its flow is determined exclusively by ΓΛ itself (no
higher many-particle interactions enter). Flow equations
for susceptibilities are obtained by considering the exact
RG equations in the presence of suitable external fields,
which leads to an additional 1-particle term in the bare
interaction, and expanding everything in powers of the
external fields to sufficiently high order [9].

One cannot solve the flow equations with the full en-
ergy and momentum dependence of the vertex function,
since ΓΛ has three independent energy and momentum
variables. The problem can however be much simpli-
fied by ignoring dependences which are irrelevant in the
low energy limit, namely the energy dependence and the
momentum dependence normal to the Fermi surface (for
details, see Ref. [9]). This approximation is exact for the
bare Hubbard vertex, and asymptotically exact in the
low-energy regime. The remaining tangential momen-
tum dependence is discretized for a numerical evaluation.
Most of our results where obtained for a discretization
with 16 points on the Fermi surface (yielding 880 ”run-
ning couplings”), and we have checked that increasing the
number of points does not change our results too much.

We have computed the flow of the vertex function for
many different model parameters t′ and U (t just fixes the
absolute energy scale) and densities close to half-filling.
In all cases the vertex function develops a strong momen-
tum dependence for small Λ with divergencies for several
momenta at some critical scale Λc > 0, which vanishes
exponentially for U → 0. To see which physical insta-
bility is associated with the diverging vertex function we
have computed commensurate and incommensurate spin
susceptibilities χS(q) with q = (π, π), q = (π − δ, π) and
q = (1−δ)(π, π), where δ is a function of density [11], the
commensurate charge susceptibility χC(π, π), and singlet
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Some of these susceptibilities diverge together with the
vertex function at the scale Λc. Depending on the choice
of U , t′ and µ, the strongest divergence is found for the
commensurate or incommensurate spin susceptibility or
for the pair susceptibility with dx2−y2 symmetry. In Fig.
1 we show a typical result for the flow of susceptibili-
ties as a function of Λ. Note the threshold at Λ ≈ 0.03t
below which the amplitudes for various scattering pro-
cesses, especially umklapp scattering, renormalize only
very slowly. The flow of the antiferromagnetic spin sus-
ceptibility is cut off at the same scale. The pairing sus-
ceptibility with dx2−y2-symmetry is obviously dominant
here (note the logarithmic scale). Following the flow of
the susceptibilities one can see that the dx2−y2 -pairing
correlations develop in the presence of pronounced but
short-range antiferromagnetic spin-correlations, in agree-
ment with earlier ideas on d-wave superconductivity in
the Hubbard model [2].

In Fig. 2 we show the (µ, U) phase diagram for t′ =
−0.01t obtained by identifying the dominant instability
from the flow for many different values of µ and U . For
µ = 4t′ the Fermi surface touches the saddle points (0, π)
and (π, 0), while µ = 4t′+0.01t corresponds to half-filling.
Note that for U → 0 the pairing instability always dom-
inates, because the BCS channel dominates the flow in
the limit Λ → 0. A spin density wave is the leading in-
stability for U → 0 only in the special case with perfect
nesting, t′ = 0 and µ = 0 (see the (µ, U) phase diagram
computed from the 1-loop flow for t′ = 0 in Ref. [9]).
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cesses, especially umklapp scattering, renormalize only
very slowly. The flow of the antiferromagnetic spin sus-
ceptibility is cut off at the same scale. The pairing sus-
ceptibility with dx2−y2-symmetry is obviously dominant
here (note the logarithmic scale). Following the flow of
the susceptibilities one can see that the dx2−y2 -pairing
correlations develop in the presence of pronounced but
short-range antiferromagnetic spin-correlations, in agree-
ment with earlier ideas on d-wave superconductivity in
the Hubbard model [2].

In Fig. 2 we show the (µ, U) phase diagram for t′ =
−0.01t obtained by identifying the dominant instability
from the flow for many different values of µ and U . For
µ = 4t′ the Fermi surface touches the saddle points (0, π)
and (π, 0), while µ = 4t′+0.01t corresponds to half-filling.
Note that for U → 0 the pairing instability always dom-
inates, because the BCS channel dominates the flow in
the limit Λ → 0. A spin density wave is the leading in-
stability for U → 0 only in the special case with perfect
nesting, t′ = 0 and µ = 0 (see the (µ, U) phase diagram
computed from the 1-loop flow for t′ = 0 in Ref. [9]).
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The RG equations are obtained as follows (for details,
see Salmhofer [8] and Ref. [9]). The infrared singularities
are regularized by introducing an infrared cutoff Λ > 0
into the bare propagator such that contributions from
momenta with |ϵk − µ| < Λ are suppressed. All Green
functions of the interacting system will then flow as a
function of Λ, and the true theory is recovered in the
limit Λ → 0. Salmhofer [8] has recently pointed out that
(amputated) Green functions obtained by expanding the
effective action of the theory in powers of normal ordered
monomials of fermion fields obey differential flow equa-
tions with a structure that is particularly convenient for
a power counting analysis to arbitrary loop order. With
the bare interaction as initial condition at the highest
scale Λ0 = max |ϵk − µ|, these flow equations determine
the exact flow of the effective interactions as Λ sweeps
over the entire Brillouin zone down to the Fermi surface.
The effective low-energy theory can thus be computed
directly from the microscopic model without introducing
any ad hoc parameters.

For a weak coupling stability analysis it is sufficient
to truncate the exact hierarchy of flow equations at 1-
loop level. The effective 2-particle interaction then re-
duces to the one-particle irreducible 2-particle vertex ΓΛ,
and its flow is determined exclusively by ΓΛ itself (no
higher many-particle interactions enter). Flow equations
for susceptibilities are obtained by considering the exact
RG equations in the presence of suitable external fields,
which leads to an additional 1-particle term in the bare
interaction, and expanding everything in powers of the
external fields to sufficiently high order [9].

One cannot solve the flow equations with the full en-
ergy and momentum dependence of the vertex function,
since ΓΛ has three independent energy and momentum
variables. The problem can however be much simpli-
fied by ignoring dependences which are irrelevant in the
low energy limit, namely the energy dependence and the
momentum dependence normal to the Fermi surface (for
details, see Ref. [9]). This approximation is exact for the
bare Hubbard vertex, and asymptotically exact in the
low-energy regime. The remaining tangential momen-
tum dependence is discretized for a numerical evaluation.
Most of our results where obtained for a discretization
with 16 points on the Fermi surface (yielding 880 ”run-
ning couplings”), and we have checked that increasing the
number of points does not change our results too much.

We have computed the flow of the vertex function for
many different model parameters t′ and U (t just fixes the
absolute energy scale) and densities close to half-filling.
In all cases the vertex function develops a strong momen-
tum dependence for small Λ with divergencies for several
momenta at some critical scale Λc > 0, which vanishes
exponentially for U → 0. To see which physical insta-
bility is associated with the diverging vertex function we
have computed commensurate and incommensurate spin
susceptibilities χS(q) with q = (π, π), q = (π − δ, π) and
q = (1−δ)(π, π), where δ is a function of density [11], the
commensurate charge susceptibility χC(π, π), and singlet
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The gap equation has solution with d-wave symmetry

e.g. equal footing treatment also for incommensurate vectors
or charge instabilities

✗ Can we circumvent the weak coupling limitation?  

Gap equation:
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FIG. 18. The spin susceptibility χ(q) and the pairing interaction Γpp(K,K ′) for U = 4t and ⟨n⟩ =

0.85 are compared at various temperatures. As the temperature is reduced a peak develops in Γpp

reflecting the peak in χ. This repulsive peak is the origin of the unconventional superconductivity

discussed in this review.
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FIG. 19. The real space structure of the pairing interaction obtained from the Fourier transform

Eq. (11) of Γpp(k, k′) at a temperature T = 0.125t for U = 4t and ⟨n⟩ = 0.85. Here red indicates

a repulsive and blue an attractive pairing interaction for a singlet formed between an electron at

the origin and an electron at site (ℓx, ℓy). The peak in Γpp shown in Fig. 18 leads to a pairing

interaction which oscillates in space.

occupy the same site but attractive if they are on near neighbor sites reflecting the peaking

of Γpp(k, k′) for k − k′ ∼ (π, π).

As shown in Fig. 17, the pairing interaction Γpp(k, k′) can be separated into a fully irre-

ducible two-fermion vertex Λirr and partially reducible particle-hole exchange contributions.

Here the fully irreducible part Λirr is defined as the sum of all diagrams that can not be

separated into two pieces by cutting any combination of two lines (particle or hole). For

a spin rotationally invariant system, the particle-hole exchange contributions appearing on

the right hand side of Fig. 17 can be combined into an S = 1 magnetic spin fluctuation piece

3
2Φm and a spin S = 0 charge density fluctuation contribution 1

2Φd.

Γpp(k, k′) = Λirr(k, k
′) +

3

2
Φm(k, k

′) +
1

2
Φd(k, k

′) (12)

Carrying out a DCA calculation, one can evaluate the individual terms that enter Eq. (12).

Scalapino, 
RMP (2012)

Effective interaction in PP channel
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Figure 1. Notation of the two-particle vertex.

combinations but six: V ⇤
"""" = V ⇤

####, V ⇤
"#"# = V ⇤

#"#",
and V ⇤

"##" = V ⇤
#""#. Finally, due to SU(2) symmetry and

crossing relation one has16

V ⇤
""""(k1, k2, k3) = V ⇤

"#"#(k1, k2, k3)

� V ⇤
"#"#(k1, k2, k1 + k2 � k3), (5)

V ⇤
"##"(k1, k2, k3) = �V ⇤

"#"#(k1, k2, k1 + k2 � k3). (6)

This allows us to express the vertex by only one
function of three frequency-momentum arguments:

V ⇤(k1, k2, k3) ⌘ V ⇤
"#"#(k1, k2, k3).9

The flow equation for the self energy can then be writ-
ten as2

d

d⇤
⌃⇤(k) = �

Z

p
S⇤(p)

⇥
2V ⇤(k, p, p)� V ⇤(k, p, k)

⇤
,

(7)
with p = (p,!) and k = (k, ⌫). We use the notationR
p = T

P
!

R
p, where

P
! is the Matsubara frequency

sum, and
R
p =

R dp
(2⇡)2 is the normalized integration over

the first Brillouin zone.

S⇤ =
dG⇤

d⇤

����
⌃⇤=const

(8)

is the so-called single-scale propagator, and G⇤ is the
full propagator, which is related to the bare propagator
and the self-energy by the Dyson equation (G⇤)�1 =
(G⇤

0 )
�1

� ⌃⇤.

The flow equation for the vertex can be written as2,9

d
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⇤
pp(k1, k2, k3) + T

⇤
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phc(k1, k2, k3), (9)
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Here T
⇤
pp, T

⇤
ph and T

⇤
phc stand respectively for particle-

particle, particle-hole and particle-hole crossed contribu-
tions. We have defined the quantities

P
⇤
ph(Q, p) = G⇤(Q+ p)S⇤(p) +G⇤(p)S⇤(Q+ p), (13)

P
⇤
pp(Q, p) = G⇤(Q� p)S⇤(p) +G⇤(p)S⇤(Q� p), (14)

which are the scale derivatives, at fixed self-energy, of the
product of two Green’s functions.

C. Interaction flow

To use the flow equations defined above we need to
specify the ⇤-dependence of the non-interacting propa-
gator G⇤

0 . We use the interaction flow, introduced by

Honerkamp et al.:23

G⇤
0 (k) = ⇤G0(k) =

⇤

i⌫ + µ⇤ � "k
, (15)

where the scale-parameter ⇤ flows from 0 to 1. We have
introduced a ⇤-dependent chemical potential to maintain
the density fixed during the flow. The Dyson equation
yields the interacting Green’s function in the form

G⇤(k) =
⇤

i⌫ � "k + µ⇤ � ⇤⌃⇤(k)
. (16)

The scale-dependent chemical potential µ⇤ is determined
from the equation

n = n⇤(µ⇤) ⌘ 2

Z

k

ei⌫0
+

i⌫ � "k + µ⇤ � ⇤⌃⇤(k)
. (17)

The factor 2 accounts for the spin degree of freedom.

Interaction scheme: (Honerkamp et al., PRB 2004)

Critical scale interpreted as critical coupling: 
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FIG. 3: (Color online) Stopping scales for systems at Van Hove filling. Left: Comparison of

different frequency parameterizations: (i) Frequency independent vertex, (ii) Vertex with simple

Lorentz parameterization of the transfer frequency, (iii) Vertex with discretized transfer frequency,

(iv, symbols) Vertex with discretized transfer and non-transfer frequencies. Right: Setup (iii)

for interaction parameters U/t = 3, 2.5 and 2 (top-down). Most dominant ordering tendencies:

commensurate AFM (dashes, filled square), incommensurate AFM (dotted, open square), d-SC

(solid, circle), scattering instability (dash-dot, triangle), FM (short dashes, diamond).

leads to an additional decay of the frequency integrand in box and vertex diagrams, unless

they are generated directly by U . The latter is the case for all s-wave channels with form

factor f1(p) = 1 but not for the d-wave superconducting channel. Therefore, box and

vertex diagrams that generate an attractive d-wave interaction contribute less after the loop

frequency integration. More generally, the coupling of different channels is reduced due to

the frequency dependence of box and vertex diagrams since they are not evaluated at their

maximal value only. The effective width of boson propagators approaching a singularity

tends to zero, but is also reduced for all other boson propagators at low scales, see Fig. 4. This

leads to a reduction of screening and mutual coupling between the channels and consequently

to a higher pseudo-critical scale.

We stress that d-wave superconductivity is still generated by the RG flow, but to a much

lesser extent. Due to the higher stopping scale this generating process has not enough

RG time to become a leading instability. If we change our definition of Ω∗ to allow lower

scales then d-wave superconductivity becomes dominant in a small parameter region of t′

eventually. For example, this can be achieved by not taking the maximal value of the

24

Consistent with Husemann et al. PRB 2012
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This allows us to express the vertex by only one
function of three frequency-momentum arguments:

V ⇤(k1, k2, k3) ⌘ V ⇤
"#"#(k1, k2, k3).9

The flow equation for the self energy can then be writ-
ten as2

d

d⇤
⌃⇤(k) = �

Z

p
S⇤(p)

⇥
2V ⇤(k, p, p)� V ⇤(k, p, k)

⇤
,

(7)
with p = (p,!) and k = (k, ⌫). We use the notationR
p = T

P
!

R
p, where

P
! is the Matsubara frequency

sum, and
R
p =

R dp
(2⇡)2 is the normalized integration over

the first Brillouin zone.

S⇤ =
dG⇤

d⇤

����
⌃⇤=const

(8)

is the so-called single-scale propagator, and G⇤ is the
full propagator, which is related to the bare propagator
and the self-energy by the Dyson equation (G⇤)�1 =
(G⇤

0 )
�1

� ⌃⇤.

The flow equation for the vertex can be written as2,9

d

d⇤
V ⇤(k1, k2, k3) = T

⇤
pp(k1, k2, k3) + T

⇤
ph(k1, k2, k3) + T

⇤
phc(k1, k2, k3), (9)

where22

T
⇤
pp(k1, k2, k3) = �

1

2

Z

p
P

⇤
pp(k1 + k2, p)

n
V ⇤(k1, k2, k1 + k2 � p)V ⇤(k1 + k2 � p, p, k3) (10)

+V ⇤(k1, k2, p)V
⇤(p, k1 + k2 � p, k3)

o
,

T
⇤
ph(k1, k2, k3) = �

Z

p
P

⇤
ph(k3 � k1, p)

n
2V ⇤(k1, k3 � k1 + p, k3)V

⇤(p, k2, k3 � k1 + p) (11)

�V ⇤(k1, k3 � k1 + p, p)V ⇤(p, k2, k3 � k1 + p)� V ⇤(k1, k3 � k1 + p, k3)V
⇤(k2, p, k3 � k1 + p)

o
,

T
⇤
phc(k1, k2, k3) =

Z

p
P

⇤
ph(k2 � k3, p)V

⇤(k1, k2 � k3 + p, p)V ⇤(p, k2, k3). (12)

Here T
⇤
pp, T

⇤
ph and T

⇤
phc stand respectively for particle-

particle, particle-hole and particle-hole crossed contribu-
tions. We have defined the quantities

P
⇤
ph(Q, p) = G⇤(Q+ p)S⇤(p) +G⇤(p)S⇤(Q+ p), (13)

P
⇤
pp(Q, p) = G⇤(Q� p)S⇤(p) +G⇤(p)S⇤(Q� p), (14)

which are the scale derivatives, at fixed self-energy, of the
product of two Green’s functions.

C. Interaction flow

To use the flow equations defined above we need to
specify the ⇤-dependence of the non-interacting propa-
gator G⇤

0 . We use the interaction flow, introduced by

Honerkamp et al.:23

G⇤
0 (k) = ⇤G0(k) =

⇤

i⌫ + µ⇤ � "k
, (15)

where the scale-parameter ⇤ flows from 0 to 1. We have
introduced a ⇤-dependent chemical potential to maintain
the density fixed during the flow. The Dyson equation
yields the interacting Green’s function in the form

G⇤(k) =
⇤

i⌫ � "k + µ⇤ � ⇤⌃⇤(k)
. (16)

The scale-dependent chemical potential µ⇤ is determined
from the equation

n = n⇤(µ⇤) ⌘ 2

Z

k

ei⌫0
+

i⌫ � "k + µ⇤ � ⇤⌃⇤(k)
. (17)

The factor 2 accounts for the spin degree of freedom.

Interaction scheme: (Honerkamp et al., PRB 2004)

Critical scale interpreted as critical coupling: 

Critical scale

doping

➡ Charge divergence at finite exchange frequency 
➡ Self energy feedback “cures” charge divergence
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FIG. 3: (Color online) Stopping scales for systems at Van Hove filling. Left: Comparison of

different frequency parameterizations: (i) Frequency independent vertex, (ii) Vertex with simple

Lorentz parameterization of the transfer frequency, (iii) Vertex with discretized transfer frequency,

(iv, symbols) Vertex with discretized transfer and non-transfer frequencies. Right: Setup (iii)

for interaction parameters U/t = 3, 2.5 and 2 (top-down). Most dominant ordering tendencies:

commensurate AFM (dashes, filled square), incommensurate AFM (dotted, open square), d-SC

(solid, circle), scattering instability (dash-dot, triangle), FM (short dashes, diamond).

leads to an additional decay of the frequency integrand in box and vertex diagrams, unless

they are generated directly by U . The latter is the case for all s-wave channels with form

factor f1(p) = 1 but not for the d-wave superconducting channel. Therefore, box and

vertex diagrams that generate an attractive d-wave interaction contribute less after the loop

frequency integration. More generally, the coupling of different channels is reduced due to

the frequency dependence of box and vertex diagrams since they are not evaluated at their

maximal value only. The effective width of boson propagators approaching a singularity

tends to zero, but is also reduced for all other boson propagators at low scales, see Fig. 4. This

leads to a reduction of screening and mutual coupling between the channels and consequently

to a higher pseudo-critical scale.

We stress that d-wave superconductivity is still generated by the RG flow, but to a much

lesser extent. Due to the higher stopping scale this generating process has not enough

RG time to become a leading instability. If we change our definition of Ω∗ to allow lower

scales then d-wave superconductivity becomes dominant in a small parameter region of t′

eventually. For example, this can be achieved by not taking the maximal value of the

24

Consistent with Husemann et al. PRB 2012
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Figure 8. Frequency dependence of the magnetic (top) and
charge (bottom) channel for t0 = �0.32, U = 4t and T =
0.08t. Top left : Magnetic channel M⇤

Q,⌦(⌫1, ⌫2) with self-
energy feedback at the instability vector and for vanishing
frequency transfer, for doping x = 0.025. Top right : Magnetic
channel M⇤

Q,⌦(⌫1, ⌫2) without self-energy feedback at the in-
stability vector and for vanishing frequency transfer, for dop-
ing x = 0.4. Bottom left : Frequency dependence of the charge
channel C⇤

Q,⌦(⌫1, ⌫2) with self-energy feedback at Q = (0, 0)
and frequency transfer ⌦ = 2⇡T , for doping x = 0.025.
Bottom right : Frequency dependence of the charge channel
C⇤
Q,⌦(⌫1, ⌫2) without self-energy feedback at Q = (0, 0) and

frequency transfer ⌦ = 2⇡T , for doping x = 0.4.

(at fixed bosonic frequency) is approximated by its lower
value, as will be shown in the next paragraph. Second, in
the static approximation the feedback of the other chan-
nels is overestimated, see below. For x � 0.34 there is
no divergence in any channel for the temperature consid-
ered.

In the same figure, the dashed green and the solid blue
line denote the value of the maximum of the d-wave chan-
nel D⇤ at ⇤c in the static and dynamic implementation,
respectively. In both cases the d-wave is not the leading
instability at the temperature under consideration,25 but
in the static approximation D

⇤c is orders of magnitude
larger than in the dynamic case. This effect of the vertex
frequency dependence can be understood from Eqs. (A4)
and (A6), where, neglecting the frequency structure, one
does not take into account the decay of the magnetic
channel for large (particle-hole) transfer frequencies.

