Disordered fermions in two dimensions: is Anderson insulating phase the only possibility?

Luca Dell'Anna

Department of Physics and Astronomy "Galileo Galilei", University of Padova

Conference on Frontiers in Two-Dimensional Quantum Systems ICTP Trieste, 13 November 2017

Outline

- Basic concepts on the Anderson localization
- QFT approach: derivation of the non linear σ-model and symmetry classifications
- (Anti)-localization effects for all symmetry classes
- Combined effects of disorder and interactions: not-universal behaviors and enhacement of critical temperatures.

Anderson localization

In the presence of strong enough disorder in D>2 or for any amount of disorder in D≤ 2 a metal can turn into an insulator. Interference effect ($\lambda_{DB} \simeq \ell$) \Rightarrow localization of the wavefunctions

The probability to find the particle at point C is:

$$|a_1|^2 + |a_2|^2 + 2Re(a_1a_2^*) = 4|a_1|$$

 \Rightarrow enhancement of probability to find a particle at C \Rightarrow reduction of probability to find it at B (conductivity \searrow) Probability of self-intersection

$$\frac{\delta\sigma}{\sigma} \sim -\int_{\tau}^{\tau_{\varphi}} \frac{v\lambda^{d-1}dt}{(Dt)^{d/2}} \quad \Rightarrow \begin{cases} \delta\sigma \propto -(\frac{1}{\ell} - \frac{1}{L_{\varphi}}), & d = 3\\ \delta\sigma \propto -\log(\frac{L_{\varphi}}{\ell}), & d = 2\\ \delta\sigma \propto -(L_{\varphi} - \ell), & d = 1 \end{cases}$$
with $L_{\varphi} = \sqrt{D\tau_{\varphi}}$ and $\tau_{\varphi} \sim T^{-1}$

Scaling theory of localization

(Thouless, Phy.Rep. (1974); Abrahams, Anderson, Licciardello and Ramakrishnan PRL (1979); Gor'kov, Larkin, and Khmel'nitskii, JETP (1979))

Thouless idea: sample $(2L)^d$ made of cubes L^d

 \Rightarrow an eigenstate for $(2L)^d$ is a mixture of e.s. of L^d depending on overlap integrals and energy differences (as in perturbation theory)

- energy differences \sim level spacing $\delta W = (\nu_0 L^d)^{-1}$
- overlap \sim bandwidth δE (if localized e.s. δE exp. small, otherwise $\sim \hbar D/L^2$)

One parameter: $\frac{\delta E}{\delta W}$ related to the conductance G (units of e^2/\hbar)

- small disorder: $G(L) = \sigma L^{d-2}$
- strong disorder: $G(L) \sim \exp(-L/\xi)$

Scaling theory of localization

• strong disorder : $G(L) \sim exp(-L/\xi)$

$$\beta(\mathsf{G}) = \frac{d\log G}{d\log L} = \log \frac{\mathsf{G}}{\mathsf{G}_{\mathsf{c}}}$$

▶ small disorder : $G(L) \sim \sigma L^{d-2}$, expanding in 1/G

$$\beta(\mathsf{G}) = (d-2) - \frac{\mathsf{a}}{\mathsf{G}}$$

Diagrammatics

Hamiltonian with some random potential

$$H=H_0+V$$

Disorder variance $\overline{V(r)V(r')} = w_0\delta_{rr'} = \cdots$ Bare Green function In Born approximation, $\Sigma = \underbrace{\zeta}_{i=1}^{i=1} = i/2\tau$ (τ mean free time) Green function

$$\mathcal{G}^{\pm}(E,p) = (E - H_0(p) \pm i/2\tau)$$

Kubo formula for conductivity (paramagnetic part)

$$\sigma(\omega) = \frac{e^2}{2\pi} \int d\varepsilon \frac{\partial n_{\varepsilon}}{\partial \varepsilon} \operatorname{Tr} \left[\hat{v} \, \mathcal{G}_{\varepsilon+\omega}^+ \hat{v} \, (\mathcal{G}_{\varepsilon}^+ - \mathcal{G}_{\varepsilon}^-) \right] \simeq \frac{e^2 \nu v_F^2}{d} \frac{\tau}{1 + i\omega\tau}$$

(日) (同) (三) (三) (三) (○) (○)

 $\sigma_0 = \sigma(0) = rac{e^2
u v_F^2 au}{d}$ (Drude conductivity)

