Functional RG: from weak to strong coupling in the 2D Hubbard model

Demetrio Vilardi

Max Planck Institute for Solid State Research, Stuttgart

Trieste 13.11.2017

Collaborators:

Ciro Taranto

Walter Metzner

Outline

fRG: weak-to-intermediate coupling

- ➡ Frequency dependent interaction
- ➡ Charge divergence
- Self energy and pseudogap

DMF²RG: strong coupling by starting from DMFT solution

- ➡ Local DMFT vertex affects non-local susceptibility
- ➡ *d*-wave pairing fluctuations

Conclusions and outlook

Outline

fRG: weak-to-intermediate coupling

- ➡ Frequency dependent interaction
- ➡ Charge divergence
- Self energy and pseudogap

DMF²RG: strong coupling by starting from DMFT solution

- Local DMFT vertex affects non-local susceptibility
- d-wave pairing fluctuations

Conclusions and outlook

Motivation: CuO₂ high temperature superconductors

Nature (2015)

Phase diagram

Known phases:

- Antiferromagnetism in undoped case
- → d-wave superconductivity for sufficient doping

Interest due to:

- Competition of instabilities
- ➡ Strong correlations
- ➡ Quantum criticality

Prototype: 2D Hubbard model

Zhang and Rice,

- → Low energy model: Cu and O hopping effectively included in t-t' kinetic energy
- Lack of charge instability observed in cuprates

2D Hubbard model

$$\mathcal{H} = \sum_{i,j,\sigma} t_{ij} c_{i,\sigma}^{\dagger} c_{j,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

• SC d-wave phase in the limit $U \rightarrow 0$

Raghu, Kivelson and Scalapino, PRB (2010)

 $T_c \sim W \exp\left\{-\alpha_2 (t/U)^2 - \alpha_1 (t/U) - \alpha_0\right\} \\ \times \left[1 + \mathcal{O}(U/t)\right]$

RG idea:

- Successive rescaling of the effective interaction
- Integrate degrees of freedom following hierarchy of energy scales
- Exact flow from *bare* to the effective action
- Unbiased channel competition (cuprate physics)

Scale dependent propagator:

 $G_0(\mathbf{k}, i\omega) \Rightarrow G_0^{\Lambda}(\mathbf{k}, i\omega)$

Equivalence between multi-loop fRG and parquet approx.

Kugler and von Delft, arXiv:1703.06505

Hierarchy of flow equations

Metzner et al. RMP (2012)

Hierarchy of flow equations

ARPES

Comin et al., Science (2013)

Metzner et al. RMP (2012)

Fig. 3. Doping dependence of the charge order wavevector $Q_{\rm CO}$ Data from REXS and STM on Bi2201 [this work and (7)] have represent peak widths, rather than array

Hierarchy of flow equations

ARPES

Comin et al., Science (2013)

spin-wave

- 20

- 15

- 10

(π,0)

Jain et al., Nature (2013)

Metzner et al. RMP (2012)

Fig. 3. Doping dependence of the charge order wavevector $Q_{\rm CO}$ Data from REXS and STM on Bi2201 [this work and (7)] have represent near widths rather than array

Hierarchy of flow equations

ARPES

Comin et al., Science (2013)

Fin. 2. ARPES and theory comparison on Bi2201. Modeled Fermi surface for, on-interacting and (B) the interacting case. which the self-ener $3\pi/a$ represveen the calcuinodal 3N/⁴/⁴/₀

spin-wave

Jain et al., Nature (2013)

Metzner et al. RMP (2012)

Fig. 3. Doping dependence of the charge order wavevector $Q_{\rm CO}$ Data from REXS and STM on Bi2201 [this work and (7)] have represent peak widths, rather than array

Hierarchy of flow equations

ARPES

Comin et al., Science (2013)

Fig. 2. ARPFS and theory comparison on Bi2201. Modeled Fermi surface for, on-interacting and (B) the interacting case, which

spin-wave

Jain et al., Nature (2013)

 $\begin{array}{c} \bullet \\ \hline \gamma_3^{\Lambda} \\ \hline \gamma_4^{\Lambda} \\ \hline \gamma_4^{\Lambda} \\ \hline \end{array} + \dots$

One loop: improper inclusion of soft and amplitude modes

Salmhofer et al., PTP (2004)

Metzner et al. RMP (2012)

Fig. 3. Doping dependence of the charge order wavevector $Q_{\rm CO}$ Data from REXS and STM on Bi2201 [this work and (7)]; here represent pack widths, rather than errors