B. Frequency dependence of vertex

We now discuss the remarkable frequency dependence
of the vertex. In particular, we will look at the chan-
nels that show a divergence, that is, the charge and the
magnetic instabilities observed in Fig. 2, while we refer
to Appendix B for the pairing channels.

As mentioned in the previous section, the divergences
of the charge and magnetic channels are quite different.
The charge channel diverges for a finite frequency trans-
fer, and only when we neglect the self-energy feedback.
Since the dependence on the transfer momentum and fre-
quency (Q,⌦) has already been discussed in Ref. 12, we
focus on the dependence on the fermionic frequencies.
Therefore we present various color plots for fixed (Q,⌦),
showing the dependence on ⌫1 and ⌫2.

In the top left panel of Fig. 8 we show the magnetic
channel M⇤c

Q,⌦(⌫1, ⌫2) in the small doping region, where
antiferromagnetism is the leading instability. The results
shown have been calculated with self-energy feedback,
but the frequency structures we discuss do not depend
strongly on the presence of the self-energy. For clarity
we restrict the plots to the first 20 positive and negative
Matsubara frequencies, larger frequencies can be deduced
by the asymptotic behavior.14 When only one channel
in Eq. (9) is taken into account, the fRG equations are
equivalent to the RPA . The magnetic channel calculated
with RPA would depend only on the frequency and mo-
mentum transfer, not on ⌫1 and ⌫2. Hence any varia-
tion in the frequency structure has to be ascribed to the
presence of the other channels in the fRG. The channel
competition suppresses the magnetic channel: the largest
value of M is reduced compared to the RPA, and the
frequency dependent structure at the center is further
reduced compared to the asymptotic values at large ⌫1,
⌫2.

In the bottom left panel of Fig. 8 we show the fre-
quency dependence of the charge channel C⇤c

Q,⌦(⌫1, ⌫2) for
a finite frequency transfer ⌦ = 2⇡T , related to the charge
instability discussed in Ref. 12 and above. The frequency
structure is completely different from the magnetic chan-
nel. The charge channel has its maximum for frequencies
⌫1 = ⇡T and ⌫2 = �⇡T . This structure cannot be ex-
plained in terms of standard ladder diagrams. It might
be related to the behavior of the retarded interaction de-
scribed in Ref. 26.

In the two right panels of Fig. 8 we show the same
quantities but for x = 0.4 and without self-energy feed-
back. In this case, the localized peak in the charge chan-
nel is the leading interaction. The position and shape of
the frequency structures are similar to the one described
above.

C. Origin of charge singularity

To gain insight into the origin of the singular frequency
structures observed in the charge channel, we identify a
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(at fixed bosonic frequency) is approximated by its lower
value, as will be shown in the next paragraph. Second, in
the static approximation the feedback of the other chan-
nels is overestimated, see below. For x � 0.34 there is
no divergence in any channel for the temperature consid-
ered.
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⇤c is orders of magnitude
larger than in the dynamic case. This effect of the vertex
frequency dependence can be understood from Eqs. (A4)
and (A6), where, neglecting the frequency structure, one
does not take into account the decay of the magnetic
channel for large (particle-hole) transfer frequencies.

B. Frequency dependence of vertex

We now discuss the remarkable frequency dependence
of the vertex. In particular, we will look at the chan-
nels that show a divergence, that is, the charge and the
magnetic instabilities observed in Fig. 2, while we refer
to Appendix B for the pairing channels.

As mentioned in the previous section, the divergences
of the charge and magnetic channels are quite different.
The charge channel diverges for a finite frequency trans-
fer, and only when we neglect the self-energy feedback.
Since the dependence on the transfer momentum and fre-
quency (Q,⌦) has already been discussed in Ref. 12, we
focus on the dependence on the fermionic frequencies.
Therefore we present various color plots for fixed (Q,⌦),
showing the dependence on ⌫1 and ⌫2.

In the top left panel of Fig. 8 we show the magnetic
channel M⇤c

Q,⌦(⌫1, ⌫2) in the small doping region, where
antiferromagnetism is the leading instability. The results
shown have been calculated with self-energy feedback,
but the frequency structures we discuss do not depend
strongly on the presence of the self-energy. For clarity
we restrict the plots to the first 20 positive and negative
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by the asymptotic behavior.14 When only one channel
in Eq. (9) is taken into account, the fRG equations are
equivalent to the RPA . The magnetic channel calculated
with RPA would depend only on the frequency and mo-
mentum transfer, not on ⌫1 and ⌫2. Hence any varia-
tion in the frequency structure has to be ascribed to the
presence of the other channels in the fRG. The channel
competition suppresses the magnetic channel: the largest
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frequency dependent structure at the center is further
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In the bottom left panel of Fig. 8 we show the fre-
quency dependence of the charge channel C⇤c

Q,⌦(⌫1, ⌫2) for
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quantities but for x = 0.4 and without self-energy feed-
back. In this case, the localized peak in the charge chan-
nel is the leading interaction. The position and shape of
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structures observed in the charge channel, we identify a

Magnetic channel

➡ Frequency dependence enhances

➡ The static approximation overestimates the effect 
of channel competition on the magnetic one

Consistent with Wentzell et al. (2016)
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This property allows for a simplified scanning procedure
to numerically extract asymptotic functions, which, de-
pending on the frequency ranges and parameters, provide
a good approximation.

The procedure is straightforward and applicable in all
channels (see also Fig. 5 and Ref. 8):

• I: For large |⌫| and |⌫0| vary the transfer four-vector
q to acquire Kq

1.

• II: For large |⌫0|, vary k and the transfer four-vector
q and subtract Kq

1 in order to obtains Kkq
2 .

• III: Repeat II by replacing ⌫0 ! ⌫ and k ! k0 to

determine Kk0q
2 .

The above described procedure proposed to determine
K1 and K2 has some limitations. Firstly, one can easily
see that if the scanning is not performed at su�ciently
large |⌫| (|⌫0|), the rest function might not be fully de-
cayed, giving rise to an error in the K1 and K2 extrac-
tion. We found this error to be particularly pronounced
in the strong coupling regime (U = 4 for the comparisons
in Sec. V) where the rest function becomes comparable
with the asymptotic functions in the domain of small fre-
quencies. Secondly, the scanning procedure requires the
knowledge of the reducible vertex functions �r, which are
not directly available in some algorithms, as e.g. for the
exact diagonalization. This raises the question whether
a similar set of limits can be formulated also for F . And
in fact, as will be clarified in the following, the limits

scan edge scan edgelocal  
structure

Kkq
2

Kk0q
2

⌫ ± ⌦

2

⌫0 ± ⌦

2

Kq
1

FIG. 5: Sketch of reducible vertex function in frequency space
as a function of k and k0 for fixed q, it consists of mainly
two extensive stripes and a more dynamical structure locally
centered at a position determined by the transfer frequency.

The two stripes are described by Kkq
2,r and Kk0q

2,r , the local
structure is contained in the rest function R. The nearly
constant background is described by Kq

1,r.

presented in Eq. (12) still hold, i.e.

lim
|⌫|!1

lim
|⌫0|!1

F kk0q
r,��0 � (1 � ��,�0)U = Kq

1,r,��0 ,

(15a)

lim
|⌫0|!1

F kk0q
r,��0 � (1 � ��,�0)U = Kq

1,r,��0 + Kkq
2,r,��0 ,

(15b)

lim
|⌫|!1

F kk0q
r,��0 � (1 � ��,�0)U = Kq

1,r,��0 + Kk0q
2,r,��0 , (15c)

where again Fr denotes the representation of F in one
of the three mixed notations. However, the numerical
equivalent of the limiting procedure, i.e. the scanning
procedure previously described for the �-functions, is
not feasible in the case of F , which is directly related
to the fact that Eq. (14) does not hold equally for F .
In order to numerically extract the asymptotics from F
directly we thus suggest an alternative approach detailed
in Appendix C. We implemented this diagrammatic ex-
traction to determine the exact asymptotic functions, as
presented in Sec. V, from ED calculations.

The limiting procedure Eq. (15) is however particu-
larly suited in the case that analytical expressions for F
are available, as demonstrated for the atomic limit case
in Sec. IV A. Let us thus argue why this generalization
of Eq. (12) holds. It relies on the property that any
reducible diagram vanishes if the corresponding trans-
fer frequency, being a necessary argument, is su�ciently
large, i.e.

lim
|⌦|!1

�kk0q
r,��0 = 0. (16)

We have to further consider, that in order to take the
limits in Eq. (15), we should formulate Eq. (2) in the cor-
responding mixed notation. E.g. for the particle-particle
channel we have to translate �ph and �ph to the pp-
notation as follows

F kk0q
pp,��0 = �kk0q

pp,��0 + �kk0(q�k0�k)
ph,��0 + �k(q�k0)(k0�k)

ph,��0

+ ⇤kk0q
2PI,pp,��0 .

(17)

It now becomes clear that for fixed ⌦ and ⌫0, the bosonic
frequencies of the ph and ph channel, that is ⌦ � ⌫0 � ⌫
and ⌫0 � ⌫, will lead to a vanishing of the respective
scattering channels for |⌫| ! 1. This behavior can
also be observed in Fig. 1, and holds equally for the
other scattering channels. Since ⇤2PI decays in all fre-
quency directions to the bare interaction, we conclude

that lim|⌫|!1 F kk0q
r,��0 � (1 � ��,�0)U = lim|⌫|!1 �kk0q

r,��0 ,
while the same argument can be made for the other lim-
its in Eq. (15).

A. The atomic limit

As a first showcase of these ideas we discuss the vertex
decomposition for a system that can be treated analyti-
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(a) x = 0.025 (b) x = 0.4

Figure 12. Frequency dependence of the pairing channels S⇤c
Q,⌦(⌫1, ⌫2) and D⇤c

Q,⌦(⌫1, ⌫2) for Q = (0, 0) and ⌦ = 0. The doping
is x = 0.025 (left) and x = 0.4 (right). The other parameters are T = 0.08t, t0 = �0.32t, and U = 4t.

Appendix B: Pairing channel

In Fig. 12 we display the frequency dependence of the pairing functions S and D for two distinct doping values
x = 0.025 and x = 0.4. As a consequence of Eq. (A6), D⇤c is asymptotically vanishing.14 The small numerical values
of D⇤c are due to three main reasons: first, the d-wave pairing is expected to increase suddenly only for temperatures
very close to its critical temperature. Second, as argued in Ref. 12, previous fRG calculations with a static vertex
overestimate the d-wave channel by neglecting the frequency dependence in Eq. (A6). Finally, the interaction scheme
itself has a tendency to suppress the d-wave pairing. This can be understood considering the diagrams that contribute
to the d-wave channel. In fact, unlike the other channels, D is generated by diagrams containing at least two
overlapping loops, sharing some of the loop arguments. This kind of diagrams is underestimated in the interaction
flow. This is explained in detail in Section V 2 of Ref. 14.
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Figure 8. Frequency dependence of the magnetic (top) and
charge (bottom) channel for t0 = �0.32, U = 4t and T =
0.08t. Top left : Magnetic channel M⇤

Q,⌦(⌫1, ⌫2) with self-
energy feedback at the instability vector and for vanishing
frequency transfer, for doping x = 0.025. Top right : Magnetic
channel M⇤

Q,⌦(⌫1, ⌫2) without self-energy feedback at the in-
stability vector and for vanishing frequency transfer, for dop-
ing x = 0.4. Bottom left : Frequency dependence of the charge
channel C⇤

Q,⌦(⌫1, ⌫2) with self-energy feedback at Q = (0, 0)
and frequency transfer ⌦ = 2⇡T , for doping x = 0.025.
Bottom right : Frequency dependence of the charge channel
C⇤
Q,⌦(⌫1, ⌫2) without self-energy feedback at Q = (0, 0) and

frequency transfer ⌦ = 2⇡T , for doping x = 0.4.

(at fixed bosonic frequency) is approximated by its lower
value, as will be shown in the next paragraph. Second, in
the static approximation the feedback of the other chan-
nels is overestimated, see below. For x � 0.34 there is
no divergence in any channel for the temperature consid-
ered.

In the same figure, the dashed green and the solid blue
line denote the value of the maximum of the d-wave chan-
nel D⇤ at ⇤c in the static and dynamic implementation,
respectively. In both cases the d-wave is not the leading
instability at the temperature under consideration,25 but
in the static approximation D

⇤c is orders of magnitude
larger than in the dynamic case. This effect of the vertex
frequency dependence can be understood from Eqs. (A4)
and (A6), where, neglecting the frequency structure, one
does not take into account the decay of the magnetic
channel for large (particle-hole) transfer frequencies.

B. Frequency dependence of vertex

We now discuss the remarkable frequency dependence
of the vertex. In particular, we will look at the chan-
nels that show a divergence, that is, the charge and the
magnetic instabilities observed in Fig. 2, while we refer
to Appendix B for the pairing channels.

As mentioned in the previous section, the divergences
of the charge and magnetic channels are quite different.
The charge channel diverges for a finite frequency trans-
fer, and only when we neglect the self-energy feedback.
Since the dependence on the transfer momentum and fre-
quency (Q,⌦) has already been discussed in Ref. 12, we
focus on the dependence on the fermionic frequencies.
Therefore we present various color plots for fixed (Q,⌦),
showing the dependence on ⌫1 and ⌫2.

In the top left panel of Fig. 8 we show the magnetic
channel M⇤c

Q,⌦(⌫1, ⌫2) in the small doping region, where
antiferromagnetism is the leading instability. The results
shown have been calculated with self-energy feedback,
but the frequency structures we discuss do not depend
strongly on the presence of the self-energy. For clarity
we restrict the plots to the first 20 positive and negative
Matsubara frequencies, larger frequencies can be deduced
by the asymptotic behavior.14 When only one channel
in Eq. (9) is taken into account, the fRG equations are
equivalent to the RPA . The magnetic channel calculated
with RPA would depend only on the frequency and mo-
mentum transfer, not on ⌫1 and ⌫2. Hence any varia-
tion in the frequency structure has to be ascribed to the
presence of the other channels in the fRG. The channel
competition suppresses the magnetic channel: the largest
value of M is reduced compared to the RPA, and the
frequency dependent structure at the center is further
reduced compared to the asymptotic values at large ⌫1,
⌫2.

In the bottom left panel of Fig. 8 we show the fre-
quency dependence of the charge channel C⇤c

Q,⌦(⌫1, ⌫2) for
a finite frequency transfer ⌦ = 2⇡T , related to the charge
instability discussed in Ref. 12 and above. The frequency
structure is completely different from the magnetic chan-
nel. The charge channel has its maximum for frequencies
⌫1 = ⇡T and ⌫2 = �⇡T . This structure cannot be ex-
plained in terms of standard ladder diagrams. It might
be related to the behavior of the retarded interaction de-
scribed in Ref. 26.

In the two right panels of Fig. 8 we show the same
quantities but for x = 0.4 and without self-energy feed-
back. In this case, the localized peak in the charge chan-
nel is the leading interaction. The position and shape of
the frequency structures are similar to the one described
above.

C. Origin of charge singularity

To gain insight into the origin of the singular frequency
structures observed in the charge channel, we identify a

6

Figure 3. Flow of the maximal values of the charge (C) and
magnetic (M) channels as functions of 1 � ⇤, for x = 0.4,
t0 = �0.32, U = 4t and T = 0.08t. Top: without self-energy
feedback; bottom: with self-energy feedback.

We defined the critical scale as the flow parameter for
which the value of the largest channel exceeds 200t. We
checked that these results are also consistent with a sta-
bility analysis based on the susceptibilities.

A divergence of the vertex at finite temperature is as-
sociated with spontaneous symmetry breaking, in vio-
lation of the Mermin-Wagner theorem.24 This is a con-
sequence of the truncation of the flow equations. In-
stead, we should interprete the finite temperature ver-
tex divergence as the signal of the appearance of strong
bosonic fluctuations that cannot be treated within the
approximation-scheme we are using.20 Even though in
our framework the flow cannot be continued beyond the
critical scale, from the analysis of vertex and self-energy
we can identify the relevant effective interactions of the
system.

For the parameter sets shown in Fig. 2, and with-
out self-energy feedback, there are two possible insta-
bilities. For doping smaller than 0.35 the leading fluc-
tations of the system are antiferromagnetic, with a com-
mensurate (AF) wave vector Q = (⇡,⇡), or an incom-
mensurate (iAF) wave vector of the form Q = (⇡,⇡� �).
The incommensurability � is determined by the momen-
tum Q where the magnetic channel M

⇤ has its maxi-
mum. The region of commensurate antiferromagnetism
for 0.125  x  0.150 has to be attributed to the presence
of a large plateau around (⇡,⇡) in the bare bubble. Cor-
respondingly, the commensurate antiferromagnetic insta-
blility is almost degenerate with an incommensurate one.

The most striking feature in Fig. 2 is the presence of
a divergence in the charge channel C⇤ at Q = (0, 0) for
the largest values of doping, marked by black stars. This
feature was already observed in a fRG calculation with a
simplified frequency parametrization by Husemann et al.
in Ref. 12 and named scattering instability. The charge
channel C⇤ diverges for a non-zero frequency transfer ⌦ =

Figure 4. Flow of the maximal values of the magnetic (M)
channel as functions of 1 � ⇤, for x = 0.025 (top) and x =
0.375 (bottom). The other parameters are t0 = �0.32, U = 4t
and T = 0.08t. Red symbols: with self-energy feedback; blue
symbols: without self-energy feedback.

2⇡T , which does not allow for a natural interpretation in
terms of a physical instability. The frequency structure
of the charge channel C⇤ together with its origin will be
further discussed in paragraph IV C.

The self-energy feedback has three effects. First, it
decreases 1 � ⇤c. Second, the incommensurability vec-
tor is affected, the region of commensurate antiferromag-
netism disappears, and one can observe a more regular
trend of increasing � with x. Third, the divergence in the
charge channel is completely suppressed, and the leading
instability in the doping region 0.375  x  0.4 remains
incommensurate antiferromagnetism. This can be also
seen from Fig. 3, where we compare the flow of the maxi-
mum (of the absolute value) of magnetic and charge chan-
nels with and without the self-energy feedback for doping
x = 0.4. Without self-energy feedback, the charge chan-
nel reaches large and negative values. The presence of
such a large (and negative) charge channel inhibits the
magnetic channel. The effect of the self-energy in the
flow is evident: the charge channel is strongly damped.
At the same time the magnetic channel is enhanced.

This is confirmed by Fig. 4, where we show the max-
imum of M with and without self-energy feedback for
x = 0.025 (top) and x = 0.375 (bottom). One can
see that the enhancement of M due to the self-energy
is specific of the large doping region, while, in the small
doping region the self energy decreases M. The self-
energy affects the magnetic channel directly by reduc-
ing the particle-hole bubble, and indirectly through the
feedback of other channels, that is, reducing the charge
channel. The former effect dominates for small doping,
the latter at large doping.

Trying to understand these self-energy feedback effects,
we looked for possible changes in the Fermi surface shape

abs Charge

Self energy suppresses the divergence

What is the origin of the divergence?
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Figure 8. Frequency dependence of the magnetic (top) and
charge (bottom) channel for t0 = �0.32, U = 4t and T =
0.08t. Top left : Magnetic channel M⇤

Q,⌦(⌫1, ⌫2) with self-
energy feedback at the instability vector and for vanishing
frequency transfer, for doping x = 0.025. Top right : Magnetic
channel M⇤

Q,⌦(⌫1, ⌫2) without self-energy feedback at the in-
stability vector and for vanishing frequency transfer, for dop-
ing x = 0.4. Bottom left : Frequency dependence of the charge
channel C⇤

Q,⌦(⌫1, ⌫2) with self-energy feedback at Q = (0, 0)
and frequency transfer ⌦ = 2⇡T , for doping x = 0.025.
Bottom right : Frequency dependence of the charge channel
C⇤
Q,⌦(⌫1, ⌫2) without self-energy feedback at Q = (0, 0) and

frequency transfer ⌦ = 2⇡T , for doping x = 0.4.

(at fixed bosonic frequency) is approximated by its lower
value, as will be shown in the next paragraph. Second, in
the static approximation the feedback of the other chan-
nels is overestimated, see below. For x � 0.34 there is
no divergence in any channel for the temperature consid-
ered.

In the same figure, the dashed green and the solid blue
line denote the value of the maximum of the d-wave chan-
nel D⇤ at ⇤c in the static and dynamic implementation,
respectively. In both cases the d-wave is not the leading
instability at the temperature under consideration,25 but
in the static approximation D

⇤c is orders of magnitude
larger than in the dynamic case. This effect of the vertex
frequency dependence can be understood from Eqs. (A4)
and (A6), where, neglecting the frequency structure, one
does not take into account the decay of the magnetic
channel for large (particle-hole) transfer frequencies.

B. Frequency dependence of vertex

We now discuss the remarkable frequency dependence
of the vertex. In particular, we will look at the chan-
nels that show a divergence, that is, the charge and the
magnetic instabilities observed in Fig. 2, while we refer
to Appendix B for the pairing channels.

As mentioned in the previous section, the divergences
of the charge and magnetic channels are quite different.
The charge channel diverges for a finite frequency trans-
fer, and only when we neglect the self-energy feedback.
Since the dependence on the transfer momentum and fre-
quency (Q,⌦) has already been discussed in Ref. 12, we
focus on the dependence on the fermionic frequencies.
Therefore we present various color plots for fixed (Q,⌦),
showing the dependence on ⌫1 and ⌫2.