Diagrammatics

The dc electrical conductivity can be written in terms of current-current or density-density correlation functions

$$\sigma = i \lim_{\omega \to 0} \frac{1}{\omega} K^{ij}(\mathbf{0}, \omega) \delta_{ij} = i \lim_{\omega \to 0} \lim_{\mathbf{q} \to 0} \frac{\omega}{\mathbf{q}^2} K^{00}(\mathbf{q}, \omega)$$

Ladder summation (diffuson)

$$\mathcal{D}(\mathbf{q},\omega) = \mathbf{P} = \mathbf{P} + \mathbf{P} = \frac{1}{2\pi\nu\tau^2} \frac{1}{D\mathbf{q}^2 - i\omega}$$

with $D = v_F \ell/d = v_F^2 \tau/d$ (diffusion coefficient)

$$\mathcal{K}^{00}(\mathbf{q},\omega) = \mathbf{r} + \mathbf{r} = -e^2 \nu \frac{D\mathbf{q}^2}{D\mathbf{q}^2 - i\omega}$$

from which $\sigma = \sigma_0 = e^2 \nu D$.

Diagrammatics: Weak Localization

Inclusion of crossing diagrams

Ladder summation in the particle-particle channel: cooperon

$$\mathcal{C}(\mathbf{q},\omega) = \mathbf{r} + \mathbf{r} = \frac{1}{2\pi\nu\tau^2} \frac{1}{D\mathbf{q}^2 - i\omega}$$

Since now $\mathbf{q} = \mathbf{p} + \mathbf{p}'$, the contribution to the current-current correlator

$$\delta \mathcal{K}^{ii}(\mathbf{0},\omega) = \sum_{\nu = 1}^{\nu} \frac{i\omega\sigma_0}{\nu\pi} \int d\mathbf{q} \frac{1}{D\mathbf{q}^2 - i\omega}$$

The correction to the dc conductivity is

$$\delta\sigma = -\frac{\sigma_0}{\nu\pi} \int d\mathbf{q} \frac{1}{D\mathbf{q}^2 - i\omega} \propto - \begin{cases} \left(\frac{1}{\ell} - \frac{1}{L}\right) & d = 3\\ \log\left(\frac{L}{\ell}\right) & d = 2\\ (L - \ell) & d = 1 \end{cases}$$

Anderson insulator

▶ 1D - 2D: Weak localization is IR-divergent in 1D and 2D: $\delta \sigma \sim \sigma_0$ at a scale

 $\xi \sim \pi \nu D$, for 1D

$$\xi \sim \ell \exp{(\pi^2 \nu D)}$$
, for 2D

3D: Localization only above a critical value of the disorder

localization lenght at criticality

$$\xi \sim (\sigma_0 - \sigma_c)^{-\nu}$$

In the localized phase $\mathcal{D}(\mathbf{q},\omega)=\mathcal{C}(\mathbf{q},\omega)$ becomes massive

 $\mathcal{D}(\mathbf{r},\omega)\sim\exp\left(-r/\xi
ight)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Field theory approach: non-linear σ -model (Wegner, ZPB (1979); Efetov, Larkin, Khmel'nitsky, JETP (1980))

 \blacktriangleright Write \mathcal{G}^\pm in terms of Grassmann variables with action

$$S=\intar{\Psi}(E-H_0-V\pm i\omega)\Psi$$

Average over disorder V by replica method

$$S_{eff} = \int \bar{\Psi} (E - H_0 \pm i \,\omega) \Psi + w_0 \int (\bar{\Psi} \Psi)^2$$

- Hubbard Stratonovich transformation (auxiliary field Q)
- Integrating over fermionic fields $\Rightarrow S(Q)$
- Saddle point: $\frac{\delta S}{\delta Q} = 0 \Rightarrow Q_{sp}$
- Fluctuations around saddle point
- Gradient expansion \Rightarrow N.L. σ M.

Hubbard Stratonovich transformation

Integration over disorder \Rightarrow a quartic term in the action

$$e^{-S_{eff}} = e^{-(S_0 + S_{imp})}$$

By Hubbard-Stratonovich decoupling,

$$e^{-S_{imp}} = e^{w_0 \int \left(\overline{\Psi}\Psi\right)^2} = \int dQ \, e^{\int \frac{1}{2w_0} \operatorname{Tr}\left[QQ^{\dagger}\right] - i\operatorname{Tr}\left[\overline{\Psi}Q\Psi\right]}$$

For bipartite lattices the auxiliary field is not hermitian $Q_j = Q_{0j} + i(-1)^j Q_{3j}$ (smooth and staggered components) Integrating over Ψ

$$S(Q) = \sum \frac{1}{2w_0} Tr\left[Q^{\dagger}Q\right] - \frac{1}{2} Tr \ln\left(-H + iQ\right)$$

Saddle point: $\frac{\delta S}{\delta Q} = 0 \longrightarrow Q_{sp} = \Sigma \propto \tau^{-1}$ the self-energy at the Born level, in the diagrammatics!