Full frequency dependent interaction:

$$V^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{1},\boldsymbol{k}_{2},\boldsymbol{k}_{3}) = U -\phi_{sc}^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{1}+\boldsymbol{k}_{2},\boldsymbol{k}_{1},\boldsymbol{k}_{3}) + M^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{3}-\boldsymbol{k}_{1}) + \frac{1}{2}M^{\nu_{1},\nu_{2},\nu_{1}+\nu_{2}-\nu_{3}}(\boldsymbol{k}_{2}-\boldsymbol{k}_{3}) - \frac{1}{2}C^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{2}-\boldsymbol{k}_{3})$$

Full frequency dependent interaction:

$$V^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{1},\boldsymbol{k}_{2},\boldsymbol{k}_{3}) = U - \phi_{sc}^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{1}+\boldsymbol{k}_{2},\boldsymbol{k}_{1},\boldsymbol{k}_{3}) + M^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{3}-\boldsymbol{k}_{1}) + \frac{1}{2}M^{\nu_{1},\nu_{2},\nu_{1}+\nu_{2}-\nu_{3}}(\boldsymbol{k}_{2}-\boldsymbol{k}_{3}) - \frac{1}{2}C^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{2}-\boldsymbol{k}_{3}) + \frac{1}{2}M^{\nu_{1},\nu_{2},\nu_{1}+\nu_{2}-\nu_{3}}(\boldsymbol{k}_{2}-\boldsymbol{k}_{3}) + \frac{1}{2}M^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{2}-\boldsymbol{k}_{3}) + \frac{1}{2}M^{\nu_{1},\nu_{3}}(\boldsymbol{k}_{3}-\boldsymbol{k}_{3}) + \frac{1}{2}M^{\nu_{1},\nu_{3}}(\boldsymbol{k}_{3}-\boldsymbol{k}_{3}) + \frac{1}{2}M^{\nu_{1},\nu_{3}}(\boldsymbol{k}_{3}-\boldsymbol{k}_{3}) + \frac{1}{2}M^{\nu_{1},\nu_{3}}(\boldsymbol{k}_{3}-\boldsymbol{k}_{3}) + \frac{1}{2}M^{\nu_{1},\nu_{3}}(\boldsymbol{k}_{3}-\boldsymbol{k}_{3}) + \frac{1}{2}M^{\nu_{1},\nu_{3}}(\boldsymbol{k}_{3}-\boldsymbol{k}_{3}) + \frac{1}{2}M^{\nu_{1},\nu_{3}}(\boldsymbol{k}_{3}-\boldsymbol{k}) + \frac{1}{2}M^{\nu_{1},\nu_{3}}(\boldsymbol{k}_{3}-\boldsymbol{k}_{3}-\boldsymbol{k}) + \frac{1}{2}M^{\nu_{1},\nu_{3}}(\boldsymbol{k}_{3}-\boldsymbol{k}) + \frac{1}{2}M^{\nu_$$

Full frequency dependent interaction:

$$V^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{1},\boldsymbol{k}_{2},\boldsymbol{k}_{3}) = U -\phi_{sc}^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{1}+\boldsymbol{k}_{2},\boldsymbol{k}_{1},\boldsymbol{k}_{3}) + M^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{3}-\boldsymbol{k}_{1}) + \frac{1}{2}M^{\nu_{1},\nu_{2},\nu_{1}+\nu_{2}-\nu_{3}}(\boldsymbol{k}_{2}-\boldsymbol{k}_{3}) - \frac{1}{2}C^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{2}-\boldsymbol{k}_{3})$$

Full frequency dependent interaction:

$$V^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{1},\boldsymbol{k}_{2},\boldsymbol{k}_{3}) = U \left(\phi_{sc}^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{1}+\boldsymbol{k}_{2},\boldsymbol{k}_{1},\boldsymbol{k}_{3}) + M^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{3}-\boldsymbol{k}_{1}) + \frac{1}{2}M^{\nu_{1},\nu_{2},\nu_{1}+\nu_{2}-\nu_{3}}(\boldsymbol{k}_{2}-\boldsymbol{k}_{3}) - \frac{1}{2}C^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{2}-\boldsymbol{k}_{3})\right)$$

$$\phi_{SC}^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{Q},\boldsymbol{k}_{1},\boldsymbol{k}_{3}) = S^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{Q}) + d_{\frac{\boldsymbol{Q}}{2}-\boldsymbol{k}_{1}}d_{\frac{\boldsymbol{Q}}{2}-\boldsymbol{k}_{3}}D^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{Q})$$