In the top left panel of Fig. 8 we show the magnetic
channel M⇤c

Q,⌦(⌫1, ⌫2) in the small doping region, where
antiferromagnetism is the leading instability. The results
shown have been calculated with self-energy feedback,
but the frequency structures we discuss do not depend
strongly on the presence of the self-energy. For clarity
we restrict the plots to the first 20 positive and negative
Matsubara frequencies, larger frequencies can be deduced
by the asymptotic behavior.14 When only one channel
in Eq. (9) is taken into account, the fRG equations are
equivalent to the RPA . The magnetic channel calculated
with RPA would depend only on the frequency and mo-
mentum transfer, not on ⌫1 and ⌫2. Hence any varia-
tion in the frequency structure has to be ascribed to the
presence of the other channels in the fRG. The channel
competition suppresses the magnetic channel: the largest
value of M is reduced compared to the RPA, and the
frequency dependent structure at the center is further
reduced compared to the asymptotic values at large ⌫1,
⌫2.

In the bottom left panel of Fig. 8 we show the fre-
quency dependence of the charge channel C⇤c

Q,⌦(⌫1, ⌫2) for
a finite frequency transfer ⌦ = 2⇡T , related to the charge
instability discussed in Ref. 12 and above. The frequency
structure is completely different from the magnetic chan-
nel. The charge channel has its maximum for frequencies
⌫1 = ⇡T and ⌫2 = �⇡T . This structure cannot be ex-
plained in terms of standard ladder diagrams. It might
be related to the behavior of the retarded interaction de-
scribed in Ref. 26.

In the two right panels of Fig. 8 we show the same
quantities but for x = 0.4 and without self-energy feed-
back. In this case, the localized peak in the charge chan-
nel is the leading interaction. The position and shape of
the frequency structures are similar to the one described
above.

C. Origin of charge singularity

To gain insight into the origin of the singular frequency
structures observed in the charge channel, we identify a

6

Figure 3. Flow of the maximal values of the charge (C) and
magnetic (M) channels as functions of 1 � ⇤, for x = 0.4,
t0 = �0.32, U = 4t and T = 0.08t. Top: without self-energy
feedback; bottom: with self-energy feedback.

We defined the critical scale as the flow parameter for
which the value of the largest channel exceeds 200t. We
checked that these results are also consistent with a sta-
bility analysis based on the susceptibilities.

A divergence of the vertex at finite temperature is as-
sociated with spontaneous symmetry breaking, in vio-
lation of the Mermin-Wagner theorem.24 This is a con-
sequence of the truncation of the flow equations. In-
stead, we should interprete the finite temperature ver-
tex divergence as the signal of the appearance of strong
bosonic fluctuations that cannot be treated within the
approximation-scheme we are using.20 Even though in
our framework the flow cannot be continued beyond the
critical scale, from the analysis of vertex and self-energy
we can identify the relevant effective interactions of the
system.

For the parameter sets shown in Fig. 2, and with-
out self-energy feedback, there are two possible insta-
bilities. For doping smaller than 0.35 the leading fluc-
tations of the system are antiferromagnetic, with a com-
mensurate (AF) wave vector Q = (⇡,⇡), or an incom-
mensurate (iAF) wave vector of the form Q = (⇡,⇡� �).
The incommensurability � is determined by the momen-
tum Q where the magnetic channel M

⇤ has its maxi-
mum. The region of commensurate antiferromagnetism
for 0.125  x  0.150 has to be attributed to the presence
of a large plateau around (⇡,⇡) in the bare bubble. Cor-
respondingly, the commensurate antiferromagnetic insta-
blility is almost degenerate with an incommensurate one.

The most striking feature in Fig. 2 is the presence of
a divergence in the charge channel C⇤ at Q = (0, 0) for
the largest values of doping, marked by black stars. This
feature was already observed in a fRG calculation with a
simplified frequency parametrization by Husemann et al.
in Ref. 12 and named scattering instability. The charge
channel C⇤ diverges for a non-zero frequency transfer ⌦ =

Figure 4. Flow of the maximal values of the magnetic (M)
channel as functions of 1 � ⇤, for x = 0.025 (top) and x =
0.375 (bottom). The other parameters are t0 = �0.32, U = 4t
and T = 0.08t. Red symbols: with self-energy feedback; blue
symbols: without self-energy feedback.

2⇡T , which does not allow for a natural interpretation in
terms of a physical instability. The frequency structure
of the charge channel C⇤ together with its origin will be
further discussed in paragraph IV C.

The self-energy feedback has three effects. First, it
decreases 1 � ⇤c. Second, the incommensurability vec-
tor is affected, the region of commensurate antiferromag-
netism disappears, and one can observe a more regular
trend of increasing � with x. Third, the divergence in the
charge channel is completely suppressed, and the leading
instability in the doping region 0.375  x  0.4 remains
incommensurate antiferromagnetism. This can be also
seen from Fig. 3, where we compare the flow of the maxi-
mum (of the absolute value) of magnetic and charge chan-
nels with and without the self-energy feedback for doping
x = 0.4. Without self-energy feedback, the charge chan-
nel reaches large and negative values. The presence of
such a large (and negative) charge channel inhibits the
magnetic channel. The effect of the self-energy in the
flow is evident: the charge channel is strongly damped.
At the same time the magnetic channel is enhanced.

This is confirmed by Fig. 4, where we show the max-
imum of M with and without self-energy feedback for
x = 0.025 (top) and x = 0.375 (bottom). One can
see that the enhancement of M due to the self-energy
is specific of the large doping region, while, in the small
doping region the self energy decreases M. The self-
energy affects the magnetic channel directly by reduc-
ing the particle-hole bubble, and indirectly through the
feedback of other channels, that is, reducing the charge
channel. The former effect dominates for small doping,
the latter at large doping.

Trying to understand these self-energy feedback effects,
we looked for possible changes in the Fermi surface shape
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Figure 9. In the first three panels from the left, the charge channel CQ,⌦(⌫1, ⌫2) = C̃Q=(0,0),⌦(⌫1, ⌫2�⌦) computed from Eq. (36)
is shown as a function of ⌫1 and ⌫2 for transfer frequencies ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T , respectively. In the right panel, the
bubble ⇧Q=(0,0),⌦(⌫) is shown as a function of ⌫ for ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T . The model parameters are t0 = �0.32 and
U = 4, the doping x = 0.375, and the temperature T = t.

simple set of Feynman diagrams reproducing the same
features. The main idea is that the magnetic channel,
which is generated first, is responsible for the singular
structure in the charge channel.

To check this qualitatively, we first compute an effec-
tive interaction by means of an RPA in the magnetic
channel, and then insert this effective magnetic interac-
tion into a subsequent RPA equation for the charge chan-
nel. Of course one does not expect quantitative agree-
ment with the fRG, since we overestimate both interac-
tions, but the approximation is sufficient to reproduce
and explain the qualitative features we are interested in.

We start by introducing an effective interaction that
includes the magnetic fluctuations as computed by RPA
in the particle-hole crossed channel:

U e↵
Q,⌦ =

U

1� U⇧Q,⌦
. (34)

Since the bare interaction U is local, U e↵ depends only
on the transfer momentum Q and frequency ⌦ of the
particle-hole bubble

⇧Q,⌦ = �T
X

⌫

Z

p
G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (35)

The magnetic effective interaction in Eq. (34) will now be
used to compute the RPA equation for the charge chan-
nel. Adopting the simplified momentum dependences
of the effective interactions used in the fRG calcula-
tion, only the momentum integrated, that is, local part
of the magnetic interaction U e↵

⌦ =
R
Q U e↵

Q,⌦ contributes
to the charge channel. We thus obtain CQ,⌦(⌫1, ⌫2) =
C̃Q,⌦(⌫1, ⌫2 � ⌦), where

C̃Q,⌦(⌫1, ⌫3) = U e↵
⌫1�⌫3

⇥
�⌫1,⌫3 + U e↵

⌫1�⌫3
⇧Q,⌦(⌫1)

⇤�1
,

(36)

with

⇧Q,⌦(⌫) = �

Z

p
G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (37)

Note that the fermion frequencies ⌫ are not summed in
⇧Q,⌦(⌫), and the inverse in Eq. (36) is a matrix inverse of
the matrix with indices ⌫1 and ⌫3. Eq. (36) is nothing but
an RPA equation with a frequency dependent interaction
in the particle-hole channel. U e↵ depends on ⌫1� ⌫3 due
to the frequency exchange from particle-hole crossed to
particle-hole notation. In the case of a frequency inde-
pendent effective interaction U e↵ , Eq. (36) becomes ⌫1
and ⌫3 independent and only the summed bubble ⇧Q,⌦

appears. The frequency dependence of U e↵ qualitatively
affects the results.

In Fig. 9, we show the charge channel as computed
from Eq. (36) for Q = (0, 0) and different ⌦ as a func-
tion of ⌫1 and ⌫2 = ⌫3 +⌦, for T = t and x = 0.375. We
have to choose such a high temperature to stay in a stable
paramagnetic phase, due to the above-mentioned overes-
timation of the fluctuations within the RPA. In the more
accurate fRG calculation the magnetic instability occurs
at lower temperatures. The frequency structure in Fig. 9
for ⌦ = 2⇡T is very similar to the one shown in Fig. 8.
The simple contributions considered here reproduce the
position of the main structures, as well as the correct
sign of the charge channel. This is true also for the other
bosonic Matsubara frequencies shown here, for which we
do not report the fRG results. Furthermore, upon lower-
ing the temperature the charge channel diverges also for
other finite bosonic Matsubara frequencies, while it does
not diverge for ⌦ = 0. From this we conclude that the
frequency dependent effective magnetic interaction de-
scribed above is responsible for the frequency structure
of the charge channel observed in the fRG.

To understand why the divergence appears for a non-
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Figure 8. Frequency dependence of the magnetic (top) and
charge (bottom) channel for t0 = �0.32, U = 4t and T =
0.08t. Top left : Magnetic channel M⇤

Q,⌦(⌫1, ⌫2) with self-
energy feedback at the instability vector and for vanishing
frequency transfer, for doping x = 0.025. Top right : Magnetic
channel M⇤

Q,⌦(⌫1, ⌫2) without self-energy feedback at the in-
stability vector and for vanishing frequency transfer, for dop-
ing x = 0.4. Bottom left : Frequency dependence of the charge
channel C⇤

Q,⌦(⌫1, ⌫2) with self-energy feedback at Q = (0, 0)
and frequency transfer ⌦ = 2⇡T , for doping x = 0.025.
Bottom right : Frequency dependence of the charge channel
C⇤
Q,⌦(⌫1, ⌫2) without self-energy feedback at Q = (0, 0) and

frequency transfer ⌦ = 2⇡T , for doping x = 0.4.

(at fixed bosonic frequency) is approximated by its lower
value, as will be shown in the next paragraph. Second, in
the static approximation the feedback of the other chan-
nels is overestimated, see below. For x � 0.34 there is
no divergence in any channel for the temperature consid-
ered.

In the same figure, the dashed green and the solid blue
line denote the value of the maximum of the d-wave chan-
nel D⇤ at ⇤c in the static and dynamic implementation,
respectively. In both cases the d-wave is not the leading
instability at the temperature under consideration,25 but
in the static approximation D

⇤c is orders of magnitude
larger than in the dynamic case. This effect of the vertex
frequency dependence can be understood from Eqs. (A4)
and (A6), where, neglecting the frequency structure, one
does not take into account the decay of the magnetic
channel for large (particle-hole) transfer frequencies.

B. Frequency dependence of vertex

We now discuss the remarkable frequency dependence
of the vertex. In particular, we will look at the chan-
nels that show a divergence, that is, the charge and the
magnetic instabilities observed in Fig. 2, while we refer
to Appendix B for the pairing channels.

As mentioned in the previous section, the divergences
of the charge and magnetic channels are quite different.
The charge channel diverges for a finite frequency trans-
fer, and only when we neglect the self-energy feedback.
Since the dependence on the transfer momentum and fre-
quency (Q,⌦) has already been discussed in Ref. 12, we
focus on the dependence on the fermionic frequencies.
Therefore we present various color plots for fixed (Q,⌦),
showing the dependence on ⌫1 and ⌫2.

In the top left panel of Fig. 8 we show the magnetic
channel M⇤c

Q,⌦(⌫1, ⌫2) in the small doping region, where
antiferromagnetism is the leading instability. The results
shown have been calculated with self-energy feedback,
but the frequency structures we discuss do not depend
strongly on the presence of the self-energy. For clarity
we restrict the plots to the first 20 positive and negative
Matsubara frequencies, larger frequencies can be deduced
by the asymptotic behavior.14 When only one channel
in Eq. (9) is taken into account, the fRG equations are
equivalent to the RPA . The magnetic channel calculated
with RPA would depend only on the frequency and mo-
mentum transfer, not on ⌫1 and ⌫2. Hence any varia-
tion in the frequency structure has to be ascribed to the
presence of the other channels in the fRG. The channel
competition suppresses the magnetic channel: the largest
value of M is reduced compared to the RPA, and the
frequency dependent structure at the center is further
reduced compared to the asymptotic values at large ⌫1,
⌫2.

In the bottom left panel of Fig. 8 we show the fre-
quency dependence of the charge channel C⇤c

Q,⌦(⌫1, ⌫2) for
a finite frequency transfer ⌦ = 2⇡T , related to the charge
instability discussed in Ref. 12 and above. The frequency
structure is completely different from the magnetic chan-
nel. The charge channel has its maximum for frequencies
⌫1 = ⇡T and ⌫2 = �⇡T . This structure cannot be ex-
plained in terms of standard ladder diagrams. It might
be related to the behavior of the retarded interaction de-
scribed in Ref. 26.

In the two right panels of Fig. 8 we show the same
quantities but for x = 0.4 and without self-energy feed-
back. In this case, the localized peak in the charge chan-
nel is the leading interaction. The position and shape of
the frequency structures are similar to the one described
above.

C. Origin of charge singularity

To gain insight into the origin of the singular frequency
structures observed in the charge channel, we identify a
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Figure 3. Flow of the maximal values of the charge (C) and
magnetic (M) channels as functions of 1 � ⇤, for x = 0.4,
t0 = �0.32, U = 4t and T = 0.08t. Top: without self-energy
feedback; bottom: with self-energy feedback.

We defined the critical scale as the flow parameter for
which the value of the largest channel exceeds 200t. We
checked that these results are also consistent with a sta-
bility analysis based on the susceptibilities.

A divergence of the vertex at finite temperature is as-
sociated with spontaneous symmetry breaking, in vio-
lation of the Mermin-Wagner theorem.24 This is a con-
sequence of the truncation of the flow equations. In-
stead, we should interprete the finite temperature ver-
tex divergence as the signal of the appearance of strong
bosonic fluctuations that cannot be treated within the
approximation-scheme we are using.20 Even though in
our framework the flow cannot be continued beyond the
critical scale, from the analysis of vertex and self-energy
we can identify the relevant effective interactions of the
system.

For the parameter sets shown in Fig. 2, and with-
out self-energy feedback, there are two possible insta-
bilities. For doping smaller than 0.35 the leading fluc-
tations of the system are antiferromagnetic, with a com-
mensurate (AF) wave vector Q = (⇡,⇡), or an incom-
mensurate (iAF) wave vector of the form Q = (⇡,⇡� �).
The incommensurability � is determined by the momen-
tum Q where the magnetic channel M

⇤ has its maxi-
mum. The region of commensurate antiferromagnetism
for 0.125  x  0.150 has to be attributed to the presence
of a large plateau around (⇡,⇡) in the bare bubble. Cor-
respondingly, the commensurate antiferromagnetic insta-
blility is almost degenerate with an incommensurate one.

The most striking feature in Fig. 2 is the presence of
a divergence in the charge channel C⇤ at Q = (0, 0) for
the largest values of doping, marked by black stars. This
feature was already observed in a fRG calculation with a
simplified frequency parametrization by Husemann et al.
in Ref. 12 and named scattering instability. The charge
channel C⇤ diverges for a non-zero frequency transfer ⌦ =

Figure 4. Flow of the maximal values of the magnetic (M)
channel as functions of 1 � ⇤, for x = 0.025 (top) and x =
0.375 (bottom). The other parameters are t0 = �0.32, U = 4t
and T = 0.08t. Red symbols: with self-energy feedback; blue
symbols: without self-energy feedback.

2⇡T , which does not allow for a natural interpretation in
terms of a physical instability. The frequency structure
of the charge channel C⇤ together with its origin will be
further discussed in paragraph IV C.

The self-energy feedback has three effects. First, it
decreases 1 � ⇤c. Second, the incommensurability vec-
tor is affected, the region of commensurate antiferromag-
netism disappears, and one can observe a more regular
trend of increasing � with x. Third, the divergence in the
charge channel is completely suppressed, and the leading
instability in the doping region 0.375  x  0.4 remains
incommensurate antiferromagnetism. This can be also
seen from Fig. 3, where we compare the flow of the maxi-
mum (of the absolute value) of magnetic and charge chan-
nels with and without the self-energy feedback for doping
x = 0.4. Without self-energy feedback, the charge chan-
nel reaches large and negative values. The presence of
such a large (and negative) charge channel inhibits the
magnetic channel. The effect of the self-energy in the
flow is evident: the charge channel is strongly damped.
At the same time the magnetic channel is enhanced.

This is confirmed by Fig. 4, where we show the max-
imum of M with and without self-energy feedback for
x = 0.025 (top) and x = 0.375 (bottom). One can
see that the enhancement of M due to the self-energy
is specific of the large doping region, while, in the small
doping region the self energy decreases M. The self-
energy affects the magnetic channel directly by reduc-
ing the particle-hole bubble, and indirectly through the
feedback of other channels, that is, reducing the charge
channel. The former effect dominates for small doping,
the latter at large doping.

Trying to understand these self-energy feedback effects,
we looked for possible changes in the Fermi surface shape
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Figure 9. In the first three panels from the left, the charge channel CQ,⌦(⌫1, ⌫2) = C̃Q=(0,0),⌦(⌫1, ⌫2�⌦) computed from Eq. (36)
is shown as a function of ⌫1 and ⌫2 for transfer frequencies ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T , respectively. In the right panel, the
bubble ⇧Q=(0,0),⌦(⌫) is shown as a function of ⌫ for ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T . The model parameters are t0 = �0.32 and
U = 4, the doping x = 0.375, and the temperature T = t.

simple set of Feynman diagrams reproducing the same
features. The main idea is that the magnetic channel,
which is generated first, is responsible for the singular
structure in the charge channel.

To check this qualitatively, we first compute an effec-
tive interaction by means of an RPA in the magnetic
channel, and then insert this effective magnetic interac-
tion into a subsequent RPA equation for the charge chan-
nel. Of course one does not expect quantitative agree-
ment with the fRG, since we overestimate both interac-
tions, but the approximation is sufficient to reproduce
and explain the qualitative features we are interested in.

We start by introducing an effective interaction that
includes the magnetic fluctuations as computed by RPA
in the particle-hole crossed channel:

U e↵
Q,⌦ =

U

1� U⇧Q,⌦
. (34)

Since the bare interaction U is local, U e↵ depends only
on the transfer momentum Q and frequency ⌦ of the
particle-hole bubble

⇧Q,⌦ = �T
X

⌫

Z

p
G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (35)

The magnetic effective interaction in Eq. (34) will now be
used to compute the RPA equation for the charge chan-
nel. Adopting the simplified momentum dependences
of the effective interactions used in the fRG calcula-
tion, only the momentum integrated, that is, local part
of the magnetic interaction U e↵

⌦ =
R
Q U e↵

Q,⌦ contributes
to the charge channel. We thus obtain CQ,⌦(⌫1, ⌫2) =
C̃Q,⌦(⌫1, ⌫2 � ⌦), where

C̃Q,⌦(⌫1, ⌫3) = U e↵
⌫1�⌫3

⇥
�⌫1,⌫3 + U e↵

⌫1�⌫3
⇧Q,⌦(⌫1)

⇤�1
,

(36)

with

⇧Q,⌦(⌫) = �

Z

p
G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (37)

Note that the fermion frequencies ⌫ are not summed in
⇧Q,⌦(⌫), and the inverse in Eq. (36) is a matrix inverse of
the matrix with indices ⌫1 and ⌫3. Eq. (36) is nothing but
an RPA equation with a frequency dependent interaction
in the particle-hole channel. U e↵ depends on ⌫1� ⌫3 due
to the frequency exchange from particle-hole crossed to
particle-hole notation. In the case of a frequency inde-
pendent effective interaction U e↵ , Eq. (36) becomes ⌫1
and ⌫3 independent and only the summed bubble ⇧Q,⌦

appears. The frequency dependence of U e↵ qualitatively
affects the results.