Transverse modes and symmetry classification

Quantum fluctuations around Q_{sp} that leave H invariant

$$Q = U^{-1} Q_{sp} U$$

 $U \in \mathsf{G} \text{ and } [U, Q_{sp}] \neq 0$

If H subgroup of G such that $h \in H$, $[h, Q_{sp}] = 0 \Rightarrow U \in \mathsf{G}/\mathsf{H}$ (Coset)

Hamiltonian Class	RMT	<i>Τ</i> SU(2)	NL σ -model manifolds
Wigner-Dyson classes			
A	GUE	- ±	$U(2n)/U(n)\times U(n)$
AI	GOE	+ +	$Sp(4n)/Sp(2n) \times Sp(2n)$
All	GSE	+ -	$O(2n)/O(n) \times O(n)$
Chiral classes			
AIII	chGUE	- ±	U(n)
BDI	chGOE	+ +	U(4n)/Sp(2n)
CII	chGSE	+ -	U(n)/O(n)
Bogoliubov-de Gennes			
С		- +	Sp(2n)/U(2n)
CI		+ +	Sp(2 <i>n</i>)
D			O(2n)/U(n)
DIII		+ -	O(<i>n</i>)

Non linear σ -model

From the real part of S(Q)

$$Tr \ln \left(-H + iQ\right) + Tr \ln \left(-H - iQ^{\dagger}\right) =$$

= $-Tr \ln \left(H^2 + Q_{sp}^2\right) - Tr \ln \left(1 + G_0 U\right),$

where $G_0 = \left(H^2 + Q_{sp}^2\right)^{-1}$ and

$$U_{RR'} = i Q_R^{\dagger} H_{RR'} - i H_{RR'} Q_{R'} \simeq - \vec{J} \cdot \vec{\nabla} Q$$

the current operator appears

 $J = -iH_{RR'}(R - R')$

Expanding in $U_{RR'}$, the second term reads

```
Tr(G_0UG_0U) \simeq (JG_0JG_0) Tr(\partial Q^{\dagger}\partial Q)
```

the factor (JG_0JG_0) is the Kubo formula for the conductivity!

Effective action (NLSM)

The final effective action in long wavelength limit

$$S[Q] = \frac{\pi}{8} \sigma \int dR \, Tr \left(\nabla Q \, \nabla Q^{\dagger} \right) - 4\nu \, Tr(\hat{\omega} \, Q)$$

the bare $\sigma = e^2 \nu D$ is the Drude conductivity!

Quantum corrections from Renormalization Group (RG) procedure: Gaussian propagators = *diffuson* and *cooperon* in diagrammatics

$$< QQ> = rac{1}{2\pi\sigma}\int rac{d^2q}{4\pi^2} rac{1}{\mathbf{q}^2-i\omega} \equiv g\,\log(s)$$

where the effective coupling constant which controls the perturbative expansion is given by $g = \frac{1}{2\pi^2 \sigma}$ (the resistivity)

$$eta(g) = rac{d\ g}{d\ \log s}$$
 (s energy scaling factor)

g is the running coupling constant.

RG of NLSMs (Wigner-Dyson classes) in $(2 + \epsilon)d$

Beta-functions by ϵ -expansion

- ► Class A (unitary symmetry class, broken \mathcal{T}) $\beta(g) = -\epsilon g + g^3/2 + 3g^5/8 + O(g^7)$
- ► Class AI (ortogonal symmetry class, preserved \mathcal{T} and $\underline{SU(2)}$) $\beta(g) = -\epsilon g + g^2 + 3\zeta(3)g^5/4 + O(g^6)$
- ► Class All (simplettic symmetry class, preserved \mathcal{T} , no SU(2)) $\beta(g) = -\epsilon g - g^2 + 3\zeta(3)g^5/4 + O(g^6)$

 $(+g^2 \Rightarrow$ weak localization, $-g^2 \Rightarrow$ weak anti-localization)