Interaction flow and phase diagram

Interaction scheme: (Honerkamp et al., PRB 2004)

DV et al., arXiv: 1708.03539

Critical scale interpreted as critical coupling: $U_c = \Lambda_c^2 U$

- Charge divergence at finite exchange frequency
- Self energy feedback "cures" charge divergence

Consistent with Husemann et al. PRB 2012

Interaction flow and phase diagram

Interaction scheme: (Honerkamp et al., PRB 2004)

Interaction flow and phase diagram

Dynamic vs static approximation

Magnetic channel

→ Frequency dependence enhances $1 - \Lambda_c$

 The static approximation overestimates the effect of channel competition on the magnetic one

Effect of frequency dependence on PP d-wave channel

d-wave channel affected by two factors:

- ➡ Localized frequency structure Wentzell et al., 2016
- Interaction flow underestimates *d*-wave pairing

DV et al., arXiv: 1708.03539

d-wave: dynamic vs static

Charge divergence

0.20

0.16

 \mathbf{N}_{c}

Self energy suppresses the divergence

Charge divergence

What is the origin of the divergence?

Self energy suppresses the divergence

0.5

Charge divergence

Self energy suppresses the divergence

 $\max(\mathcal{M}^{\Lambda})$

 $\max(\mathcal{M}^{\Lambda})$

 $\max(-\mathcal{C}^{\Lambda})$

0.4

0.5

 $= \max(-\mathcal{C}^{\Lambda})$

0.3

Charge divergence

Self energy suppresses the divergence

 $\max(\mathcal{M}^{\Lambda})$

 $\max(\mathcal{M}^{\Lambda})$

 $\max(-\mathcal{C}^{\Lambda})$

0.4

0.5

 $\square \max(-\mathcal{C}^{\Lambda})$

Charge divergence

Self energy suppresses the divergence

 $\max(\mathcal{M}^{\Lambda})$

 $\max(\mathcal{M}^{\Lambda})$

 $\max(-\mathcal{C}^{\Lambda})$

0.4

0.5

Self energy

Self energy in Matsubara axis

- ➡ Almost local along the FS
- → Fermi liquid behaviour even close to iAF instability

DV et al., arXiv: 1708.03539

Momentum distribution

$$n^{\Lambda}(\mathbf{k}) = 2T \sum_{\nu} \frac{e^{i\nu 0^{+}}}{i\nu - \varepsilon_{\mathbf{k}} + \mu^{\Lambda} - \Lambda \Sigma^{\Lambda}(\mathbf{k}, \nu)}.$$

➡ More broadening in antinodal direction

Hartree-Fock self energy

Wu, Georges and Ferrero, PRB 2017

Diagrammatics:

Close to magnetic instability $\mathbf{Q} \simeq (\pi, \pi)$

1996

$$-\underbrace{\Sigma^{\Lambda}}_{G_{0}} = \underbrace{\begin{array}{c} \chi_{s} \\ \varphi_{s} \\ G_{0} \end{array}}_{C(\mathbf{k}, i\omega_{n}) \propto \sum_{\mathbf{q}} \sum_{p} \frac{1}{i\omega + i\nu_{p} + \mu - \epsilon_{\mathbf{k}+\mathbf{q}}} \times \frac{1}{(\mathbf{q} - \mathbf{Q})^{2} + \xi^{-2}\nu_{p}/\omega_{\mathrm{sp}} + \xi^{-2}}.$$

$$\underbrace{\begin{array}{c} Ornstein-Zernike \text{ spin} \\ \text{susceptibility: Dare' et al., PRB} \end{array}}_{C(\mathbf{k}, i\omega_{n}) \propto \sum_{\mathbf{q}} \sum_{p} \frac{1}{i\omega + i\nu_{p} + \mu - \epsilon_{\mathbf{k}+\mathbf{q}}} \times \frac{1}{(\mathbf{q} - \mathbf{Q})^{2} + \xi^{-2}\nu_{p}/\omega_{\mathrm{sp}} + \xi^{-2}}.$$

Fock self energy with strong AF fluctuations:

 $\xi >> a$

$$\Sigma(\mathbf{k},\omega) = \frac{\Delta^2}{\omega + \mu - \epsilon_{\mathbf{k}+\mathbf{Q}} + i0^+},$$