In Fig. 9, we show the charge channel as computed
from Eq. (36) for Q = (0, 0) and different ⌦ as a func-
tion of ⌫1 and ⌫2 = ⌫3 +⌦, for T = t and x = 0.375. We
have to choose such a high temperature to stay in a stable
paramagnetic phase, due to the above-mentioned overes-
timation of the fluctuations within the RPA. In the more
accurate fRG calculation the magnetic instability occurs
at lower temperatures. The frequency structure in Fig. 9
for ⌦ = 2⇡T is very similar to the one shown in Fig. 8.
The simple contributions considered here reproduce the
position of the main structures, as well as the correct
sign of the charge channel. This is true also for the other
bosonic Matsubara frequencies shown here, for which we
do not report the fRG results. Furthermore, upon lower-
ing the temperature the charge channel diverges also for
other finite bosonic Matsubara frequencies, while it does
not diverge for ⌦ = 0. From this we conclude that the
frequency dependent effective magnetic interaction de-
scribed above is responsible for the frequency structure
of the charge channel observed in the fRG.

To understand why the divergence appears for a non-
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Figure 9. In the first three panels from the left, the charge channel CQ,⌦(⌫1, ⌫2) = C̃Q=(0,0),⌦(⌫1, ⌫2�⌦) computed from Eq. (36)
is shown as a function of ⌫1 and ⌫2 for transfer frequencies ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T , respectively. In the right panel, the
bubble ⇧Q=(0,0),⌦(⌫) is shown as a function of ⌫ for ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T . The model parameters are t0 = �0.32 and
U = 4, the doping x = 0.375, and the temperature T = t.

simple set of Feynman diagrams reproducing the same
features. The main idea is that the magnetic channel,
which is generated first, is responsible for the singular
structure in the charge channel.

To check this qualitatively, we first compute an effec-
tive interaction by means of an RPA in the magnetic
channel, and then insert this effective magnetic interac-
tion into a subsequent RPA equation for the charge chan-
nel. Of course one does not expect quantitative agree-
ment with the fRG, since we overestimate both interac-
tions, but the approximation is sufficient to reproduce
and explain the qualitative features we are interested in.

We start by introducing an effective interaction that
includes the magnetic fluctuations as computed by RPA
in the particle-hole crossed channel:

U e↵
Q,⌦ =

U

1� U⇧Q,⌦
. (34)

Since the bare interaction U is local, U e↵ depends only
on the transfer momentum Q and frequency ⌦ of the
particle-hole bubble

⇧Q,⌦ = �T
X

⌫

Z

p
G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (35)

The magnetic effective interaction in Eq. (34) will now be
used to compute the RPA equation for the charge chan-
nel. Adopting the simplified momentum dependences
of the effective interactions used in the fRG calcula-
tion, only the momentum integrated, that is, local part
of the magnetic interaction U e↵

⌦ =
R
Q U e↵

Q,⌦ contributes
to the charge channel. We thus obtain CQ,⌦(⌫1, ⌫2) =
C̃Q,⌦(⌫1, ⌫2 � ⌦), where

C̃Q,⌦(⌫1, ⌫3) = U e↵
⌫1�⌫3

⇥
�⌫1,⌫3 + U e↵

⌫1�⌫3
⇧Q,⌦(⌫1)

⇤�1
,

(36)

with

⇧Q,⌦(⌫) = �

Z

p
G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (37)

Note that the fermion frequencies ⌫ are not summed in
⇧Q,⌦(⌫), and the inverse in Eq. (36) is a matrix inverse of
the matrix with indices ⌫1 and ⌫3. Eq. (36) is nothing but
an RPA equation with a frequency dependent interaction
in the particle-hole channel. U e↵ depends on ⌫1� ⌫3 due
to the frequency exchange from particle-hole crossed to
particle-hole notation. In the case of a frequency inde-
pendent effective interaction U e↵ , Eq. (36) becomes ⌫1
and ⌫3 independent and only the summed bubble ⇧Q,⌦

appears. The frequency dependence of U e↵ qualitatively
affects the results.

In Fig. 9, we show the charge channel as computed
from Eq. (36) for Q = (0, 0) and different ⌦ as a func-
tion of ⌫1 and ⌫2 = ⌫3 +⌦, for T = t and x = 0.375. We
have to choose such a high temperature to stay in a stable
paramagnetic phase, due to the above-mentioned overes-
timation of the fluctuations within the RPA. In the more
accurate fRG calculation the magnetic instability occurs
at lower temperatures. The frequency structure in Fig. 9
for ⌦ = 2⇡T is very similar to the one shown in Fig. 8.
The simple contributions considered here reproduce the
position of the main structures, as well as the correct
sign of the charge channel. This is true also for the other
bosonic Matsubara frequencies shown here, for which we
do not report the fRG results. Furthermore, upon lower-
ing the temperature the charge channel diverges also for
other finite bosonic Matsubara frequencies, while it does
not diverge for ⌦ = 0. From this we conclude that the
frequency dependent effective magnetic interaction de-
scribed above is responsible for the frequency structure
of the charge channel observed in the fRG.

To understand why the divergence appears for a non-
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Figure 8. Frequency dependence of the magnetic (top) and
charge (bottom) channel for t0 = �0.32, U = 4t and T =
0.08t. Top left : Magnetic channel M⇤

Q,⌦(⌫1, ⌫2) with self-
energy feedback at the instability vector and for vanishing
frequency transfer, for doping x = 0.025. Top right : Magnetic
channel M⇤

Q,⌦(⌫1, ⌫2) without self-energy feedback at the in-
stability vector and for vanishing frequency transfer, for dop-
ing x = 0.4. Bottom left : Frequency dependence of the charge
channel C⇤

Q,⌦(⌫1, ⌫2) with self-energy feedback at Q = (0, 0)
and frequency transfer ⌦ = 2⇡T , for doping x = 0.025.
Bottom right : Frequency dependence of the charge channel
C⇤
Q,⌦(⌫1, ⌫2) without self-energy feedback at Q = (0, 0) and

frequency transfer ⌦ = 2⇡T , for doping x = 0.4.

(at fixed bosonic frequency) is approximated by its lower
value, as will be shown in the next paragraph. Second, in
the static approximation the feedback of the other chan-
nels is overestimated, see below. For x � 0.34 there is
no divergence in any channel for the temperature consid-
ered.

In the same figure, the dashed green and the solid blue
line denote the value of the maximum of the d-wave chan-
nel D⇤ at ⇤c in the static and dynamic implementation,
respectively. In both cases the d-wave is not the leading
instability at the temperature under consideration,25 but
in the static approximation D

⇤c is orders of magnitude
larger than in the dynamic case. This effect of the vertex
frequency dependence can be understood from Eqs. (A4)
and (A6), where, neglecting the frequency structure, one
does not take into account the decay of the magnetic
channel for large (particle-hole) transfer frequencies.

B. Frequency dependence of vertex

We now discuss the remarkable frequency dependence
of the vertex. In particular, we will look at the chan-
nels that show a divergence, that is, the charge and the
magnetic instabilities observed in Fig. 2, while we refer
to Appendix B for the pairing channels.

As mentioned in the previous section, the divergences
of the charge and magnetic channels are quite different.
The charge channel diverges for a finite frequency trans-
fer, and only when we neglect the self-energy feedback.
Since the dependence on the transfer momentum and fre-
quency (Q,⌦) has already been discussed in Ref. 12, we
focus on the dependence on the fermionic frequencies.
Therefore we present various color plots for fixed (Q,⌦),
showing the dependence on ⌫1 and ⌫2.

In the top left panel of Fig. 8 we show the magnetic
channel M⇤c

Q,⌦(⌫1, ⌫2) in the small doping region, where
antiferromagnetism is the leading instability. The results
shown have been calculated with self-energy feedback,
but the frequency structures we discuss do not depend
strongly on the presence of the self-energy. For clarity
we restrict the plots to the first 20 positive and negative
Matsubara frequencies, larger frequencies can be deduced
by the asymptotic behavior.14 When only one channel
in Eq. (9) is taken into account, the fRG equations are
equivalent to the RPA . The magnetic channel calculated
with RPA would depend only on the frequency and mo-
mentum transfer, not on ⌫1 and ⌫2. Hence any varia-
tion in the frequency structure has to be ascribed to the
presence of the other channels in the fRG. The channel
competition suppresses the magnetic channel: the largest
value of M is reduced compared to the RPA, and the
frequency dependent structure at the center is further
reduced compared to the asymptotic values at large ⌫1,
⌫2.

In the bottom left panel of Fig. 8 we show the fre-
quency dependence of the charge channel C⇤c

Q,⌦(⌫1, ⌫2) for
a finite frequency transfer ⌦ = 2⇡T , related to the charge
instability discussed in Ref. 12 and above. The frequency
structure is completely different from the magnetic chan-
nel. The charge channel has its maximum for frequencies
⌫1 = ⇡T and ⌫2 = �⇡T . This structure cannot be ex-
plained in terms of standard ladder diagrams. It might
be related to the behavior of the retarded interaction de-
scribed in Ref. 26.

In the two right panels of Fig. 8 we show the same
quantities but for x = 0.4 and without self-energy feed-
back. In this case, the localized peak in the charge chan-
nel is the leading interaction. The position and shape of
the frequency structures are similar to the one described
above.

C. Origin of charge singularity

To gain insight into the origin of the singular frequency
structures observed in the charge channel, we identify a
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Figure 3. Flow of the maximal values of the charge (C) and
magnetic (M) channels as functions of 1 � ⇤, for x = 0.4,
t0 = �0.32, U = 4t and T = 0.08t. Top: without self-energy
feedback; bottom: with self-energy feedback.

We defined the critical scale as the flow parameter for
which the value of the largest channel exceeds 200t. We
checked that these results are also consistent with a sta-
bility analysis based on the susceptibilities.

A divergence of the vertex at finite temperature is as-
sociated with spontaneous symmetry breaking, in vio-
lation of the Mermin-Wagner theorem.24 This is a con-
sequence of the truncation of the flow equations. In-
stead, we should interprete the finite temperature ver-
tex divergence as the signal of the appearance of strong
bosonic fluctuations that cannot be treated within the
approximation-scheme we are using.20 Even though in
our framework the flow cannot be continued beyond the
critical scale, from the analysis of vertex and self-energy
we can identify the relevant effective interactions of the
system.

For the parameter sets shown in Fig. 2, and with-
out self-energy feedback, there are two possible insta-
bilities. For doping smaller than 0.35 the leading fluc-
tations of the system are antiferromagnetic, with a com-
mensurate (AF) wave vector Q = (⇡,⇡), or an incom-
mensurate (iAF) wave vector of the form Q = (⇡,⇡� �).
The incommensurability � is determined by the momen-
tum Q where the magnetic channel M

⇤ has its maxi-
mum. The region of commensurate antiferromagnetism
for 0.125  x  0.150 has to be attributed to the presence
of a large plateau around (⇡,⇡) in the bare bubble. Cor-
respondingly, the commensurate antiferromagnetic insta-
blility is almost degenerate with an incommensurate one.

The most striking feature in Fig. 2 is the presence of
a divergence in the charge channel C⇤ at Q = (0, 0) for
the largest values of doping, marked by black stars. This
feature was already observed in a fRG calculation with a
simplified frequency parametrization by Husemann et al.
in Ref. 12 and named scattering instability. The charge
channel C⇤ diverges for a non-zero frequency transfer ⌦ =

Figure 4. Flow of the maximal values of the magnetic (M)
channel as functions of 1 � ⇤, for x = 0.025 (top) and x =
0.375 (bottom). The other parameters are t0 = �0.32, U = 4t
and T = 0.08t. Red symbols: with self-energy feedback; blue
symbols: without self-energy feedback.

2⇡T , which does not allow for a natural interpretation in
terms of a physical instability. The frequency structure
of the charge channel C⇤ together with its origin will be
further discussed in paragraph IV C.

The self-energy feedback has three effects. First, it
decreases 1 � ⇤c. Second, the incommensurability vec-
tor is affected, the region of commensurate antiferromag-
netism disappears, and one can observe a more regular
trend of increasing � with x. Third, the divergence in the
charge channel is completely suppressed, and the leading
instability in the doping region 0.375  x  0.4 remains
incommensurate antiferromagnetism. This can be also
seen from Fig. 3, where we compare the flow of the maxi-
mum (of the absolute value) of magnetic and charge chan-
nels with and without the self-energy feedback for doping
x = 0.4. Without self-energy feedback, the charge chan-
nel reaches large and negative values. The presence of
such a large (and negative) charge channel inhibits the
magnetic channel. The effect of the self-energy in the
flow is evident: the charge channel is strongly damped.
At the same time the magnetic channel is enhanced.

This is confirmed by Fig. 4, where we show the max-
imum of M with and without self-energy feedback for
x = 0.025 (top) and x = 0.375 (bottom). One can
see that the enhancement of M due to the self-energy
is specific of the large doping region, while, in the small
doping region the self energy decreases M. The self-
energy affects the magnetic channel directly by reduc-
ing the particle-hole bubble, and indirectly through the
feedback of other channels, that is, reducing the charge
channel. The former effect dominates for small doping,
the latter at large doping.

Trying to understand these self-energy feedback effects,
we looked for possible changes in the Fermi surface shape
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Figure 9. In the first three panels from the left, the charge channel CQ,⌦(⌫1, ⌫2) = C̃Q=(0,0),⌦(⌫1, ⌫2�⌦) computed from Eq. (36)
is shown as a function of ⌫1 and ⌫2 for transfer frequencies ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T , respectively. In the right panel, the
bubble ⇧Q=(0,0),⌦(⌫) is shown as a function of ⌫ for ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T . The model parameters are t0 = �0.32 and
U = 4, the doping x = 0.375, and the temperature T = t.

simple set of Feynman diagrams reproducing the same
features. The main idea is that the magnetic channel,
which is generated first, is responsible for the singular
structure in the charge channel.

To check this qualitatively, we first compute an effec-
tive interaction by means of an RPA in the magnetic
channel, and then insert this effective magnetic interac-
tion into a subsequent RPA equation for the charge chan-
nel. Of course one does not expect quantitative agree-
ment with the fRG, since we overestimate both interac-
tions, but the approximation is sufficient to reproduce
and explain the qualitative features we are interested in.

We start by introducing an effective interaction that
includes the magnetic fluctuations as computed by RPA
in the particle-hole crossed channel:

U e↵
Q,⌦ =

U

1� U⇧Q,⌦
. (34)

Since the bare interaction U is local, U e↵ depends only
on the transfer momentum Q and frequency ⌦ of the
particle-hole bubble

⇧Q,⌦ = �T
X

⌫

Z

p
G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (35)

The magnetic effective interaction in Eq. (34) will now be
used to compute the RPA equation for the charge chan-
nel. Adopting the simplified momentum dependences
of the effective interactions used in the fRG calcula-
tion, only the momentum integrated, that is, local part
of the magnetic interaction U e↵

⌦ =
R
Q U e↵

Q,⌦ contributes
to the charge channel. We thus obtain CQ,⌦(⌫1, ⌫2) =
C̃Q,⌦(⌫1, ⌫2 � ⌦), where

C̃Q,⌦(⌫1, ⌫3) = U e↵
⌫1�⌫3

⇥
�⌫1,⌫3 + U e↵

⌫1�⌫3
⇧Q,⌦(⌫1)

⇤�1
,

(36)

with

⇧Q,⌦(⌫) = �

Z

p
G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (37)

Note that the fermion frequencies ⌫ are not summed in
⇧Q,⌦(⌫), and the inverse in Eq. (36) is a matrix inverse of
the matrix with indices ⌫1 and ⌫3. Eq. (36) is nothing but
an RPA equation with a frequency dependent interaction
in the particle-hole channel. U e↵ depends on ⌫1� ⌫3 due
to the frequency exchange from particle-hole crossed to
particle-hole notation. In the case of a frequency inde-
pendent effective interaction U e↵ , Eq. (36) becomes ⌫1
and ⌫3 independent and only the summed bubble ⇧Q,⌦

appears. The frequency dependence of U e↵ qualitatively
affects the results.

In Fig. 9, we show the charge channel as computed
from Eq. (36) for Q = (0, 0) and different ⌦ as a func-
tion of ⌫1 and ⌫2 = ⌫3 +⌦, for T = t and x = 0.375. We
have to choose such a high temperature to stay in a stable
paramagnetic phase, due to the above-mentioned overes-
timation of the fluctuations within the RPA. In the more
accurate fRG calculation the magnetic instability occurs
at lower temperatures. The frequency structure in Fig. 9
for ⌦ = 2⇡T is very similar to the one shown in Fig. 8.
The simple contributions considered here reproduce the
position of the main structures, as well as the correct
sign of the charge channel. This is true also for the other
bosonic Matsubara frequencies shown here, for which we
do not report the fRG results. Furthermore, upon lower-
ing the temperature the charge channel diverges also for
other finite bosonic Matsubara frequencies, while it does
not diverge for ⌦ = 0. From this we conclude that the
frequency dependent effective magnetic interaction de-
scribed above is responsible for the frequency structure
of the charge channel observed in the fRG.

To understand why the divergence appears for a non-
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Figure 9. In the first three panels from the left, the charge channel CQ,⌦(⌫1, ⌫2) = C̃Q=(0,0),⌦(⌫1, ⌫2�⌦) computed from Eq. (36)
is shown as a function of ⌫1 and ⌫2 for transfer frequencies ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T , respectively. In the right panel, the
bubble ⇧Q=(0,0),⌦(⌫) is shown as a function of ⌫ for ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T . The model parameters are t0 = �0.32 and
U = 4, the doping x = 0.375, and the temperature T = t.

simple set of Feynman diagrams reproducing the same
features. The main idea is that the magnetic channel,
which is generated first, is responsible for the singular
structure in the charge channel.

To check this qualitatively, we first compute an effec-
tive interaction by means of an RPA in the magnetic
channel, and then insert this effective magnetic interac-
tion into a subsequent RPA equation for the charge chan-
nel. Of course one does not expect quantitative agree-
ment with the fRG, since we overestimate both interac-
tions, but the approximation is sufficient to reproduce
and explain the qualitative features we are interested in.

We start by introducing an effective interaction that
includes the magnetic fluctuations as computed by RPA
in the particle-hole crossed channel:

U e↵
Q,⌦ =

U

1� U⇧Q,⌦
. (34)

Since the bare interaction U is local, U e↵ depends only
on the transfer momentum Q and frequency ⌦ of the
particle-hole bubble

⇧Q,⌦ = �T
X

⌫

Z

p
G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (35)

The magnetic effective interaction in Eq. (34) will now be
used to compute the RPA equation for the charge chan-
nel. Adopting the simplified momentum dependences
of the effective interactions used in the fRG calcula-
tion, only the momentum integrated, that is, local part
of the magnetic interaction U e↵

⌦ =
R
Q U e↵

Q,⌦ contributes
to the charge channel. We thus obtain CQ,⌦(⌫1, ⌫2) =
C̃Q,⌦(⌫1, ⌫2 � ⌦), where
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with
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in the particle-hole channel. U e↵ depends on ⌫1� ⌫3 due
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particle-hole notation. In the case of a frequency inde-
pendent effective interaction U e↵ , Eq. (36) becomes ⌫1
and ⌫3 independent and only the summed bubble ⇧Q,⌦

appears. The frequency dependence of U e↵ qualitatively
affects the results.

In Fig. 9, we show the charge channel as computed
from Eq. (36) for Q = (0, 0) and different ⌦ as a func-
tion of ⌫1 and ⌫2 = ⌫3 +⌦, for T = t and x = 0.375. We
have to choose such a high temperature to stay in a stable
paramagnetic phase, due to the above-mentioned overes-
timation of the fluctuations within the RPA. In the more
accurate fRG calculation the magnetic instability occurs
at lower temperatures. The frequency structure in Fig. 9
for ⌦ = 2⇡T is very similar to the one shown in Fig. 8.
The simple contributions considered here reproduce the
position of the main structures, as well as the correct
sign of the charge channel. This is true also for the other
bosonic Matsubara frequencies shown here, for which we
do not report the fRG results. Furthermore, upon lower-
ing the temperature the charge channel diverges also for
other finite bosonic Matsubara frequencies, while it does
not diverge for ⌦ = 0. From this we conclude that the
frequency dependent effective magnetic interaction de-
scribed above is responsible for the frequency structure
of the charge channel observed in the fRG.
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Figure 9. In the first three panels from the left, the charge channel CQ,⌦(⌫1, ⌫2) = C̃Q=(0,0),⌦(⌫1, ⌫2�⌦) computed from Eq. (36)
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U = 4, the doping x = 0.375, and the temperature T = t.

simple set of Feynman diagrams reproducing the same
features. The main idea is that the magnetic channel,
which is generated first, is responsible for the singular
structure in the charge channel.

To check this qualitatively, we first compute an effec-
tive interaction by means of an RPA in the magnetic
channel, and then insert this effective magnetic interac-
tion into a subsequent RPA equation for the charge chan-
nel. Of course one does not expect quantitative agree-
ment with the fRG, since we overestimate both interac-
tions, but the approximation is sufficient to reproduce
and explain the qualitative features we are interested in.