Anderson transitions $(\beta(g_c) = 0)$

- 3D (ε = 1). Example: class Al critical point: g_c = ε − 3ζ(3)ε⁴/4 + O(ε⁵) localization lenght exponent: ν = −1/β'(g_c) =≃ 1.7 (in good agreement with numerics, ν ≃ 1.57)
- > 2D for class All critical point: g_c = (4/3ζ(3))^{1/3} ≃ 1 Metal-Insulator transition in 2D

Two-subattice models (Chiral classes)

(Gade, Wegner, NPB (1991))

The Hamiltonian is defined on a bipartite lattice

$$H = -\sum_{\langle ij\rangle\sigma} t_{ij} e^{i\phi_{ij}} c^{\dagger}_{i\sigma} c_{j\sigma} - \sum_{j,\sigma} \mu c^{\dagger}_{i\sigma} c_{i\sigma}$$

• $t_{ii} = t_{ii}$ random hopping,

•
$$\phi_{ij} = -\phi_{ji}$$
, if \neq 0, breaks time reversal symmetry (\mathcal{T}),

• $\mu \neq 0$ breaks sublattice symmetry (S)

The effective action

$$S[Q] = \frac{\pi}{16} \sigma \int dR \, Tr \left(\nabla Q \, \nabla Q^{\dagger} \right) - 4\nu \, Tr(\hat{\omega} Q) \\ -\frac{\pi}{8} \Pi \int dR \, \left[Tr \left(Q^{\dagger}(R) \vec{\nabla} Q(R) \right) \right]^2$$

(for $\mu \neq 0 \Rightarrow \Pi = 0$)

Results with and without sublattice symmetry in 2D

	Coset space	Symm. class	$\beta(g)$
$\mu \neq 0, \ \phi_{ij} = 0$	$Sp(4n)/Sp(2n) \times Sp(2n)$	AI	g ²
$\mu \neq$ 0, $\phi_{ij} \neq$ 0	$U(4n)/U(2n)\times U(2n)$	A	$O(g^3)$
$\mu = 0, \ \phi_{ij} = 0$	U(8n)/Sp(4n)	BDI	0
$\mu = 0, \ \phi_{ij} \neq 0$	$U(4n) \times U(4n)/U(4n)$	AIII	0

• without sublattice symmetry ($\mu \neq 0$):

$$\sigma = \sigma_0 - rac{1}{2\pi^2}\log(au_arphi/ au)$$

(insulator, like for the on-site disorder)

• with sublattice symmetry ($\mu = 0$):

$$\sigma = \sigma_0$$

(conductor, Gade-Wegner criticality) at any order in g $\beta(g) = 0$ also for CII (Fabrizio, Dell'Anna, Castellani, PRL (2002))

Superconductors (Bogoliubov-de Gennes classes)

(Altland, Zirnbauer, PRB(1997))

For BdG Hamiltonians, since U(1) is not preserved, charge diffusion is massive. The scaling parameter is the spin (or heat) conductivity:

- Classes C and CI: positive corrections β(g) ∼ g²
 ⇒ weak localization
- Classes D, DIII: negative corrections β(g) ~ −g²
 ⇒ weak anti-localization (spin-metal spin-insulator transition)

(Senthil, Fisher, Balents, Nayak, PRL (1998); Fabrizio, Dell'Anna, Castellani, PRL (2002))

Class C can be obtain also from random hopping Hamiltonian with magnetic impurities (*Dell'Anna, AdP (2017*))

Topological terms

For almost all classes (except for AI and BDI) in 2D the non-linear σ -model can be supplemented by a topological term:

▶ θ -term for A, C, D (like the Pruisken term for the Integer Quantum Hall, with $\theta = \sigma_{ij}/8$) or All, CII

$$S_{ heta} = heta \int dR \, Tr \epsilon_{\mu
u} Q \partial_{\mu} Q \partial_{
u} Q$$

► WZW-term for AIII, CI, DIII (chiral anomaly).

$$S_{WZ} = rac{k}{24\pi} \int dR^2 \int_0^1 dar{R} \ Tr \epsilon_{\mu
u\lambda} (Q^{-1}\partial_\mu Q) (Q^{-1}\partial_
u Q) (Q^{-1}\partial_\lambda Q)$$

We can get WZW term taking the imaginary part of the action, left over in the σ -model derivation. (*Dell'Anna, Fabrizio, Castellani, JSTAT (2007)*) Anderson criticality in 2D (summary)

- <u>Metal-Insulator transitions</u> breaking spin-rotation invariance: classes AII, D, DIII
- ► Gade-Wegner criticality, line of fixed-points: $\beta(g) = 0$ for chiral classes: AIII, BDI, CII
- Criticality from topological terms
 - θ-term: Z₂ topology (θ = π) for classes All and CII. Two hypotheses: attractive fixed point to (i) finite or (ii) ∞-(ideal) conductivity (Ostrovsky, Gorny, Mirlin, PRL (2007))
 - ▶ θ -term: \mathbb{Z} topology for classes A, C, D. IQHE-like classes \Rightarrow fixed point between localized to localized

► WZW terms: Classes AIII, CI, DIII.