Pseudogap phase

Self energy: Fock vs fRG

Fock self energy

0.0

-0.1

-0.2
 -0.3
 -0.3

-0.4

-0.5

0

1

Exact only when the vertex is exact

3

ν

4

2

5

6

Non Fermi-liquid at the hot-spots

Outline

fRG: weak-to-intermediate coupling

- Frequency dependent interaction
- Charge divergence
- Self energy and pseudogap

DMF²RG: strong coupling by starting from DMFT solution

- Local DMFT vertex affects non-local susceptibility
- ➡ *d*-wave pairing fluctuations

Conclusions and outlook

DMF²RG: flow for the strong coupling

Wentzel et al., PRB 2015

Conventional fRG

- Start from bare action: no fluctuations from the beginning
- ➡ Truncation: error accumulated during the flow
- C. Taranto et al., PRL (2014)

Metzner et al. RMP (2012)

DMF²RG: flow for the strong coupling

Wentzel et al., PRB 2015

Extension to strong coupling

$$G_0^{\Lambda_{ini}} = G_{0,R} \neq 0$$

Inclusion of correlation from the beginning

- Reduce truncation error by starting 'closer' to final action
- C. Taranto et al., PRL (2014)

Rohringer et al., PRB (2012)

DMF²RG: strong coupling flow

$$V^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{1},\boldsymbol{k}_{2},\boldsymbol{k}_{3}) = F^{\nu_{1},\nu_{2},\nu_{3}}_{\text{DMFT}} - \phi^{\nu_{1},\nu_{2},\nu_{3}}_{SC}(\boldsymbol{k}_{1} + \boldsymbol{k}_{2},\boldsymbol{k}_{1},\boldsymbol{k}_{3}) + M^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{3} - \boldsymbol{k}_{1})$$
$$+ \frac{1}{2}M^{\nu_{1},\nu_{2},\nu_{1}+\nu_{2}-\nu_{3}}(\boldsymbol{k}_{2} - \boldsymbol{k}_{3}) - \frac{1}{2}C^{\nu_{1},\nu_{2},\nu_{3}}(\boldsymbol{k}_{2} - \boldsymbol{k}_{3})$$

DMF²RG: strong coupling flow n = 1 t' = 0 $V^{\nu_1,\nu_2,\nu_3}(k_1,k_2,k_3) = F_{\text{DMFT}}^{\nu_1,\nu_2,\nu_3} - \phi_{SC}^{\nu_1,\nu_2,\nu_3}(k_1+k_2,k_1,k_3) + M^{\nu_1,\nu_2,\nu_3}(k_3-k_1)$ $+ \frac{1}{2}M^{\nu_1,\nu_2,\nu_1+\nu_2-\nu_3}(k_2-k_3) - \frac{1}{2}C^{\nu_1,\nu_2,\nu_3}(k_2-k_3)$

Single channel (PHcr) DMF2RG equivalent to ladder-DMFT

➡ Recovery of DMFT Néel temperature only with full frequency dependence

DMF²RG: strong coupling flow
$$n = 1$$
 $t' = 0$
 $V^{\nu_1,\nu_2,\nu_3}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = F_{\text{DMFT}}^{\nu_1,\nu_2,\nu_3} - \phi_{SC}^{\nu_1,\nu_2,\nu_3}(\mathbf{k}_1 + \mathbf{k}_2, \mathbf{k}_1, \mathbf{k}_3) + M^{\nu_1,\nu_2,\nu_3}(\mathbf{k}_3 - \mathbf{k}_1)$
 $+ \frac{1}{2}M^{\nu_1,\nu_2,\nu_1+\nu_2-\nu_3}(\mathbf{k}_2 - \mathbf{k}_3) - \frac{1}{2}C^{\nu_1,\nu_2,\nu_3}(\mathbf{k}_2 - \mathbf{k}_3)$

Strong but localised vertex structure

 ${\bf max} M \sim 10^6$

DMF²RG: strong coupling flow
$$n = 1$$
 $t' = 0$
 $V^{\nu_1,\nu_2,\nu_3}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = F_{\text{DMFT}}^{\nu_1,\nu_2,\nu_3} - \phi_{SC}^{\nu_1,\nu_2,\nu_3}(\mathbf{k}_1 + \mathbf{k}_2, \mathbf{k}_1, \mathbf{k}_3) + M^{\nu_1,\nu_2,\nu_3}(\mathbf{k}_3 - \mathbf{k}_1)$
 $+ \frac{1}{2}M^{\nu_1,\nu_2,\nu_1+\nu_2-\nu_3}(\mathbf{k}_2 - \mathbf{k}_3) - \frac{1}{2}C^{\nu_1,\nu_2,\nu_3}(\mathbf{k}_2 - \mathbf{k}_3)$