We start by introducing an effective interaction that
includes the magnetic fluctuations as computed by RPA
in the particle-hole crossed channel:

U e↵
Q,⌦ =

U

1� U⇧Q,⌦
. (34)

Since the bare interaction U is local, U e↵ depends only
on the transfer momentum Q and frequency ⌦ of the
particle-hole bubble

⇧Q,⌦ = �T
X
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G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (35)

The magnetic effective interaction in Eq. (34) will now be
used to compute the RPA equation for the charge chan-
nel. Adopting the simplified momentum dependences
of the effective interactions used in the fRG calcula-
tion, only the momentum integrated, that is, local part
of the magnetic interaction U e↵

⌦ =
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Q U e↵

Q,⌦ contributes
to the charge channel. We thus obtain CQ,⌦(⌫1, ⌫2) =
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Note that the fermion frequencies ⌫ are not summed in
⇧Q,⌦(⌫), and the inverse in Eq. (36) is a matrix inverse of
the matrix with indices ⌫1 and ⌫3. Eq. (36) is nothing but
an RPA equation with a frequency dependent interaction
in the particle-hole channel. U e↵ depends on ⌫1� ⌫3 due
to the frequency exchange from particle-hole crossed to
particle-hole notation. In the case of a frequency inde-
pendent effective interaction U e↵ , Eq. (36) becomes ⌫1
and ⌫3 independent and only the summed bubble ⇧Q,⌦

appears. The frequency dependence of U e↵ qualitatively
affects the results.

In Fig. 9, we show the charge channel as computed
from Eq. (36) for Q = (0, 0) and different ⌦ as a func-
tion of ⌫1 and ⌫2 = ⌫3 +⌦, for T = t and x = 0.375. We
have to choose such a high temperature to stay in a stable
paramagnetic phase, due to the above-mentioned overes-
timation of the fluctuations within the RPA. In the more
accurate fRG calculation the magnetic instability occurs
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ing the temperature the charge channel diverges also for
other finite bosonic Matsubara frequencies, while it does
not diverge for ⌦ = 0. From this we conclude that the
frequency dependent effective magnetic interaction de-
scribed above is responsible for the frequency structure
of the charge channel observed in the fRG.

To understand why the divergence appears for a non-

9

Figure 9. In the first three panels from the left, the charge channel CQ,⌦(⌫1, ⌫2) = C̃Q=(0,0),⌦(⌫1, ⌫2�⌦) computed from Eq. (36)
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bubble ⇧Q=(0,0),⌦(⌫) is shown as a function of ⌫ for ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T . The model parameters are t0 = �0.32 and
U = 4, the doping x = 0.375, and the temperature T = t.

simple set of Feynman diagrams reproducing the same
features. The main idea is that the magnetic channel,
which is generated first, is responsible for the singular
structure in the charge channel.

To check this qualitatively, we first compute an effec-
tive interaction by means of an RPA in the magnetic
channel, and then insert this effective magnetic interac-
tion into a subsequent RPA equation for the charge chan-
nel. Of course one does not expect quantitative agree-
ment with the fRG, since we overestimate both interac-
tions, but the approximation is sufficient to reproduce
and explain the qualitative features we are interested in.

We start by introducing an effective interaction that
includes the magnetic fluctuations as computed by RPA
in the particle-hole crossed channel:

U e↵
Q,⌦ =

U

1� U⇧Q,⌦
. (34)

Since the bare interaction U is local, U e↵ depends only
on the transfer momentum Q and frequency ⌦ of the
particle-hole bubble

⇧Q,⌦ = �T
X

⌫

Z

p
G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (35)

The magnetic effective interaction in Eq. (34) will now be
used to compute the RPA equation for the charge chan-
nel. Adopting the simplified momentum dependences
of the effective interactions used in the fRG calcula-
tion, only the momentum integrated, that is, local part
of the magnetic interaction U e↵

⌦ =
R
Q U e↵

Q,⌦ contributes
to the charge channel. We thus obtain CQ,⌦(⌫1, ⌫2) =
C̃Q,⌦(⌫1, ⌫2 � ⌦), where
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Note that the fermion frequencies ⌫ are not summed in
⇧Q,⌦(⌫), and the inverse in Eq. (36) is a matrix inverse of
the matrix with indices ⌫1 and ⌫3. Eq. (36) is nothing but
an RPA equation with a frequency dependent interaction
in the particle-hole channel. U e↵ depends on ⌫1� ⌫3 due
to the frequency exchange from particle-hole crossed to
particle-hole notation. In the case of a frequency inde-
pendent effective interaction U e↵ , Eq. (36) becomes ⌫1
and ⌫3 independent and only the summed bubble ⇧Q,⌦

appears. The frequency dependence of U e↵ qualitatively
affects the results.

In Fig. 9, we show the charge channel as computed
from Eq. (36) for Q = (0, 0) and different ⌦ as a func-
tion of ⌫1 and ⌫2 = ⌫3 +⌦, for T = t and x = 0.375. We
have to choose such a high temperature to stay in a stable
paramagnetic phase, due to the above-mentioned overes-
timation of the fluctuations within the RPA. In the more
accurate fRG calculation the magnetic instability occurs
at lower temperatures. The frequency structure in Fig. 9
for ⌦ = 2⇡T is very similar to the one shown in Fig. 8.
The simple contributions considered here reproduce the
position of the main structures, as well as the correct
sign of the charge channel. This is true also for the other
bosonic Matsubara frequencies shown here, for which we
do not report the fRG results. Furthermore, upon lower-
ing the temperature the charge channel diverges also for
other finite bosonic Matsubara frequencies, while it does
not diverge for ⌦ = 0. From this we conclude that the
frequency dependent effective magnetic interaction de-
scribed above is responsible for the frequency structure
of the charge channel observed in the fRG.

To understand why the divergence appears for a non-
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Figure 8. Frequency dependence of the magnetic (top) and
charge (bottom) channel for t0 = �0.32, U = 4t and T =
0.08t. Top left : Magnetic channel M⇤

Q,⌦(⌫1, ⌫2) with self-
energy feedback at the instability vector and for vanishing
frequency transfer, for doping x = 0.025. Top right : Magnetic
channel M⇤

Q,⌦(⌫1, ⌫2) without self-energy feedback at the in-
stability vector and for vanishing frequency transfer, for dop-
ing x = 0.4. Bottom left : Frequency dependence of the charge
channel C⇤

Q,⌦(⌫1, ⌫2) with self-energy feedback at Q = (0, 0)
and frequency transfer ⌦ = 2⇡T , for doping x = 0.025.
Bottom right : Frequency dependence of the charge channel
C⇤
Q,⌦(⌫1, ⌫2) without self-energy feedback at Q = (0, 0) and

frequency transfer ⌦ = 2⇡T , for doping x = 0.4.

(at fixed bosonic frequency) is approximated by its lower
value, as will be shown in the next paragraph. Second, in
the static approximation the feedback of the other chan-
nels is overestimated, see below. For x � 0.34 there is
no divergence in any channel for the temperature consid-
ered.

In the same figure, the dashed green and the solid blue
line denote the value of the maximum of the d-wave chan-
nel D⇤ at ⇤c in the static and dynamic implementation,
respectively. In both cases the d-wave is not the leading
instability at the temperature under consideration,25 but
in the static approximation D

⇤c is orders of magnitude
larger than in the dynamic case. This effect of the vertex
frequency dependence can be understood from Eqs. (A4)
and (A6), where, neglecting the frequency structure, one
does not take into account the decay of the magnetic
channel for large (particle-hole) transfer frequencies.

B. Frequency dependence of vertex

We now discuss the remarkable frequency dependence
of the vertex. In particular, we will look at the chan-
nels that show a divergence, that is, the charge and the
magnetic instabilities observed in Fig. 2, while we refer
to Appendix B for the pairing channels.

As mentioned in the previous section, the divergences
of the charge and magnetic channels are quite different.
The charge channel diverges for a finite frequency trans-
fer, and only when we neglect the self-energy feedback.
Since the dependence on the transfer momentum and fre-
quency (Q,⌦) has already been discussed in Ref. 12, we
focus on the dependence on the fermionic frequencies.
Therefore we present various color plots for fixed (Q,⌦),
showing the dependence on ⌫1 and ⌫2.

In the top left panel of Fig. 8 we show the magnetic
channel M⇤c

Q,⌦(⌫1, ⌫2) in the small doping region, where
antiferromagnetism is the leading instability. The results
shown have been calculated with self-energy feedback,
but the frequency structures we discuss do not depend
strongly on the presence of the self-energy. For clarity
we restrict the plots to the first 20 positive and negative
Matsubara frequencies, larger frequencies can be deduced
by the asymptotic behavior.14 When only one channel
in Eq. (9) is taken into account, the fRG equations are
equivalent to the RPA . The magnetic channel calculated
with RPA would depend only on the frequency and mo-
mentum transfer, not on ⌫1 and ⌫2. Hence any varia-
tion in the frequency structure has to be ascribed to the
presence of the other channels in the fRG. The channel
competition suppresses the magnetic channel: the largest
value of M is reduced compared to the RPA, and the
frequency dependent structure at the center is further
reduced compared to the asymptotic values at large ⌫1,
⌫2.

In the bottom left panel of Fig. 8 we show the fre-
quency dependence of the charge channel C⇤c

Q,⌦(⌫1, ⌫2) for
a finite frequency transfer ⌦ = 2⇡T , related to the charge
instability discussed in Ref. 12 and above. The frequency
structure is completely different from the magnetic chan-
nel. The charge channel has its maximum for frequencies
⌫1 = ⇡T and ⌫2 = �⇡T . This structure cannot be ex-
plained in terms of standard ladder diagrams. It might
be related to the behavior of the retarded interaction de-
scribed in Ref. 26.

In the two right panels of Fig. 8 we show the same
quantities but for x = 0.4 and without self-energy feed-
back. In this case, the localized peak in the charge chan-
nel is the leading interaction. The position and shape of
the frequency structures are similar to the one described
above.

C. Origin of charge singularity

To gain insight into the origin of the singular frequency
structures observed in the charge channel, we identify a

6

Figure 3. Flow of the maximal values of the charge (C) and
magnetic (M) channels as functions of 1 � ⇤, for x = 0.4,
t0 = �0.32, U = 4t and T = 0.08t. Top: without self-energy
feedback; bottom: with self-energy feedback.

We defined the critical scale as the flow parameter for
which the value of the largest channel exceeds 200t. We
checked that these results are also consistent with a sta-
bility analysis based on the susceptibilities.

A divergence of the vertex at finite temperature is as-
sociated with spontaneous symmetry breaking, in vio-
lation of the Mermin-Wagner theorem.24 This is a con-
sequence of the truncation of the flow equations. In-
stead, we should interprete the finite temperature ver-
tex divergence as the signal of the appearance of strong
bosonic fluctuations that cannot be treated within the
approximation-scheme we are using.20 Even though in
our framework the flow cannot be continued beyond the
critical scale, from the analysis of vertex and self-energy
we can identify the relevant effective interactions of the
system.

For the parameter sets shown in Fig. 2, and with-
out self-energy feedback, there are two possible insta-
bilities. For doping smaller than 0.35 the leading fluc-
tations of the system are antiferromagnetic, with a com-
mensurate (AF) wave vector Q = (⇡,⇡), or an incom-
mensurate (iAF) wave vector of the form Q = (⇡,⇡� �).
The incommensurability � is determined by the momen-
tum Q where the magnetic channel M

⇤ has its maxi-
mum. The region of commensurate antiferromagnetism
for 0.125  x  0.150 has to be attributed to the presence
of a large plateau around (⇡,⇡) in the bare bubble. Cor-
respondingly, the commensurate antiferromagnetic insta-
blility is almost degenerate with an incommensurate one.

The most striking feature in Fig. 2 is the presence of
a divergence in the charge channel C⇤ at Q = (0, 0) for
the largest values of doping, marked by black stars. This
feature was already observed in a fRG calculation with a
simplified frequency parametrization by Husemann et al.
in Ref. 12 and named scattering instability. The charge
channel C⇤ diverges for a non-zero frequency transfer ⌦ =

Figure 4. Flow of the maximal values of the magnetic (M)
channel as functions of 1 � ⇤, for x = 0.025 (top) and x =
0.375 (bottom). The other parameters are t0 = �0.32, U = 4t
and T = 0.08t. Red symbols: with self-energy feedback; blue
symbols: without self-energy feedback.

2⇡T , which does not allow for a natural interpretation in
terms of a physical instability. The frequency structure
of the charge channel C⇤ together with its origin will be
further discussed in paragraph IV C.

The self-energy feedback has three effects. First, it
decreases 1 � ⇤c. Second, the incommensurability vec-
tor is affected, the region of commensurate antiferromag-
netism disappears, and one can observe a more regular
trend of increasing � with x. Third, the divergence in the
charge channel is completely suppressed, and the leading
instability in the doping region 0.375  x  0.4 remains
incommensurate antiferromagnetism. This can be also
seen from Fig. 3, where we compare the flow of the maxi-
mum (of the absolute value) of magnetic and charge chan-
nels with and without the self-energy feedback for doping
x = 0.4. Without self-energy feedback, the charge chan-
nel reaches large and negative values. The presence of
such a large (and negative) charge channel inhibits the
magnetic channel. The effect of the self-energy in the
flow is evident: the charge channel is strongly damped.
At the same time the magnetic channel is enhanced.

This is confirmed by Fig. 4, where we show the max-
imum of M with and without self-energy feedback for
x = 0.025 (top) and x = 0.375 (bottom). One can
see that the enhancement of M due to the self-energy
is specific of the large doping region, while, in the small
doping region the self energy decreases M. The self-
energy affects the magnetic channel directly by reduc-
ing the particle-hole bubble, and indirectly through the
feedback of other channels, that is, reducing the charge
channel. The former effect dominates for small doping,
the latter at large doping.

Trying to understand these self-energy feedback effects,
we looked for possible changes in the Fermi surface shape

abs Charge

Self energy suppresses the divergence

What is the origin of the divergence?
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Figure 9. In the first three panels from the left, the charge channel CQ,⌦(⌫1, ⌫2) = C̃Q=(0,0),⌦(⌫1, ⌫2�⌦) computed from Eq. (36)
is shown as a function of ⌫1 and ⌫2 for transfer frequencies ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T , respectively. In the right panel, the
bubble ⇧Q=(0,0),⌦(⌫) is shown as a function of ⌫ for ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T . The model parameters are t0 = �0.32 and
U = 4, the doping x = 0.375, and the temperature T = t.

simple set of Feynman diagrams reproducing the same
features. The main idea is that the magnetic channel,
which is generated first, is responsible for the singular
structure in the charge channel.

To check this qualitatively, we first compute an effec-
tive interaction by means of an RPA in the magnetic
channel, and then insert this effective magnetic interac-
tion into a subsequent RPA equation for the charge chan-
nel. Of course one does not expect quantitative agree-
ment with the fRG, since we overestimate both interac-
tions, but the approximation is sufficient to reproduce
and explain the qualitative features we are interested in.

We start by introducing an effective interaction that
includes the magnetic fluctuations as computed by RPA
in the particle-hole crossed channel:

U e↵
Q,⌦ =

U

1� U⇧Q,⌦
. (34)

Since the bare interaction U is local, U e↵ depends only
on the transfer momentum Q and frequency ⌦ of the
particle-hole bubble

⇧Q,⌦ = �T
X

⌫

Z

p
G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (35)

The magnetic effective interaction in Eq. (34) will now be
used to compute the RPA equation for the charge chan-
nel. Adopting the simplified momentum dependences
of the effective interactions used in the fRG calcula-
tion, only the momentum integrated, that is, local part
of the magnetic interaction U e↵

⌦ =
R
Q U e↵

Q,⌦ contributes
to the charge channel. We thus obtain CQ,⌦(⌫1, ⌫2) =
C̃Q,⌦(⌫1, ⌫2 � ⌦), where
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with
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Note that the fermion frequencies ⌫ are not summed in
⇧Q,⌦(⌫), and the inverse in Eq. (36) is a matrix inverse of
the matrix with indices ⌫1 and ⌫3. Eq. (36) is nothing but
an RPA equation with a frequency dependent interaction
in the particle-hole channel. U e↵ depends on ⌫1� ⌫3 due
to the frequency exchange from particle-hole crossed to
particle-hole notation. In the case of a frequency inde-
pendent effective interaction U e↵ , Eq. (36) becomes ⌫1
and ⌫3 independent and only the summed bubble ⇧Q,⌦

appears. The frequency dependence of U e↵ qualitatively
affects the results.

In Fig. 9, we show the charge channel as computed
from Eq. (36) for Q = (0, 0) and different ⌦ as a func-
tion of ⌫1 and ⌫2 = ⌫3 +⌦, for T = t and x = 0.375. We
have to choose such a high temperature to stay in a stable
paramagnetic phase, due to the above-mentioned overes-
timation of the fluctuations within the RPA. In the more
accurate fRG calculation the magnetic instability occurs
at lower temperatures. The frequency structure in Fig. 9
for ⌦ = 2⇡T is very similar to the one shown in Fig. 8.
The simple contributions considered here reproduce the
position of the main structures, as well as the correct
sign of the charge channel. This is true also for the other
bosonic Matsubara frequencies shown here, for which we
do not report the fRG results. Furthermore, upon lower-
ing the temperature the charge channel diverges also for
other finite bosonic Matsubara frequencies, while it does
not diverge for ⌦ = 0. From this we conclude that the
frequency dependent effective magnetic interaction de-
scribed above is responsible for the frequency structure
of the charge channel observed in the fRG.
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Figure 9. In the first three panels from the left, the charge channel CQ,⌦(⌫1, ⌫2) = C̃Q=(0,0),⌦(⌫1, ⌫2�⌦) computed from Eq. (36)
is shown as a function of ⌫1 and ⌫2 for transfer frequencies ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T , respectively. In the right panel, the
bubble ⇧Q=(0,0),⌦(⌫) is shown as a function of ⌫ for ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T . The model parameters are t0 = �0.32 and
U = 4, the doping x = 0.375, and the temperature T = t.

simple set of Feynman diagrams reproducing the same
features. The main idea is that the magnetic channel,
which is generated first, is responsible for the singular
structure in the charge channel.

To check this qualitatively, we first compute an effec-
tive interaction by means of an RPA in the magnetic
channel, and then insert this effective magnetic interac-
tion into a subsequent RPA equation for the charge chan-
nel. Of course one does not expect quantitative agree-
ment with the fRG, since we overestimate both interac-
tions, but the approximation is sufficient to reproduce
and explain the qualitative features we are interested in.

We start by introducing an effective interaction that
includes the magnetic fluctuations as computed by RPA
in the particle-hole crossed channel:

U e↵
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The magnetic effective interaction in Eq. (34) will now be
used to compute the RPA equation for the charge chan-
nel. Adopting the simplified momentum dependences
of the effective interactions used in the fRG calcula-
tion, only the momentum integrated, that is, local part
of the magnetic interaction U e↵
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appears. The frequency dependence of U e↵ qualitatively
affects the results.

In Fig. 9, we show the charge channel as computed
from Eq. (36) for Q = (0, 0) and different ⌦ as a func-
tion of ⌫1 and ⌫2 = ⌫3 +⌦, for T = t and x = 0.375. We
have to choose such a high temperature to stay in a stable
paramagnetic phase, due to the above-mentioned overes-
timation of the fluctuations within the RPA. In the more
accurate fRG calculation the magnetic instability occurs
at lower temperatures. The frequency structure in Fig. 9
for ⌦ = 2⇡T is very similar to the one shown in Fig. 8.
The simple contributions considered here reproduce the
position of the main structures, as well as the correct
sign of the charge channel. This is true also for the other
bosonic Matsubara frequencies shown here, for which we
do not report the fRG results. Furthermore, upon lower-
ing the temperature the charge channel diverges also for
other finite bosonic Matsubara frequencies, while it does
not diverge for ⌦ = 0. From this we conclude that the
frequency dependent effective magnetic interaction de-
scribed above is responsible for the frequency structure
of the charge channel observed in the fRG.
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U = 4, the doping x = 0.375, and the temperature T = t.
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(a) x = 0.025 (b) x = 0.400

Figure 10. Self-energy as a function of frequency for U = 4t, t0 = �0.32t at temperature T = 0.08t. The location of the k-point
in the Brillouin zone is color coded in the inset. The position of all the patching points taken into account for the self-energy
is shown as black circles in the top row of Figs. 5 and 6, and does not change during the flow. The shaded area highlights the
region between the maximal and minimal value of the self-energy for each frequency.

Figure 11. Quasiparticle weight Zk and decay rate �k as func-
tion of the angle ✓ for the same parameters as in Fig. 10(a).
The values on the left axis refer to the quasiparticle weight,
the values on the right axis refer to the decay rate.

fluctuations and suppress d-wave pairing fluctuations.
The complexity of the fully frequency dependent im-
plementation is rewarded by the possibility of accessing
and understanding the frequency structures arising in the
flow. We confirm that, in a flow without self-energy feed-
back, there exist regions of parameter space where the
vertex shows a divergence in the charge channel at non-
zero frequency, as already found in Ref. 12. We are able
to identify a simple set of Feynman diagrams that give
rise to the above-mentioned divergence, that are likely to

generate unexpected singular features in the charge chan-
nel also in other theories that take into account both the
frequency dependence of the vertex and the interplay of
different fluctuation channels.26

The proper treatment of the frequency dependence of
the vertex allows for a calculation of the frequency de-
pendent self-energy. We observed that the feedback of
the self-energy into the vertex flow plays an important
role, also at the qualitative level, since it suppresses the
unphysical divergence in the charge channel.