Only one symmetry class AI is always in the localized phase.

Interacting systems

(Altshuler, Aronov, SSC 1983; Finkel'stein, ZETF 1983; Castellani, Di Castro, PRB 1984)

6 scattering amplitudes with chiral symmetry (Dell'Anna, NPB 2006)
⊢ Γ⁰_s Γ⁰_t Γ⁰_c previous scattering terms
⊢ Γ³_s Γ³_t Γ³_c with k → k + q_π, where q_π = (π, π)

Lattice model with disorder and interactions

The interacting Hamiltonian is

$$H = -\sum_{\langle ij \rangle \sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} - \sum_{i,\sigma} \mu_i c_{i\sigma}^{\dagger} c_{i\sigma} + \frac{1}{2} \sum_{|k| \ll k_F} \sum_{p_1 p_2 \omega nm} \left\{ \Gamma_s^0 c_n^{\dagger}(p_1) \sigma_0 c_{n+\omega}(p_1+k) c_m^{\dagger}(p_2) \sigma_0 c_{m-\omega}(p_2-k) - \Gamma_t^0 c_n^{\dagger}(p_1) \vec{\sigma} c_{n+\omega}(p_1+k) c_m^{\dagger}(p_2) \vec{\sigma} c_{m-\omega}(p_2-k) + \Gamma_c^0 \sum_{\sigma \neq \sigma'} c_n^{\dagger \sigma}(p_1) c_{\omega-n}^{\dagger \sigma'}(k-p_1) c_m^{\sigma'}(p_2) c_{\omega-m}^{\sigma}(k-p_2) \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(Finkel'stein, JETP 1984)

Lattice model with disorder and interactions

The interacting Hamiltonian is

$$H = -\sum_{\langle ij \rangle \sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \frac{1}{2} \sum_{|k| \ll k_F} \sum_{p_1 p_2 \omega nm} \left\{ \Gamma_s^0 c_n^{\dagger}(p_1) \sigma_0 c_{n+\omega}(p_1+k) c_m^{\dagger}(p_2) \sigma_0 c_{m-\omega}(p_2-k) - \Gamma_t^0 c_n^{\dagger}(p_1) \vec{\sigma} c_{n+\omega}(p_1+k) c_m^{\dagger}(p_2) \vec{\sigma} c_{m-\omega}(p_2-k) + \Gamma_c^0 \sum_{\sigma \neq \sigma'} c_n^{\dagger\sigma}(p_1) c_{\omega-n}^{\dagger\sigma'}(k-p_1) c_m^{\sigma'}(p_2) c_{\omega-m}^{\sigma}(k-p_2) \right\}$$

$$+ \Gamma_{s}^{3} c_{n}^{\dagger}(p_{1}) \sigma_{0} c_{n+\omega}(p_{1}+k+q_{\pi}) c_{m}^{\dagger}(p_{2}) \sigma_{0} c_{m-\omega}(p_{2}-k-q_{\pi}) - \Gamma_{t}^{3} c_{n}^{\dagger}(p_{1}) \vec{\sigma} c_{n+\omega}(p_{1}+k+q_{\pi}) c_{m}^{\dagger}(p_{2}) \vec{\sigma} c_{m-\omega}(p_{2}-k-q_{\pi}) + \Gamma_{c}^{3} \sum_{\sigma \neq \sigma'} c_{n}^{\dagger\sigma}(p_{1}) c_{\omega-n}^{\dagger\sigma'}(k-p_{1}+q_{\pi}) c_{m}^{\sigma'}(p_{2}) c_{\omega-m}^{\sigma}(k-p_{2}+q_{\pi}) \Big\}$$

(Dell'Anna, NPB 2006)

Interacting effective action

(Finkel'stein, JETP (1984); Dell'Anna, NPB (2006))