Spin susceptibility

Strong but localised vertex structure

$$max M \sim 10^6$$

DMF²RG: Néel temperature at half-filling

Spin susceptibility

Brillouin zone

- Mean field critical exponent
- Non-local fluctuations slightly reduce the Néel temperature
- Result stable over a large range of coupling strength

DMF²RG: away from half-filling T = 0.08t

Strong coupling regime and doped region

DMF²RG: away from half-filling

Strong coupling regime and doped region

No indications for pseudogap: Lack of method or model? $U = 8t \quad t' = -0.2t$

Results:

- Incommensurate antiferromagnetism in undoped case
- Local and Fermi-liquid self-energy as in weak-tointermediate coupling fRG

Where the incommensurate peak comes from?

Three possibilities:

- ★ From the *non-locality* of the self-energy?
- \star From the channel competition?
- ✓ From the DMFT vertex?

$$\chi_0^s = -T \sum_{\nu} \int_{\boldsymbol{k}} G_{\boldsymbol{k},\omega} G_{\boldsymbol{Q}+\boldsymbol{k},\omega+\nu}$$

with
$$\Sigma = \Sigma_{\text{DMFT}}$$

Matrix multiplication in frequency space

Local vertex affects non-local spin susceptibility

DMF²RG: *d*-wave pairing fluctuations

Lowering the temperature:

0 V 1

-1

- → Strong *d*-wave pairing fluctuations in the iAF phase
- → Localised frequency structure as in fRG
- → Precursor of *d*-wave instability at lower T_c ?

Conclusion

- Important frequency dependence in the intermediate coupling
- Presence of charge divergence, explained by RPA-like formulae and suppressed by self energy feedback
- ➡ Flow to the strong coupling by starting from DMFT solution
- Local vertex affects non-local susceptibility
- Strong *d*-wave pairing fluctuations at Temperature studied

Outlook

Lowering the Temperature to enhance the interplay between AF and SC

 \mathcal{M}^{Λ_c} , $\mathbf{Q} = (\pi, \pi - \delta)$, $\Omega = 0$

Questions?

Thank you for your attention

Charge divergence: perpendicular ladder

RPA-like magnetic fluctuations

$$U_{\mathbf{Q},\Omega}^{\text{eff}} = \frac{U}{1 - U \Pi_{\mathbf{Q},\Omega}} = \mathbf{O} + \mathbf{$$

RPA-like charge fluctuations (generated by magnons)

$$\tilde{\mathcal{C}}_{\mathbf{Q},\Omega}(\nu_1,\nu_3) = U_{\nu_1-\nu_3}^{\text{eff}} \left[\delta_{\nu_1,\nu_3} + U_{\nu_1-\nu_3}^{\text{eff}} \Pi_{\mathbf{Q},\Omega}(\nu_1) \right]_{\prime}^{-1} = \underbrace{}_{\prime} + \underbrace{}_{$$

→ Bosonic frequency $\Omega = \nu_2 - \nu_3$ enters only in the (not summed) bubble

Frequency dependent bubble

$$\Pi_{\mathbf{Q},\Omega}(\nu) = -\int_{\mathbf{p}} G_0(\mathbf{p},\nu) G_0(\mathbf{p}+\mathbf{Q},\nu+\Omega).$$

Similar to FLEX approx.

Charge divergence: perpendicular ladder

$$\tilde{\mathcal{C}}_{\mathbf{Q},\Omega}(\nu_{1},\nu_{3}) = U_{\nu_{1}-\nu_{3}}^{\text{eff}} \left[\delta_{\nu_{1},\nu_{3}} + U_{\nu_{1}-\nu_{3}}^{\text{eff}} \Pi_{\mathbf{Q},\Omega}(\nu_{1}) \right]_{\ell}^{-1} \qquad \Pi_{\mathbf{Q},\Omega}(\nu) = -\int_{\mathbf{p}} G_{0}(\mathbf{p},\nu) G_{0}(\mathbf{p}+\mathbf{Q},\nu+\Omega).$$

- ➡ Same structure appearing in full fRG
- Divergent when lowering the temperature
- Qualitative but not quantitative picture

Property of the bubble:

$$T\sum_{\nu} \Pi_{\mathbf{Q}\to(0,0),\Omega}(\nu) = C\delta_{\Omega,0},$$

fRG: the self energy feedback cures the divergence