Given the increasing importance of the frequency de-
pendence as more correlated regimes are approached, our
work paves the way for future developments of the fRG
for correlated fermion systems. At moderate coupling,
like the one treated here, the combination of a frequency
dependent vertex and self-energy feedback allows to re-
visit and improve previous results. At strong coupling, a
non-perturbative starting point is needed. This is what
is proposed in DMF2RG,4 where the flow starts from the
DMFT solution for the vertex and the self-energy, which
are both strongly frequency dependent. Therefore, con-
sistently taking into account the frequency dependence is
crucial to access strongly interacting fermion systems.

ACKNOWLEDGMENTS

We are grateful to M. Salmhofer, A. Eberlein, S. An-
dergassen, A. Toschi for useful discussions. We thank
O. Gunnarsson for a critical reading of the manuscript
and D. T. Mantadakis for comments and suggestions.

7

Figure 5. Top row: momentum distribution for t0 = �0.32t,
T = 0.08t and doping x = 0.025. Left panel: non-interacting
case. Right panel: interacting case for U = 4t. The black
circles mark the points used to patch the self-energy. Bottom
row: cut of the occupation along the Brillouin zone paths re-
ported as arrows in the insets. Blue dashed curves are results
for the non-interacting system, while red dotted curves are
for U = 4t.

by analyzing the momentum distribution

n⇤(k) = 2T
X

⌫

ei⌫0
+

i⌫ � "k + µ⇤ � ⇤⌃⇤(k, ⌫)
. (33)

In Fig. 5 we show the non-interacting (top left) and in-
teracting (top right) momentum distribution in the first
quadrant of the Brillouin zone for doping x = 0.025. The
latter is computed at the critical scale ⇤c.

Comparing the two panels, one does not observe any
relevant shift of the Fermi surface position, but the Fermi
surface broadening is appreciably larger in the interacting
case, due to the self-energy. Similar results apply for
doping x = 0.4, as one can see from Fig. 6, where the
broadening is more evident.

In Fig. 7, we compare the critical scales for a dynamic
(frequency dependent) and a static (frequency indepen-
dent) vertex, both without self-energy feedback. The
static approximation is obtained by neglecting the fre-
quency structures of the channels, and approximating
them with their value at a given choice of frequencies.
Following Ref. 9, we evaluate the flow equations only for
⌦ = 0, as transfer frequency, and ±⇡T as fermionic ar-
guments. We observe that the critical scale 1 � ⇤c is
lower in the static case. This is due to two reasons, first,
by taking ⌫1 = �⌫2 = ⇡T the leading magnetic channel

Figure 6. Top row: momentum distribution for t0 = �0.32t,
T = 0.08t and doping x = 0.4. Left panel: non-interacting
case. Right panel: interacting case for U = 4t. The black
circles mark the points used to patch the self-energy. Bottom
row: cut of the occupation along the Brillouin zone paths re-
ported as arrows in the insets. Blue dashed curves are results
for the non-interacting system, while red dotted curves are
for U = 4t.

Figure 7. Critical scale 1�⇤c as a function of doping x = 1�n,
for T = 0.08t, t0 = �0.32t and U = 4t. Squares and trian-
gles refer to leading couplings in the magnetic channel for
frequency dependent (dynamic) and frequency independent
(static) fRG. The black stars refer to a divergence in the
charge channel at Q = (0, 0). For both fRG implementa-
tions, no self-energy feedback has been used. The color of
squares and circles encodes the distance of the incommensu-
rate magnetic Q-vector from (⇡,⇡): darker color corresponds
to a larger distance, as in Fig. 2. The solid light blue (dashed
green) line marks the maximal value of D⇤ at the critical
scale.

Momentum distribution

➡ Almost local along the FS

➡ Fermi liquid behaviour even close to iAF instability

➡ More broadening in antinodal direction

Self energy in Matsubara axis
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one obtains a simplified form of the self-energy

⌃(k,!) =
�2

! + µ � ✏k+Q + i0+
, (E4)

where � is a constant with the dimension of an energy.
From this expression it is clear that when the correlation
length is very large, the imaginary part of the self-energy
Im⌃(k,!) develops a pole at !p = ✏k+Q � µ. In weak-
coupling, there are therefore two regions in the t0 � p
plane separated by the non-interacting Lifshitz transition
line. In one region (below the Lifshitz line), the non-
interacting Fermi surface is hole-like. The Fermi surface
crosses the line ✏k+Q�µ = 0 where there is a pole at zero
energy. This induces ’hot spots’ on the Fermi surface,
where the spectral intensity is reduced. At the antinode,
the pole is on the negative energy side. In the other
region, the Fermi surface is electron-like. It does not

cross ✏k+Q�µ = 0 and there is no suppression of spectral
weight. The pole in the antinodal self-energy is on the
positive energy side.

To summarise, in weak-coupling the non-interacting
Lifshitz transition defines the symmetry of the pole, the
location of the Lifshitz transition and the suppression of
spectral weight at the hot spots. This is very di↵erent
from our results in the strong coupling regime U = 7
where these phenomena are controlled by three di↵erent
lines. By varying U one can observe how the transition
from weak to strong coupling happens. Figure 13 shows
the DQMC results for several values of U . The lines
show where the real part of the self-energy vanishes. It
separates a region where the pole in the self-energy is
at negative energies and one where it is on the positive
side. It is seen that as U becomes smaller the lines slowly
approach the non-interacting Lifshitz transition, as ex-
pected in weak-coupling.
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M. Civelli, and G. Kotliar, Phys. Rev. B 73, 165114
(2006).

[18] D. J. Scalapino, in Handbook of High-Temperature Su-

perconductivity: Theory and Experiment, edited by J. R.
Schrie↵er and J. S. Brooks (Springer New York, 2007)
pp. 495–526.

[19] K. Haule and G. Kotliar, Phys. Rev. B 76, 104509 (2007).
[20] M. Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet,

G. Kotliar, and A. Georges, Phys. Rev. B 80, 064501
(2009).

[21] E. Gull, M. Ferrero, O. Parcollet, A. Georges, and A. J.
Millis, Phys. Rev. B 82, 155101 (2010).

[22] G. Sordi, P. Sémon, K. Haule, and A.-M. S. Tremblay,
Phys. Rev. Lett. 108, 216401 (2012).
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Figure 12. Correlation e↵ects shown as a function of U for
three quantities: the quasiparticle e↵ective dispersion ✏̃(⇡,0),
the imaginary part of the antinodal self-energy at zero energy
Im⌃(⇡,0)(! = 0) and the di↵erence in spectral intensity at
the Fermi level for the two lowest calculated temperatures
indicating whether a pseudogap has formed.

Figure 13. The lines in the t0 � p plane show where
the low-energy imaginary part of the antinodal self-energy
Im⌃(⇡,0)(!) has its pole-like feature centred around ! = 0
and an essentially particle-hole symmetric low-energy spec-
trum. On these curves Re⌃(⇡,0)(! = 0) vanishes. The solid
lines are obtained by DQMC for di↵erent values of U , while
the dashed line is the result from the SDW weak-coupling ap-
proach. The dashed line coincides with the non-interacting
Lifshitz transition.
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lower orders; all possible insertions of the total order p
can be implicitly summed and integrated over the in-
ternal momentum/frequency variables by including the
results for ãn, n  p in the propagator lines:

G(p) =
pX

n=0

G(n)ãp�n⇠
p�nG̃0, p > 0, G(0)

⌘ G̃0, (5)

so that G(p)
/ ⇠p. Then ãm can be obtained by Di-

agMC sampling of only 1PI skeleton diagrams of order
l = {1, . . . ,m}, where in each diagram some bare propa-
gators G̃0 are randomly replaced by dressed propagators
G(pi) so that

P
i
pi = m � l. This recursive approach

substantially improves the e�ciency of DiagMC by e↵ec-
tively reducing the configuration space and can be gen-
eralized to other channels, e.g. by introducing dressed
interaction lines W (p), dressed two-particle irreducible
vertices �(p), etc.

Illustrative result at high T/t. We first investigate the
simplest case of a constant field ↵k(i!n) ⌘ ↵. In Fig. 1,
we illustrate its e↵ect on the Hubbard model at U = 4
and T = 0.5, using determinantal QMC simulation on
a 16 ⇥ 16 lattice as a benchmark [17]. In the first row
of Fig. 1, we compare the value of ⌃(k, i!n) at the first
few Matsubara frequencies and k = (⇡/4,⇡) summed up

to order K, i.e. ⌃(k, i!n) =
P

K

m=1 ãm(k, n)⇠m. Fig. 1a
shows the behaviour of the standard series (2) (with the
Hartree diagrams included in the Green’s function follow-
ing Refs. [10, 11]), Fig. 1b and Fig. 1c show the behavior
for two di↵erent choices of ↵. Clearly, the standard se-
ries and the one for an arbitrarily selected ↵ = 0.6 fail
to converge within accessible orders. However, a clever
choice of ↵ = 1.53 yields a great improvement of con-
vergence. The exact result is recovered already at order
4 and the extrapolation of the series to infinite order is
straightforward.

Rationale: pole-moving. In order to get insight into
the improvement brought by the introduction of a mod-
ified action, we study in details the limiting case t = 0,
the Hubbard atom, which can be solved exactly. In par-
ticular, we show how tuning ↵ allows to control the con-
vergence radius of the series (4). The self-energy for the
action S⇠ and t = 0 is given by

⌃(i!n) =
n⇠U

2
+

1

4

n(2� n)⇠2U2

i!n + µ̃� (2� n)⇠U/2
(6)

µ̃ = ⇠↵� ↵+ µ (7)

where n = [e�µ̃ + e2�µ̃��⇠U ]/[1 + 2e�µ̃ + e2�µ̃��⇠U ] is
the density. The analytical structure of ⌃(i!0) in the
complex-⇠ plane is shown in Fig. 1e and Fig. 1f. The
convergence radius R of the series expansion in ⇠ is given
by the distance from the origin to the closest pole in the
complex-⇠ plane, which strongly depends on the value of
↵. For ↵ = 0.6 a pole is closer to the origin than the
evaluation point ⇠ = 1 and the series diverges, whereas

Figure 2. Imaginary part of the self-energy at the node,
hot-spot and anti-node at U = 5.6, t0 = �0.3, n = 0.96,
T = 0.2. Inset: DCA results with cluster size Nc = 8, 16,
32, 52 extrapolate to the DiagMC-summed result at di↵erent
frequencies.

for ↵ = 1.53 the poles are further away and the series is
convergent at ⇠ = 1. When ↵ is further increased, new
poles get closer to the origin and there is therefore an op-
timal value for ↵ for which the radius of convergence is
maximal. A systematic study for the full Hubbard model
at T = 0.5 suggests an optimal value of ↵ ' 1.53, close
to this atomic estimate ↵ ⇠ 1.3 , as expected from a
similar analytic structure of ⌃ at this high temperature.
Thus the Hubbard atom can provide a reasonable guide
for finding the optimal ↵. Finally, we find the largest
convergence radius and the corresponding optimal ↵ for
di↵erent densities of the Hubbard atom, as displayed in
Fig. 1d. We see that R is infinite at half-filling and be-
comes finite (R . 2.5) as soon as a doping is introduced.
For U = 4, the convergence radius is always large enough
for the series to converge. It has a minimum R ' 1.6 > 1
around 10% hole (or electron) doping.

Reaching the pseudogap scale. We now show that this
improved scheme allows one to reach the pseudogap re-
gion [18–21]. We consider the Hubbard model at 4%
hole doping and U = 5.6, t0 = �0.3. We could achieve
convergence down to T = 0.2, where we compute the
self-energy up to 7th order with an optimized ↵ = 2.3. In
Fig. 2, we display the imaginary part of the self-energy
Im⌃(k, i!n) taken at three di↵erent momenta k on the
Fermi surface (FS). We see that the self-energy behaves
di↵erently at the nodal point kN = (1.47, 1.47) (inter-
section of the FS with the zone diagonal) in comparison
to the antinode kAN = (3.04, 0.49) (where the FS hits
the upper zone boundary). The imaginary part of the
AN self-energy extrapolates to a larger negative value at
low-frequency, indicating strongest correlation e↵ects at
the AN. Hence, a clear N/AN di↵erentiation is already
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Figure 8. Frequency dependence of the magnetic (top) and
charge (bottom) channel for t0 = �0.32, U = 4t and T =
0.08t. Top left : Magnetic channel M⇤

Q,⌦(⌫1, ⌫2) with self-
energy feedback at the instability vector and for vanishing
frequency transfer, for doping x = 0.025. Top right : Magnetic
channel M⇤

Q,⌦(⌫1, ⌫2) without self-energy feedback at the in-
stability vector and for vanishing frequency transfer, for dop-
ing x = 0.4. Bottom left : Frequency dependence of the charge
channel C⇤

Q,⌦(⌫1, ⌫2) with self-energy feedback at Q = (0, 0)
and frequency transfer ⌦ = 2⇡T , for doping x = 0.025.
Bottom right : Frequency dependence of the charge channel
C⇤
Q,⌦(⌫1, ⌫2) without self-energy feedback at Q = (0, 0) and

frequency transfer ⌦ = 2⇡T , for doping x = 0.4.

(at fixed bosonic frequency) is approximated by its lower
value, as will be shown in the next paragraph. Second, in
the static approximation the feedback of the other chan-
nels is overestimated, see below. For x � 0.34 there is
no divergence in any channel for the temperature consid-
ered.

In the same figure, the dashed green and the solid blue
line denote the value of the maximum of the d-wave chan-
nel D⇤ at ⇤c in the static and dynamic implementation,
respectively. In both cases the d-wave is not the leading
instability at the temperature under consideration,25 but
in the static approximation D

⇤c is orders of magnitude
larger than in the dynamic case. This effect of the vertex
frequency dependence can be understood from Eqs. (A4)
and (A6), where, neglecting the frequency structure, one
does not take into account the decay of the magnetic
channel for large (particle-hole) transfer frequencies.

B. Frequency dependence of vertex

We now discuss the remarkable frequency dependence
of the vertex. In particular, we will look at the chan-
nels that show a divergence, that is, the charge and the
magnetic instabilities observed in Fig. 2, while we refer
to Appendix B for the pairing channels.

As mentioned in the previous section, the divergences
of the charge and magnetic channels are quite different.
The charge channel diverges for a finite frequency trans-
fer, and only when we neglect the self-energy feedback.
Since the dependence on the transfer momentum and fre-
quency (Q,⌦) has already been discussed in Ref. 12, we
focus on the dependence on the fermionic frequencies.
Therefore we present various color plots for fixed (Q,⌦),
showing the dependence on ⌫1 and ⌫2.

In the top left panel of Fig. 8 we show the magnetic
channel M⇤c

Q,⌦(⌫1, ⌫2) in the small doping region, where
antiferromagnetism is the leading instability. The results
shown have been calculated with self-energy feedback,
but the frequency structures we discuss do not depend
strongly on the presence of the self-energy. For clarity
we restrict the plots to the first 20 positive and negative
Matsubara frequencies, larger frequencies can be deduced
by the asymptotic behavior.14 When only one channel
in Eq. (9) is taken into account, the fRG equations are
equivalent to the RPA . The magnetic channel calculated
with RPA would depend only on the frequency and mo-
mentum transfer, not on ⌫1 and ⌫2. Hence any varia-
tion in the frequency structure has to be ascribed to the
presence of the other channels in the fRG. The channel
competition suppresses the magnetic channel: the largest
value of M is reduced compared to the RPA, and the
frequency dependent structure at the center is further
reduced compared to the asymptotic values at large ⌫1,
⌫2.

In the bottom left panel of Fig. 8 we show the fre-
quency dependence of the charge channel C⇤c

Q,⌦(⌫1, ⌫2) for
a finite frequency transfer ⌦ = 2⇡T , related to the charge
instability discussed in Ref. 12 and above. The frequency
structure is completely different from the magnetic chan-
nel. The charge channel has its maximum for frequencies
⌫1 = ⇡T and ⌫2 = �⇡T . This structure cannot be ex-
plained in terms of standard ladder diagrams. It might
be related to the behavior of the retarded interaction de-
scribed in Ref. 26.

In the two right panels of Fig. 8 we show the same
quantities but for x = 0.4 and without self-energy feed-
back. In this case, the localized peak in the charge chan-
nel is the leading interaction. The position and shape of
the frequency structures are similar to the one described
above.

C. Origin of charge singularity

To gain insight into the origin of the singular frequency
structures observed in the charge channel, we identify a
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➡ d-wave pairing fluctuations
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Method. – A rather flexible and effective formulation
of DMF2RG (see also the Supplementary Material sec-
tion for further details) is obtained starting from the local
(or “impurity”) action of DMFT

SDMFT = −

∫ β

0

dτdτ ′
∑

iσ

c̄iσ(τ)G
0
AIM(τ − τ ′)−1ciσ(τ

′)

+ Sint . (1)

Here, c̄iσ(ciσ) are the Grassmann variables correspond-
ing to the creation (annihilation) of a fermion with spin
projection σ =↑, ↓ on site i, G0

AIM(τ−τ ′) is the electronic-
bath Green’s function of the auxiliary effective Anderson
impurity model (AIM), which in a first step needs to be
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non-local correlations beyond DMFT. Neglecting three
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for the self-energy and the two-particle vertex are shown
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of the two-particle vertex Γ relies on the assumption
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however, that three- (and more-) particle vertices are in-
cluded on the local level by DMFT. This flow scheme
results in the following single-scale propagator (defined
as ∂GΛ/∂Λ|ΣΛfixed)

SΛ(k, iω)=G2
Λ(k, iω)

[

G0
latt(k, iω)

−1−G0
AIM(iω)−1

]

(4)

which includes the full Green’s function GΛ(k, iω) =
[G0

Λ(k, iω)
−1 − ΣΛ(k, iω)]−1.

While the formal structure of the flow equations, di-
agrammatically depicted in Fig. 1, resembles the one of
the conventional fRG implementation, in the DMF2RG

FIG. 1: (Color online) Schematic illustration of the DMF2RG
approach, showing the evolution of the Gaussian part G0

Λ

of the action from DMFT to its exact expression for a two-
dimensional system. The (truncated) flow equations for the
self-energy ΣΛ and the two-particle vertex ΓΛ

2 are explicitly
given in terms of Feynman diagrams.

the initial conditions strongly differ, as they are deter-
mined, both at the one- and the two-particle level, by
DMFT, which provides the initial self-energy ΣΛ=1 =
ΣDMFT(iω) and one-particle irreducible (1PI) vertex
ΓΛ=1
2 = ΓDMFT(iν1, iν2; iν′1, iν

′
2) [20]. As a consequence,

DMF2RG is numerically more expensive as compared to
the conventional fRG or DMFT schemes: (i) two-particle
vertices have to be computed in DMFT [21] as an input
to the 1PI-fRG flow and (ii) the frequency dependence
of ΣΛ and ΓΛ

2 has to be included in the fRG [25], with
a proper frequency-dependent parametrization; accord-
ing to a generic estimate of the numerical effort gives
N4

kN
4
ω, Nk(Nω) being the number of momenta (frequen-

cies). DMF2RG also allows to bypass the sign-problem of
a direct quantum Monte Carlo (QMC) treatment of non-
local correlations, since QMC will be limited, at most,
to DMFT calculations of one- and two-particle local ver-
tices.

Application to the 2D Hubbard Model. – We now
show, as a first application of DMF2RG, results for
a prototypical model of correlated fermions, the two-
dimensional Hubbard model. We recall that the inter-
play of antiferromagnetism and superconductivity in this
model has been studied by weak coupling truncations of
various versions of the fRG already some time ago [26–
29]. In standard second-quantization notation, the Hub-

2

Method. – A rather flexible and effective formulation
of DMF2RG (see also the Supplementary Material sec-
tion for further details) is obtained starting from the local
(or “impurity”) action of DMFT

SDMFT = −

∫ β

0

dτdτ ′
∑

iσ

c̄iσ(τ)G
0
AIM(τ − τ ′)−1ciσ(τ

′)

+ Sint . (1)

Here, c̄iσ(ciσ) are the Grassmann variables correspond-
ing to the creation (annihilation) of a fermion with spin
projection σ =↑, ↓ on site i, G0

AIM(τ−τ ′) is the electronic-
bath Green’s function of the auxiliary effective Anderson
impurity model (AIM), which in a first step needs to be
determined self-consistently in DMFT [7] (see left-hand
side of Fig. 1), and Sint is a local interaction.
With this DMFT solution as a starting point, the fRG

generates a flow to the finite-dimensional action of inter-
est

Slatt = −

∫ β

0

dτdτ ′
∑

kσ

c̄kσ(τ)G
0
latt(k, τ − τ ′)−1ckσ(τ

′)

+ Sint, (2)

where G0
latt

(k, τ − τ ′) is the free propagator of the finite
dimensional system, which reads G0

latt(k, iω) = (iω −
ϵk+µ)−1 in terms of Matsubara frequencies, the energy-
momentum dispersion ϵk and the chemical potential µ.
In Fig. 1 the specific case of a 2D square lattice is shown.
For the DMF2RG scheme we now introduce a flow pa-

rameter Λ [17] so that

G0
Λ(k, iω)

−1 = ΛG0
AIM(iω)−1+(1−Λ)G0

latt(k, iω)
−1, (3)

interpolates between the initial DMFT (Λinitial = 1) and
the final action (Λfinal = 0).
The flow of DMF2RG hence gradually switches off the

DMFT-bath and switches on the 2D hopping, including
non-local correlations beyond DMFT. Neglecting three
(and more) particle vertices, the flow equations [6, 19]
for the self-energy and the two-particle vertex are shown
in Fig. 1. The truncation of the hierarchy at the level
of the two-particle vertex Γ relies on the assumption
that the relevant physics is captured by the structure
appearing on the two-particle level. Let us emphasize,
however, that three- (and more-) particle vertices are in-
cluded on the local level by DMFT. This flow scheme
results in the following single-scale propagator (defined
as ∂GΛ/∂Λ|ΣΛfixed)

SΛ(k, iω)=G2
Λ(k, iω)

[

G0
latt(k, iω)

−1−G0
AIM(iω)−1

]

(4)

which includes the full Green’s function GΛ(k, iω) =
[G0

Λ(k, iω)
−1 − ΣΛ(k, iω)]−1.