The corresponding effective action can be renormalized and reads

 $S[Q] = S_{NLSM}$

$$\left\{ \begin{array}{c} -\sum_{\alpha=0,3} \Gamma_{s}^{\alpha} \sum_{\ell=0,3} \int^{\prime} \operatorname{Tr}(Q_{n,n+\omega}^{aa} \tau_{\ell} \sigma_{0} \gamma_{\alpha}) \operatorname{Tr}(Q_{m+\omega,m}^{aa} \tau_{\ell} \sigma_{0} \gamma_{\alpha}) \\ +\sum_{\alpha=0,3} \Gamma_{t}^{\alpha} \sum_{\ell=0,3} \int^{\prime} \operatorname{Tr}(Q_{n,n+\omega}^{aa} \tau_{\ell} \vec{\sigma} \gamma_{\alpha}) \operatorname{Tr}(Q_{m+\omega,m}^{aa} \tau_{\ell} \vec{\sigma} \gamma_{\alpha}) \\ +\sum_{\alpha=0,3} \Gamma_{c}^{\alpha} \sum_{\ell=1,2} \int^{\prime} \operatorname{Tr}(Q_{n+\omega,-n}^{aa} \tau_{\ell} \sigma_{0} \gamma_{\alpha}) \operatorname{Tr}(Q_{m+\omega,-m}^{aa} \tau_{\ell} \sigma_{0} \gamma_{\alpha}) \end{array} \right.$$

 τ_i , σ_i , γ_i Pauli matrices in particle-hole, spin and sublattice spaces and $\int' = \frac{\pi^2 \nu^2}{32} \int dR \sum_{nm\omega a}$

Results with interactions

Very rich and not universal behaviors of the β -functions, not uniquely determined by symmetry classes (*Dell'Anna*, *AdP* (2017))

- Class A
 - yes S, no T, SU(2) → U(1)
 Antiferromagnetic fluctuations induce by disorder
 - ▶ no S, no T, yes SU(2) RG → clean system with long-range interaction
 - ▶ no S, no T, no SU(2) Interaction is RG irrelevant, RG → free case
- Class AIII
 - yes S, no T, yes SU(2)
 Antiferromagnetic fluctuations induce by disorder
 - ▶ no S, no T, SU(2) → U(1) Localization (unlike free case), interactions → scale invariants
- Class C
 - yes S, no SU(2) (broken by magnetic impurities) Localization or Anti-localization, depending on the interaction

Results with interactions

Class AI and Class BDI

• Far from instabilities for $\Gamma_c^0 > 0$, (and $\Gamma_3^s > 0$, $\Gamma_3^t < 0$ for BDI)

	No Interaction	Yes Interaction
AI	Anderson Insulator	delocalization (Finkel'stein)
BDI	Metal (Gade-Wegner)	Anderson-Mott Insulator

- Close to instabilities
 - $\Gamma_c^0 < 0$ can diverge under RG \Rightarrow Superconductivity (SC)
 - $\Gamma_s^3 < 0$ can diverge under RG \Rightarrow Charge density wave (CDW)
 - $\Gamma_t^3 > 0$ can diverge under RG \Rightarrow Antiferromagnetism (AFM)

Since the dephasing time (time scale for the coherence to be destroyed by inelastic processes) is $\tau_{\varphi} \sim T^{-1}$ \Rightarrow temperature T is the IR cutoff (Burmistrov, Gornyi, Mirlin, PRL 2012 (AI); Dell'Anna, PRB 2013 (BDI))

Solving RG equations

Enhancement of T_c for class BDI

Two counterintuitive results in the presence of disorder (g_0) and interactions (γ_0) (with $\gamma_0 \ll g_0 \ll 1$) in the presence of short-range repulsive interaction

Enhancement of superconductivity by disorder

$$T_c \sim (T_c^{BCS})^{-rac{\gamma_{c0}}{g_0}} \gg T_c^{BCS}$$
 $d=2$

$$T_c \sim (T_c^{BCS})^{1-g_0} \gg T_c^{BCS} \quad d=3$$

Antiferromagnetic fluctuations driven by random hopping

$$T_c \sim (T_c^N)^{-rac{2\gamma_{t0}}{3g_0}} \gg T_c^N \quad d=2$$

$$T_c \sim (T_c^N)^{1-rac{3g_0}{2}} \gg T_c^N \quad d=3$$

(Dell'Anna, PRB (2013))

<u>Multifractal</u> wavefunctions \Rightarrow inomogeneity of the pairing $\Delta \Rightarrow$ enhancement of T_c (Feigelman, loffe, Kravtsov, Cuevas, AoP (2010))

Thank you for your attention

<□ > < @ > < E > < E > E のQ @