While the formal structure of the flow equations, di-
agrammatically depicted in Fig. 1, resembles the one of
the conventional fRG implementation, in the DMF2RG

FIG. 1: (Color online) Schematic illustration of the DMF2RG
approach, showing the evolution of the Gaussian part G0

Λ

of the action from DMFT to its exact expression for a two-
dimensional system. The (truncated) flow equations for the
self-energy ΣΛ and the two-particle vertex ΓΛ

2 are explicitly
given in terms of Feynman diagrams.

the initial conditions strongly differ, as they are deter-
mined, both at the one- and the two-particle level, by
DMFT, which provides the initial self-energy ΣΛ=1 =
ΣDMFT(iω) and one-particle irreducible (1PI) vertex
ΓΛ=1
2 = ΓDMFT(iν1, iν2; iν′1, iν

′
2) [20]. As a consequence,

DMF2RG is numerically more expensive as compared to
the conventional fRG or DMFT schemes: (i) two-particle
vertices have to be computed in DMFT [21] as an input
to the 1PI-fRG flow and (ii) the frequency dependence
of ΣΛ and ΓΛ

2 has to be included in the fRG [25], with
a proper frequency-dependent parametrization; accord-
ing to a generic estimate of the numerical effort gives
N4

kN
4
ω, Nk(Nω) being the number of momenta (frequen-

cies). DMF2RG also allows to bypass the sign-problem of
a direct quantum Monte Carlo (QMC) treatment of non-
local correlations, since QMC will be limited, at most,
to DMFT calculations of one- and two-particle local ver-
tices.

Application to the 2D Hubbard Model. – We now
show, as a first application of DMF2RG, results for
a prototypical model of correlated fermions, the two-
dimensional Hubbard model. We recall that the inter-
play of antiferromagnetism and superconductivity in this
model has been studied by weak coupling truncations of
various versions of the fRG already some time ago [26–
29]. In standard second-quantization notation, the Hub-

bare interaction( standard init. cond.:                                                       )�⇤in = 0

��in(i�) = �DMFT(i�)

��in(i�0
1, i�

0
2, i�1;k

0
1,k

0
2,k1) = �DMFT(i�0

1, i�
0
2, i�1)

new init. cond.:new: local DMFT solution

✔✔✔

exploit freedom of choice for cutoff and !

Motivation Expansion around a reference system fRG for the auxiliary fields Conclusion

Starting points in the fRG

Large freedom in the choice of the cuto↵ and Sinitial

Error of truncation accumulates during the flow

W. Metzner et al., RMP 2012

2 / 11

Motivation Expansion around a reference system fRG for the auxiliary fields Conclusion

Starting points in the fRG

Include correlation e↵ects already in initial conditions

Reduce truncation error by starting ’closer’ to final action

A. Rancon et al., PRB 2011, J. Reuther et al., PRB 2013

M. Kinza et al., PRB 2013, C. Taranto et al., PRL 2014

2 / 11

Motivation Expansion around a reference system fRG for the auxiliary fields Conclusion

Starting points in the fRG

Large freedom in the choice of the cuto↵ and Sinitial

Error of truncation accumulates during the flow

W. Metzner et al., RMP 2012

2 / 11

truncation error accumulates during the flow!

→ include correlation effects already in initial conditions

→ reduce truncation error by staring ‘closer’ to final action
!

Kinza et al., PRB (2013)!
Reuther and Thomale, PRB (2014)

Rancon and Dupuis, PRB (2011)

Taranto et al., PRL (2014)!

Motivation Expansion around a reference system fRG for the auxiliary fields Conclusion

Starting points in the fRG

Include correlation e↵ects already in initial conditions

Reduce truncation error by starting ’closer’ to final action

A. Rancon et al., PRB 2011, J. Reuther et al., PRB 2013

M. Kinza et al., PRB 2013, C. Taranto et al., PRL 2014

2 / 11

DMF2RG :

General formulation for correlated starting points

Georges et al. RMP (1996)

Metzner and Vollhardt PRL (1989) Georges and Kotliar PRB (1991)

DMF2RG: start from DMFT solution

TN ⇠ e�
cp
U

DMFT Phase diagram with SSB

AF   LRO

➡ Use converged DMFT solution 
as initial condition for fRG

➡ DMFT capture strong coupling 
physics with local fluctuations



DMF2RG: DMFT vertex

At strong coupling:

F!,⌫,⌫0

DMFT

LOCAL ELECTRONIC CORRELATION AT THE TWO- . . . PHYSICAL REVIEW B 86, 125114 (2012)

ω
ν

(ν + ω) (ν + ω)

ν

FIG. 1. Particle-hole scattering.

independent, as a result of the conservation of spin. In
fact, among the 24 = 16 possible combinations of spins,
only the following 3 × 2 = 6 remain: (i) σ1 = σ2 = σ3 = σ4,
with σ1 =↑ , ↓; (ii) (σ1 = σ2) ̸= (σ3 = σ4), with σ1 =↑ , ↓;
(iii) (σ1 = σ4) ̸= (σ2 = σ3), with σ1 =↑ , ↓. This suggests the
following definitions:

χσσ ′(τ1,τ2,τ3) := χσσσ ′σ ′(τ1,τ2,τ3), (6a)

χσσ ′(τ1,τ2,τ3) := χσσ ′σ ′σ (τ1,τ2,τ3), (6b)

which cover all six cases mentioned above. Eventually, using
the crossing symmetry,37 one can show that the quantity
defined in Eq. (6b) can be obtained from the one given in
Eq. (6a) by means of a mere frequency shift as it is explained
in Appendix D2. For this reason, we will commit ourselves
to Eq. (6a) and consider Eq. (6b) only later when dealing
explicitly with the spin structure of the irreducible vertices.

When switching to frequency space, it is convenient to
define the Fourier transform of χ in two different ways, which
we refer to as particle-hole (ph) and particle-particle (pp)
notation, respectively,

χνν ′ω
ph,σσ ′ := χ (νσ,(ν ′ + ω)σ︸ ︷︷ ︸

outgoing electrons

; ν ′σ ′,(ν + ω)σ ′
︸ ︷︷ ︸
incoming electrons

) :

=
∫ β

0
dτ1dτ2dτ3 χσσ ′(τ1,τ2,τ3)

× e− iντ1ei(ν+ω)τ2e− i(ν ′+ω)τ3 , (7a)

χνν ′ω
pp,σσ ′ := χ (νσ,(ω − ν)σ ′

︸ ︷︷ ︸
outgoing electrons

; (ω − ν ′)σ,ν ′σ ′
︸ ︷︷ ︸
incoming electrons

) :

=
∫ β

0
dτ1dτ2dτ3 χσσ ′(τ1,τ2,τ3)

× e− iντ1ei(ω− ν ′)τ2e− i(ω− ν)τ3 , (7b)

with ν and ν ′ being fermionic Matsubara frequencies [i.e.,
ν(′) = π

β
(2n(′) + 1), n(′) ∈ Z] and ω being a bosonic Matsubara

frequency [i.e., ω = π
β

(2m),m ∈ Z].
The choice of the frequency convention for both cases has a

clear physical motivation. (i) In the ph case, one considers the
scattering process of a hole with energy − ν and an electron
with energy ν + ω, i.e., the total energy of this process is ω
(see Fig. 1). (ii) In the pp case, we look at the scattering of two
electrons with energies ν ′ and ω − ν ′ (see Fig. 2). Again the
total energy of this process is ω. Since in the full two-particle
Green’s function both processes are included, it is possible to
express the χpp in terms of χph and vice versa

χνν ′ω
pp,σσ ′ = χ

νν ′(ω− ν− ν ′)
ph,σσ ′ , χνν ′ω

ph,σσ ′ = χ
νν ′(ω+ν+ν ′)
pp,σσ ′ . (8)

In the following, we will constrict ourselves to χph ≡ χ and
return to χpp only when explicitly needed (all the definitions,
results, etc., of the following section apply also to χpp).
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ν

FIG. 2. Particle-particle scattering.

In the case of an interacting system (U ̸= 0), the suscepti-
bility χ can be decomposed into two parts, in order to divide the
bubble terms (independent propagation of the two particles)
from the vertex corrections, as it is illustrated in Fig. 3.

χνν ′ω
σσ ′ = − βGσ (ν)Gσ (ν + ω)δνν ′δσσ ′

− Gσ (ν)Gσ (ν + ω)F νν ′ω
σσ ′ Gσ ′(ν ′)Gσ ′(ν ′ + ω). (9)

The full vertex function F appearing on the right-hand
side of Eq. (9) includes all possible vertex corrections, or
in other words, all possible scattering events between the
two propagating fermions, and can be hence interpreted
in terms of the amplitude of a scattering process between
two quasiparticles,36,37 at least in the Fermi-liquid regime,
where the one-particle excitations are unambiguously defined.
Equation (9) can be also more compactly written in terms of
the “one-particle”-like bubble part of χ , defined as

χνν ′ω
0 = − βGσ (ν)Gσ (ν + ω)δνν ′ , (10)

where the spin indices on the left-hand side can be omitted by
restricting oneself to the paramagnetic case

χνν ′ω
σσ ′ = χνν ′ω

0 δσσ ′ − 1
β2

∑

ν1ν2

χνν1ω
0 F ν1ν2ω

σσ ′ χν2ν
′ω

0 . (11)

Analogous definitions can be introduced for the particle-
particle notation.

B. Diagrammatics and mutual relations

The full vertex function F defined in Eq. (9) is the connected
part of the complete four-point function. From a diagrammatic
point of view, F consists of all “fully connected” two-particle
diagrams, i.e., all diagrams which are not separated into two
parts. These diagrams, in turn, can be classified with respect
to the way how they can be split into two parts by cutting two
internal Green’s function lines.

(i) Fully irreducible. Diagrams of F , which can not be
split into two parts by cutting two internal Green’s function

χνν ω
σσ

=

Gσ(ν + ω)

−−βδνν δσσ

Gσ(ν)

Gσ(ν + ω) Gσ (ν + ω)

F νν ω
σσ

Gσ(ν) Gσ (ν )

FIG. 3. Diagrammatic representation of the generalized suscep-
tibility χνν′ω

σσ ′ , as defined in Eqs. (7a) and (9). In the interacting case,
χνν′ω

σσ ′ is naturally decomposed into a bubble term [χ0, see Eq. (10)]
and vertex correction terms (F ).
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➡ Localized structure due to local moment
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DMF2RG: Néel temperature at half-filling

➡ Non-local fluctuations slightly reduce the Néel temperature 

Spin susceptibility 

➡ Result stable over a large range of coupling strength

Perfect nesting:

Brillouin zone

➡ Mean field critical exponent



DMF2RG: away from half-filling

Strong coupling regime and doped region

➡ Incommensurate antiferromagnetism 
in doped case

Critical scale 

d-wave pairing fluctuations

➡ No d-wave instability at this temperature

➡ Emergency of large d-wave pairing 
fluctuations at border of AF onset



DMF2RG: away from half-filling

➡ Incommensurate antiferromagnetism in undoped case

Results:

Strong coupling regime and doped region

➡ Local and Fermi-liquid self-energy as in weak-to-
intermediate coupling fRG

No indications for pseudogap: 
Lack of method or model?



DMF2RG: away from half-filling

Strong coupling regime and doped region

Spin susceptibility DMFT bubble

Where the incommensurate peak comes from?

★ From the non-locality of the self-energy?

Three possibilities:

★ From the channel competition?

✓ From the DMFT vertex?



ladder-DMFT: away from half-filling

Strong coupling regime and doped region

DMFT bubble

Frequency summed bubble

Matrix multiplication in frequency space

Local vertex affects non-local 
spin susceptibility 



DMF2RG: d-wave pairing fluctuations

Lowering the temperature:

➡ Strong d-wave pairing fluctuations in the iAF phase

➡ Precursor of d-wave instability at lower Tc?

➡ Localised frequency structure as in fRG



➡ Flow to the strong coupling by starting from DMFT solution

Conclusion

Outlook

➡ Important frequency dependence in the intermediate coupling

➡ Lowering the Temperature to enhance the interplay between AF and SC

➡ Local vertex affects non-local susceptibility

➡ Strong d-wave pairing fluctuations at Temperature studied
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Figure 8. Frequency dependence of the magnetic (top) and
charge (bottom) channel for t0 = �0.32, U = 4t and T =
0.08t. Top left : Magnetic channel M⇤

Q,⌦(⌫1, ⌫2) with self-
energy feedback at the instability vector and for vanishing
frequency transfer, for doping x = 0.025. Top right : Magnetic
channel M⇤

Q,⌦(⌫1, ⌫2) without self-energy feedback at the in-
stability vector and for vanishing frequency transfer, for dop-
ing x = 0.4. Bottom left : Frequency dependence of the charge
channel C⇤

Q,⌦(⌫1, ⌫2) with self-energy feedback at Q = (0, 0)
and frequency transfer ⌦ = 2⇡T , for doping x = 0.025.
Bottom right : Frequency dependence of the charge channel
C⇤
Q,⌦(⌫1, ⌫2) without self-energy feedback at Q = (0, 0) and

frequency transfer ⌦ = 2⇡T , for doping x = 0.4.

(at fixed bosonic frequency) is approximated by its lower
value, as will be shown in the next paragraph. Second, in
the static approximation the feedback of the other chan-
nels is overestimated, see below. For x � 0.34 there is
no divergence in any channel for the temperature consid-
ered.

In the same figure, the dashed green and the solid blue
line denote the value of the maximum of the d-wave chan-
nel D⇤ at ⇤c in the static and dynamic implementation,
respectively. In both cases the d-wave is not the leading
instability at the temperature under consideration,25 but
in the static approximation D

⇤c is orders of magnitude
larger than in the dynamic case. This effect of the vertex
frequency dependence can be understood from Eqs. (A4)
and (A6), where, neglecting the frequency structure, one
does not take into account the decay of the magnetic
channel for large (particle-hole) transfer frequencies.

B. Frequency dependence of vertex

We now discuss the remarkable frequency dependence
of the vertex. In particular, we will look at the chan-
nels that show a divergence, that is, the charge and the
magnetic instabilities observed in Fig. 2, while we refer
to Appendix B for the pairing channels.

As mentioned in the previous section, the divergences
of the charge and magnetic channels are quite different.
The charge channel diverges for a finite frequency trans-
fer, and only when we neglect the self-energy feedback.
Since the dependence on the transfer momentum and fre-
quency (Q,⌦) has already been discussed in Ref. 12, we
focus on the dependence on the fermionic frequencies.
Therefore we present various color plots for fixed (Q,⌦),
showing the dependence on ⌫1 and ⌫2.

In the top left panel of Fig. 8 we show the magnetic
channel M⇤c

Q,⌦(⌫1, ⌫2) in the small doping region, where
antiferromagnetism is the leading instability. The results
shown have been calculated with self-energy feedback,
but the frequency structures we discuss do not depend
strongly on the presence of the self-energy. For clarity
we restrict the plots to the first 20 positive and negative
Matsubara frequencies, larger frequencies can be deduced
by the asymptotic behavior.14 When only one channel
in Eq. (9) is taken into account, the fRG equations are
equivalent to the RPA . The magnetic channel calculated
with RPA would depend only on the frequency and mo-
mentum transfer, not on ⌫1 and ⌫2. Hence any varia-
tion in the frequency structure has to be ascribed to the
presence of the other channels in the fRG. The channel
competition suppresses the magnetic channel: the largest
value of M is reduced compared to the RPA, and the
frequency dependent structure at the center is further
reduced compared to the asymptotic values at large ⌫1,
⌫2.

In the bottom left panel of Fig. 8 we show the fre-
quency dependence of the charge channel C⇤c

Q,⌦(⌫1, ⌫2) for
a finite frequency transfer ⌦ = 2⇡T , related to the charge
instability discussed in Ref. 12 and above. The frequency
structure is completely different from the magnetic chan-
nel. The charge channel has its maximum for frequencies
⌫1 = ⇡T and ⌫2 = �⇡T . This structure cannot be ex-
plained in terms of standard ladder diagrams. It might
be related to the behavior of the retarded interaction de-
scribed in Ref. 26.

In the two right panels of Fig. 8 we show the same
quantities but for x = 0.4 and without self-energy feed-
back. In this case, the localized peak in the charge chan-
nel is the leading interaction. The position and shape of
the frequency structures are similar to the one described
above.

C. Origin of charge singularity

To gain insight into the origin of the singular frequency
structures observed in the charge channel, we identify a
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➡ Presence of charge divergence, explained by RPA-like formulae and  
    suppressed by self energy feedback
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Charge divergence: perpendicular ladder
DV et al., arXiv: 1708.03539

RPA-like magnetic fluctuations
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Figure 9. In the first three panels from the left, the charge channel CQ,⌦(⌫1, ⌫2) = C̃Q=(0,0),⌦(⌫1, ⌫2�⌦) computed from Eq. (36)
is shown as a function of ⌫1 and ⌫2 for transfer frequencies ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T , respectively. In the right panel, the
bubble ⇧Q=(0,0),⌦(⌫) is shown as a function of ⌫ for ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T . The model parameters are t0 = �0.32 and
U = 4, the doping x = 0.375, and the temperature T = t.

simple set of Feynman diagrams reproducing the same
features. The main idea is that the magnetic channel,
which is generated first, is responsible for the singular
structure in the charge channel.

To check this qualitatively, we first compute an effec-
tive interaction by means of an RPA in the magnetic
channel, and then insert this effective magnetic interac-
tion into a subsequent RPA equation for the charge chan-
nel. Of course one does not expect quantitative agree-
ment with the fRG, since we overestimate both interac-
tions, but the approximation is sufficient to reproduce
and explain the qualitative features we are interested in.

We start by introducing an effective interaction that
includes the magnetic fluctuations as computed by RPA
in the particle-hole crossed channel:

U e↵
Q,⌦ =

U

1� U⇧Q,⌦
. (34)

Since the bare interaction U is local, U e↵ depends only
on the transfer momentum Q and frequency ⌦ of the
particle-hole bubble

⇧Q,⌦ = �T
X

⌫

Z

p
G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (35)

The magnetic effective interaction in Eq. (34) will now be
used to compute the RPA equation for the charge chan-
nel. Adopting the simplified momentum dependences
of the effective interactions used in the fRG calcula-
tion, only the momentum integrated, that is, local part
of the magnetic interaction U e↵

⌦ =
R
Q U e↵

Q,⌦ contributes
to the charge channel. We thus obtain CQ,⌦(⌫1, ⌫2) =
C̃Q,⌦(⌫1, ⌫2 � ⌦), where

C̃Q,⌦(⌫1, ⌫3) = U e↵
⌫1�⌫3

⇥
�⌫1,⌫3 + U e↵

⌫1�⌫3
⇧Q,⌦(⌫1)

⇤�1
,

(36)

with

⇧Q,⌦(⌫) = �

Z

p
G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (37)

Note that the fermion frequencies ⌫ are not summed in
⇧Q,⌦(⌫), and the inverse in Eq. (36) is a matrix inverse of
the matrix with indices ⌫1 and ⌫3. Eq. (36) is nothing but
an RPA equation with a frequency dependent interaction
in the particle-hole channel. U e↵ depends on ⌫1� ⌫3 due
to the frequency exchange from particle-hole crossed to
particle-hole notation. In the case of a frequency inde-
pendent effective interaction U e↵ , Eq. (36) becomes ⌫1
and ⌫3 independent and only the summed bubble ⇧Q,⌦

appears. The frequency dependence of U e↵ qualitatively
affects the results.

In Fig. 9, we show the charge channel as computed
from Eq. (36) for Q = (0, 0) and different ⌦ as a func-
tion of ⌫1 and ⌫2 = ⌫3 +⌦, for T = t and x = 0.375. We
have to choose such a high temperature to stay in a stable
paramagnetic phase, due to the above-mentioned overes-
timation of the fluctuations within the RPA. In the more
accurate fRG calculation the magnetic instability occurs
at lower temperatures. The frequency structure in Fig. 9
for ⌦ = 2⇡T is very similar to the one shown in Fig. 8.
The simple contributions considered here reproduce the
position of the main structures, as well as the correct
sign of the charge channel. This is true also for the other
bosonic Matsubara frequencies shown here, for which we
do not report the fRG results. Furthermore, upon lower-
ing the temperature the charge channel diverges also for
other finite bosonic Matsubara frequencies, while it does
not diverge for ⌦ = 0. From this we conclude that the
frequency dependent effective magnetic interaction de-
scribed above is responsible for the frequency structure
of the charge channel observed in the fRG.

To understand why the divergence appears for a non-

RPA-like charge fluctuations (generated by magnons)
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pendent effective interaction U e↵ , Eq. (36) becomes ⌫1
and ⌫3 independent and only the summed bubble ⇧Q,⌦

appears. The frequency dependence of U e↵ qualitatively
affects the results.

In Fig. 9, we show the charge channel as computed
from Eq. (36) for Q = (0, 0) and different ⌦ as a func-
tion of ⌫1 and ⌫2 = ⌫3 +⌦, for T = t and x = 0.375. We
have to choose such a high temperature to stay in a stable
paramagnetic phase, due to the above-mentioned overes-
timation of the fluctuations within the RPA. In the more
accurate fRG calculation the magnetic instability occurs
at lower temperatures. The frequency structure in Fig. 9
for ⌦ = 2⇡T is very similar to the one shown in Fig. 8.
The simple contributions considered here reproduce the
position of the main structures, as well as the correct
sign of the charge channel. This is true also for the other
bosonic Matsubara frequencies shown here, for which we
do not report the fRG results. Furthermore, upon lower-
ing the temperature the charge channel diverges also for
other finite bosonic Matsubara frequencies, while it does
not diverge for ⌦ = 0. From this we conclude that the
frequency dependent effective magnetic interaction de-
scribed above is responsible for the frequency structure
of the charge channel observed in the fRG.
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Figure 9. In the first three panels from the left, the charge channel CQ,⌦(⌫1, ⌫2) = C̃Q=(0,0),⌦(⌫1, ⌫2�⌦) computed from Eq. (36)
is shown as a function of ⌫1 and ⌫2 for transfer frequencies ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T , respectively. In the right panel, the
bubble ⇧Q=(0,0),⌦(⌫) is shown as a function of ⌫ for ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T . The model parameters are t0 = �0.32 and
U = 4, the doping x = 0.375, and the temperature T = t.

simple set of Feynman diagrams reproducing the same
features. The main idea is that the magnetic channel,
which is generated first, is responsible for the singular
structure in the charge channel.

To check this qualitatively, we first compute an effec-
tive interaction by means of an RPA in the magnetic
channel, and then insert this effective magnetic interac-
tion into a subsequent RPA equation for the charge chan-
nel. Of course one does not expect quantitative agree-
ment with the fRG, since we overestimate both interac-
tions, but the approximation is sufficient to reproduce
and explain the qualitative features we are interested in.

We start by introducing an effective interaction that
includes the magnetic fluctuations as computed by RPA
in the particle-hole crossed channel:

U e↵
Q,⌦ =

U

1� U⇧Q,⌦
. (34)

Since the bare interaction U is local, U e↵ depends only
on the transfer momentum Q and frequency ⌦ of the
particle-hole bubble

⇧Q,⌦ = �T
X

⌫

Z

p
G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (35)

The magnetic effective interaction in Eq. (34) will now be
used to compute the RPA equation for the charge chan-
nel. Adopting the simplified momentum dependences
of the effective interactions used in the fRG calcula-
tion, only the momentum integrated, that is, local part
of the magnetic interaction U e↵

⌦ =
R
Q U e↵

Q,⌦ contributes
to the charge channel. We thus obtain CQ,⌦(⌫1, ⌫2) =
C̃Q,⌦(⌫1, ⌫2 � ⌦), where
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Note that the fermion frequencies ⌫ are not summed in
⇧Q,⌦(⌫), and the inverse in Eq. (36) is a matrix inverse of
the matrix with indices ⌫1 and ⌫3. Eq. (36) is nothing but
an RPA equation with a frequency dependent interaction
in the particle-hole channel. U e↵ depends on ⌫1� ⌫3 due
to the frequency exchange from particle-hole crossed to
particle-hole notation. In the case of a frequency inde-
pendent effective interaction U e↵ , Eq. (36) becomes ⌫1
and ⌫3 independent and only the summed bubble ⇧Q,⌦

appears. The frequency dependence of U e↵ qualitatively
affects the results.

In Fig. 9, we show the charge channel as computed
from Eq. (36) for Q = (0, 0) and different ⌦ as a func-
tion of ⌫1 and ⌫2 = ⌫3 +⌦, for T = t and x = 0.375. We
have to choose such a high temperature to stay in a stable
paramagnetic phase, due to the above-mentioned overes-
timation of the fluctuations within the RPA. In the more
accurate fRG calculation the magnetic instability occurs
at lower temperatures. The frequency structure in Fig. 9
for ⌦ = 2⇡T is very similar to the one shown in Fig. 8.
The simple contributions considered here reproduce the
position of the main structures, as well as the correct
sign of the charge channel. This is true also for the other
bosonic Matsubara frequencies shown here, for which we
do not report the fRG results. Furthermore, upon lower-
ing the temperature the charge channel diverges also for
other finite bosonic Matsubara frequencies, while it does
not diverge for ⌦ = 0. From this we conclude that the
frequency dependent effective magnetic interaction de-
scribed above is responsible for the frequency structure
of the charge channel observed in the fRG.

To understand why the divergence appears for a non-
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Figure 9. In the first three panels from the left, the charge channel CQ,⌦(⌫1, ⌫2) = C̃Q=(0,0),⌦(⌫1, ⌫2�⌦) computed from Eq. (36)
is shown as a function of ⌫1 and ⌫2 for transfer frequencies ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T , respectively. In the right panel, the
bubble ⇧Q=(0,0),⌦(⌫) is shown as a function of ⌫ for ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T . The model parameters are t0 = �0.32 and
U = 4, the doping x = 0.375, and the temperature T = t.

simple set of Feynman diagrams reproducing the same
features. The main idea is that the magnetic channel,
which is generated first, is responsible for the singular
structure in the charge channel.

To check this qualitatively, we first compute an effec-
tive interaction by means of an RPA in the magnetic
channel, and then insert this effective magnetic interac-
tion into a subsequent RPA equation for the charge chan-
nel. Of course one does not expect quantitative agree-
ment with the fRG, since we overestimate both interac-
tions, but the approximation is sufficient to reproduce
and explain the qualitative features we are interested in.

We start by introducing an effective interaction that
includes the magnetic fluctuations as computed by RPA
in the particle-hole crossed channel:

U e↵
Q,⌦ =

U

1� U⇧Q,⌦
. (34)

Since the bare interaction U is local, U e↵ depends only
on the transfer momentum Q and frequency ⌦ of the
particle-hole bubble

⇧Q,⌦ = �T
X

⌫
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G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (35)

The magnetic effective interaction in Eq. (34) will now be
used to compute the RPA equation for the charge chan-
nel. Adopting the simplified momentum dependences
of the effective interactions used in the fRG calcula-
tion, only the momentum integrated, that is, local part
of the magnetic interaction U e↵

⌦ =
R
Q U e↵

Q,⌦ contributes
to the charge channel. We thus obtain CQ,⌦(⌫1, ⌫2) =
C̃Q,⌦(⌫1, ⌫2 � ⌦), where
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with
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Note that the fermion frequencies ⌫ are not summed in
⇧Q,⌦(⌫), and the inverse in Eq. (36) is a matrix inverse of
the matrix with indices ⌫1 and ⌫3. Eq. (36) is nothing but
an RPA equation with a frequency dependent interaction
in the particle-hole channel. U e↵ depends on ⌫1� ⌫3 due
to the frequency exchange from particle-hole crossed to
particle-hole notation. In the case of a frequency inde-
pendent effective interaction U e↵ , Eq. (36) becomes ⌫1
and ⌫3 independent and only the summed bubble ⇧Q,⌦

appears. The frequency dependence of U e↵ qualitatively
affects the results.

In Fig. 9, we show the charge channel as computed
from Eq. (36) for Q = (0, 0) and different ⌦ as a func-
tion of ⌫1 and ⌫2 = ⌫3 +⌦, for T = t and x = 0.375. We
have to choose such a high temperature to stay in a stable
paramagnetic phase, due to the above-mentioned overes-
timation of the fluctuations within the RPA. In the more
accurate fRG calculation the magnetic instability occurs
at lower temperatures. The frequency structure in Fig. 9
for ⌦ = 2⇡T is very similar to the one shown in Fig. 8.
The simple contributions considered here reproduce the
position of the main structures, as well as the correct
sign of the charge channel. This is true also for the other
bosonic Matsubara frequencies shown here, for which we
do not report the fRG results. Furthermore, upon lower-
ing the temperature the charge channel diverges also for
other finite bosonic Matsubara frequencies, while it does
not diverge for ⌦ = 0. From this we conclude that the
frequency dependent effective magnetic interaction de-
scribed above is responsible for the frequency structure
of the charge channel observed in the fRG.
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Figure 9. In the first three panels from the left, the charge channel CQ,⌦(⌫1, ⌫2) = C̃Q=(0,0),⌦(⌫1, ⌫2�⌦) computed from Eq. (36)
is shown as a function of ⌫1 and ⌫2 for transfer frequencies ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T , respectively. In the right panel, the
bubble ⇧Q=(0,0),⌦(⌫) is shown as a function of ⌫ for ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T . The model parameters are t0 = �0.32 and
U = 4, the doping x = 0.375, and the temperature T = t.

simple set of Feynman diagrams reproducing the same
features. The main idea is that the magnetic channel,
which is generated first, is responsible for the singular
structure in the charge channel.

To check this qualitatively, we first compute an effec-
tive interaction by means of an RPA in the magnetic
channel, and then insert this effective magnetic interac-
tion into a subsequent RPA equation for the charge chan-
nel. Of course one does not expect quantitative agree-
ment with the fRG, since we overestimate both interac-
tions, but the approximation is sufficient to reproduce
and explain the qualitative features we are interested in.

We start by introducing an effective interaction that
includes the magnetic fluctuations as computed by RPA
in the particle-hole crossed channel:

U e↵
Q,⌦ =

U

1� U⇧Q,⌦
. (34)

Since the bare interaction U is local, U e↵ depends only
on the transfer momentum Q and frequency ⌦ of the
particle-hole bubble

⇧Q,⌦ = �T
X

⌫

Z

p
G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (35)

The magnetic effective interaction in Eq. (34) will now be
used to compute the RPA equation for the charge chan-
nel. Adopting the simplified momentum dependences
of the effective interactions used in the fRG calcula-
tion, only the momentum integrated, that is, local part
of the magnetic interaction U e↵

⌦ =
R
Q U e↵

Q,⌦ contributes
to the charge channel. We thus obtain CQ,⌦(⌫1, ⌫2) =
C̃Q,⌦(⌫1, ⌫2 � ⌦), where
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with
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Note that the fermion frequencies ⌫ are not summed in
⇧Q,⌦(⌫), and the inverse in Eq. (36) is a matrix inverse of
the matrix with indices ⌫1 and ⌫3. Eq. (36) is nothing but
an RPA equation with a frequency dependent interaction
in the particle-hole channel. U e↵ depends on ⌫1� ⌫3 due
to the frequency exchange from particle-hole crossed to
particle-hole notation. In the case of a frequency inde-
pendent effective interaction U e↵ , Eq. (36) becomes ⌫1
and ⌫3 independent and only the summed bubble ⇧Q,⌦

appears. The frequency dependence of U e↵ qualitatively
affects the results.

In Fig. 9, we show the charge channel as computed
from Eq. (36) for Q = (0, 0) and different ⌦ as a func-
tion of ⌫1 and ⌫2 = ⌫3 +⌦, for T = t and x = 0.375. We
have to choose such a high temperature to stay in a stable
paramagnetic phase, due to the above-mentioned overes-
timation of the fluctuations within the RPA. In the more
accurate fRG calculation the magnetic instability occurs
at lower temperatures. The frequency structure in Fig. 9
for ⌦ = 2⇡T is very similar to the one shown in Fig. 8.
The simple contributions considered here reproduce the
position of the main structures, as well as the correct
sign of the charge channel. This is true also for the other
bosonic Matsubara frequencies shown here, for which we
do not report the fRG results. Furthermore, upon lower-
ing the temperature the charge channel diverges also for
other finite bosonic Matsubara frequencies, while it does
not diverge for ⌦ = 0. From this we conclude that the
frequency dependent effective magnetic interaction de-
scribed above is responsible for the frequency structure
of the charge channel observed in the fRG.

To understand why the divergence appears for a non-
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Figure 9. In the first three panels from the left, the charge channel CQ,⌦(⌫1, ⌫2) = C̃Q=(0,0),⌦(⌫1, ⌫2�⌦) computed from Eq. (36)
is shown as a function of ⌫1 and ⌫2 for transfer frequencies ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T , respectively. In the right panel, the
bubble ⇧Q=(0,0),⌦(⌫) is shown as a function of ⌫ for ⌦ = 0, ⌦ = 2⇡T and ⌦ = 4⇡T . The model parameters are t0 = �0.32 and
U = 4, the doping x = 0.375, and the temperature T = t.

simple set of Feynman diagrams reproducing the same
features. The main idea is that the magnetic channel,
which is generated first, is responsible for the singular
structure in the charge channel.

To check this qualitatively, we first compute an effec-
tive interaction by means of an RPA in the magnetic
channel, and then insert this effective magnetic interac-
tion into a subsequent RPA equation for the charge chan-
nel. Of course one does not expect quantitative agree-
ment with the fRG, since we overestimate both interac-
tions, but the approximation is sufficient to reproduce
and explain the qualitative features we are interested in.

We start by introducing an effective interaction that
includes the magnetic fluctuations as computed by RPA
in the particle-hole crossed channel:

U e↵
Q,⌦ =

U

1� U⇧Q,⌦
. (34)

Since the bare interaction U is local, U e↵ depends only
on the transfer momentum Q and frequency ⌦ of the
particle-hole bubble

⇧Q,⌦ = �T
X

⌫

Z
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G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (35)

The magnetic effective interaction in Eq. (34) will now be
used to compute the RPA equation for the charge chan-
nel. Adopting the simplified momentum dependences
of the effective interactions used in the fRG calcula-
tion, only the momentum integrated, that is, local part
of the magnetic interaction U e↵

⌦ =
R
Q U e↵

Q,⌦ contributes
to the charge channel. We thus obtain CQ,⌦(⌫1, ⌫2) =
C̃Q,⌦(⌫1, ⌫2 � ⌦), where

C̃Q,⌦(⌫1, ⌫3) = U e↵
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with
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G0(p, ⌫)G0(p+Q, ⌫ + ⌦). (37)

Note that the fermion frequencies ⌫ are not summed in
⇧Q,⌦(⌫), and the inverse in Eq. (36) is a matrix inverse of
the matrix with indices ⌫1 and ⌫3. Eq. (36) is nothing but
an RPA equation with a frequency dependent interaction
in the particle-hole channel. U e↵ depends on ⌫1� ⌫3 due
to the frequency exchange from particle-hole crossed to
particle-hole notation. In the case of a frequency inde-
pendent effective interaction U e↵ , Eq. (36) becomes ⌫1
and ⌫3 independent and only the summed bubble ⇧Q,⌦

appears. The frequency dependence of U e↵ qualitatively
affects the results.

In Fig. 9, we show the charge channel as computed
from Eq. (36) for Q = (0, 0) and different ⌦ as a func-
tion of ⌫1 and ⌫2 = ⌫3 +⌦, for T = t and x = 0.375. We
have to choose such a high temperature to stay in a stable
paramagnetic phase, due to the above-mentioned overes-
timation of the fluctuations within the RPA. In the more
accurate fRG calculation the magnetic instability occurs
at lower temperatures. The frequency structure in Fig. 9
for ⌦ = 2⇡T is very similar to the one shown in Fig. 8.
The simple contributions considered here reproduce the
position of the main structures, as well as the correct
sign of the charge channel. This is true also for the other
bosonic Matsubara frequencies shown here, for which we
do not report the fRG results. Furthermore, upon lower-
ing the temperature the charge channel diverges also for
other finite bosonic Matsubara frequencies, while it does
not diverge for ⌦ = 0. From this we conclude that the
frequency dependent effective magnetic interaction de-
scribed above is responsible for the frequency structure
of the charge channel observed in the fRG.

To understand why the divergence appears for a non-
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zero frequency ⌦, we notice that in Eq. (36) the ⌦ de-
pendence appears only through the bubble ⇧Q,⌦(⌫). The
frequency summed particle-hole bubble obeys the follow-
ing relation:

⇧Q!(0,0),⌦ = T
X

⌫

⇧Q!(0,0),⌦(⌫) = C�⌦,0, (38)

where C is a positive constant that, at low tempera-
ture, approaches the density of states at the Fermi level.
In the rightmost panel of Fig. 9, we show the bubble
⇧Q=(0,0),⌦(⌫) as a function of ⌫ for different values of ⌦.
We note that it has a large negative peak for ⌦ = 2⇡T .
This is due to the property (38): the summed bubble
must vanish for ⌦ 6= 0, hence a large negative value is
needed to cancel the positive contributions at large fre-
quency. We have thus identified the origin of the fre-
quency structure observed in the charge channel, which
seems to be quite general since arises from simple Feyn-
man diagrams.

Including the self-energy in the calculation of the bub-
ble, Eq. (38) does not evaluate to a �-function anymore,
and the difference between the summed bubble at vanish-
ing frequency and for frequency 2⇡T is diminished. This
is probably the reason why the inclusion of the self-energy
feedback prevents the unphysical divergence of the charge
channel.

D. Self energy

We now discuss the frequency and momentum depen-
dence of the self energy. In Fig. 10(a) we show the fre-
quency dependence of the imaginary part of the self-
energy at T = 0.08t and low doping x = 0.025. The
spread between the maximal and minimal self-energy at
each frequency is rather small, indicating that the self-
energy did not develop a large momentum dependence
even when the flow parameter reached the critical scale.
For small frequencies, |Im⌃(k, ⌫)| decreases as a function
of decreasing frequency, for all momenta, as in a Fermi
liquid. One would generally expect the antinodal region
to be more affected by correlation effects. However, there
is only a slight increase of |Im⌃(k, ⌫)| in this region. At
the temperature and interaction strength we are consid-
ering, we do not observe a tendency towards the opening
of a momentum selective gap. In Fig. 10(b) we show
the imaginary part of the self-energy for a larger doping
x = 0.4. As in the previous case, we do not see much
momentum differentiation.

The self-energy enters directly in the calculation of the
momentum distribution through the Green’s function, al-
ready discussed above, and shown in Figs. 5 and 6. In the
bottom panels of these figures, we show how the momen-
tum distribution evolves along two different cuts in the
Brillouin zone, crossing the nodal and antinodal regions,
respectively. The drop in the momentum distribution is
sharper along the diagonal, and the self-energy effects are
stronger along the antinodal cut. For doping x = 0.4 the

broadening of the Fermi surface, already larger at the non
interacting level, is further enhanced by the self-energy.

To study further the difference between nodal and
antinodal regions in the iAF regime, we studied the quasi-
particle weight27 Zk, and the decay rate �k. Instead
of relying on analytical continuation, we have extracted
the parameters directly from the Matsubara frequencies
data. To do so we have fitted the first few frequencies of
the imaginary part of the self-energy with a polynomial
of degree l: Im⌃(k, ⌫) ⇡ a0(k)+a1(k)⌫+...+al(k)⌫l and
we identified �k = a0(k) and Zk = [1 � a1(k)]�1. The
procedure only works if the temperature is low enough,
and if the frequencies used for the fit are not too high.
We checked that the results were stable upon changing
the number of frequencies and the order of the polyno-
mial used for the fit. In Fig. 11 we plot Zk and �k against
the angle ✓ along the Fermi surface, ✓ = 0 corresponding
to the antinodal direction and ✓ = ⇡/4 to the nodal one.
The variation of the quasiparticle weight along the Fermi
surface is extremely small with Zk assuming values be-
tween 0.754 and 0.760. On the other hand, the relative
variation of the decay rate � along the Fermi surface is
sizable, varying from � ⇡ 0.056t to � ⇡ 0.082t. These
values are comparable with the temperature T = 0.08t.

Decay rates28 and quasi-particle weights29 were com-
puted already in early fRG calculations from two-loop
contributions to the self-energy, obtained by inserting the
integrated one-loop equation for the vertex into the flow
equation for the self-energy. In this way the computa-
tion of a frequency dependent vertex was avoided. The
size and anisotropy of the decay rates obtained in these
calculations are comparable to our results. The quasi-
particle weight was even less reduced, and its anisotropy
more pronounced, probably because the Fermi surface in
Ref. 29 is more nested than ours and close to van Hove
points.

We conclude that near the critical scale the system
generically still has coherent quasiparticles along the
Fermi surface, with a higher decay rate in the antinodal
region. This is consistent with the results of Ref. 30,
where non-Fermi liquid behavior of the self-energy was
observed only very close to the pseudo-critical tempera-
ture and in the immediate vicinity of the magnetic hot
spots.

V. CONCLUSIONS

We have applied fRG flow equations to the two-
dimensional Hubbard model, using a form factor decom-
position for the momentum arguments of the two-particle
vertex, but maintaining intact all the frequency depen-
dencies. To the best of our knowledge, this is the first
time that such an approximation level has been achieved
in a fRG calculation for interacting lattice fermions. Our
results show that a complete treatment of the frequency
dependence is not only possible, but also very important.

The frequency dependence tends to enhance magnetic

fRG: the self energy feedback cures the divergence


