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Anderson localization

In the presence of strong enough disorder in D>2 or for any
amount of disorder in D< 2 a metal can turn into an insulator.
Interference effect (Apg ~ ¢) = localization of the wavefunctions

The probability to find the particle at point C is:
|a1]? + |a2|? + 2Re(a1a3) = 4|a1|

=- enhancement of probability to find a particle at C
= reduction of probability to find it at B (conductivity \)

Probability of self-intersection
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Scaling theory of localization
(Thouless, Phy.Rep. (1974); Abrahams, Anderson, Licciardello and Ramakrishnan PRL
(1979); Gor'kov, Larkin, and Khmel'nitskii, JETP (1979))

Thouless idea: sample (2L)9 made of cubes L9

= an eigenstate for (2L)9 is a mixture of e.s. of L9 depending on
overlap integrals and energy differences (as in perturbation theory)

> energy differences ~ level spacing W = (voL9)~!

» overlap ~ bandwidth §E (if localized e.s. JE exp. small,
otherwise ~ hD/L?)

One parameter: % related to the conductance G (units of e?/h)

» small disorder: G(L) = oL92
» strong disorder: G(L) ~ exp(—L/¢)



Scaling theory of localization

» strong disorder : G(L) ~ exp(—L/¢)
_dlog G 0 G

B6) = FrogL ~ B G

» small disorder : G(L) ~ o L972, expanding in 1/G
B(6)=(d-2)- =

dénG 1 G

pEE | pdng

e
e,

(1 —1) d=3 (metal)
= o(L)—ogx —¢ log(5) d=2 (insulator)
(L—¢) d=1 (insulator)



Diagrammatics

Hamiltonian with some random potential
H=Hy+V

Disorder variance V(r)V(r') = wpdp = -
Bare Green function Go= ——

. N
’ \
i

In Born approximation, ¥ = > = i/27 (7 mean free time)

Green function

G*(E,p) = (E — Ho(p) + i/27)

Kubo formula for conductivity (paramagnetic part)

e? on. sot oo+ - ezl/VE- !
o(w) = 271'/d€ 9 Tr [Vgg_i_wV(gs -G )] T d 14wt

2.,,2
oo = 0(0) = =2ET (Drude conductivity)



Diagrammatics

The dc electrical conductivity can be written in terms of
current-current or density-density correlation functions

o=1ilim lKJ(O w)dij =i lim I|m —Koo(q, )

w—0 w w—09—0 q

Ladder summation (diffuson)

P 1 1

D(qw) = T =

2772 DQ? — iw
with D = vel/d = v27/d (diffusion coefficient)

k() = O+ LD - 2, Do

Dq — iw

from which o = 0g = e?vD.



Diagrammatics: Weak Localization
Inclusion of crossing diagrams

Ladder summation in the particle-particle channel: cooperon

I 1 1
C p— B * p—
() ' 2nv72 DG? — iw

Since now q = p + p/, the contribution to the current-current
correlator

5K(0, ) = L 5 _ 1w

1
d
v / quQ—iw

The correction to the dc conductivity is

00 1 %_%) /=3

__90 — L =

do = - quqz—iw x log(7) d=2
(L=¢) d=1



Anderson insulator

> 1D - 2D: Weak localization is IR-divergent in 1D and 2D:
0o ~ o0g at a scale

&~ mvD, for 1D

¢ ~ lexp (m?vD), for 2D

» 3D: Localization only above a critical value of the disorder

delocalized ° localized

critical disorder
point

localization lenght at criticality
§n~ (00 - Uc)iy
In the localized phase D(q,w) = C(q,w) becomes massive

D(r,w) ~ exp (=r/§)



Field theory approach: non-linear o-model
(Wegner, ZPB (1979); Efetov, Larkin, Khmel'nitsky, JETP (1980))

» Write GF in terms of Grassmann variables with action

5:/®(E—H0—Viiw)\ll

v

Average over disorder V' by replica method

Serr = /\TJ(E — Ho £ iw)V+wy /(\T/\U)2

v

Hubbard Stratonovich transformation (auxiliary field Q)

v

Integrating over fermionic fields = S(Q)

Saddle point: % =0 = Qs

Fluctuations around saddle point

v

v

v

Gradient expansion = N.L.c M.



Hubbard Stratonovich transformation
Integration over disorder = a quartic term in the action

e~ Seft — o= (S0+Simp)

By Hubbard-Stratonovich decoupling,

o Simp — oo [(VV)* _ /dQ o) 25 T1QQT] =TV QY]

For bipartite lattices the auxiliary field is not hermitian
Q; = Qoj + i(—1Y @s; (smooth and staggered components)

Integrating over W
1 -i. 1 .
S(Q) = Zz—onr [Q Q} — S Trin(=H +iQ)

0S

Saddle point: §3 =0 — Qs =T oc7

the self-energy at the Born level, in the diagrammatics!



Transverse modes and symmetry classification
Quantum fluctuations around Qs, that leave H invariant

UeGand [U,Qs] #0

Q = U_lepU

If H subgroup of G such that h € H, [h, Qsp] =0 = U € G/H (Coset)

Hamiltonian Class \ RMT \ T SU(2) \ NLo-model manifolds
Wigner-Dyson classes
A GUE - =+ U(2n)/U(n)xU(n)
Al GOE + + Sp(4n)/Sp(2n)xSp(2n)
All GSE + = 0O(2n)/0(n)x0O(n)
Chiral classes
Alll chGUE - &+ U(n)
BDI chGOE I+ 4 U(4n)/Sp(2n)
Cll chGSE + - U(n)/O(n)
Bogoliubov-de Gennes
C = 4F Sp(2n)/U(2n)
Cl + + Sp(2n)
D - - O(2n)/U(n)
| DIl PF = O(n)




Non linear o-model

From the real part of 5(Q)

Trin(—H + iQ) + Trin (—H — iQT) =
= —Trin (H*+ Q%) — Trin(1+ GoU),

where Gy = (H? + Qszp)fl and
Urr' = iQhHrr — iHrr Qrr =~ —J-VQ
the current operator appears
J=—iHrr/(R—R')
Expanding in Ugg/, the second term reads
Tr (GoUGoU) =~ (JGoJGo) Tr (0QT0Q)

the factor (JGyJGy) is the Kubo formula for the conductivity!



Effective action (NLSM)

The final effective action in long wavelength limit
™ N
slQl =% a/dR Tr (VQ VQT) — 4 THOQ)

the bare ¢ = e?vD is the Drude conductivity!

Quantum corrections from Renormalization Group (RG) procedure:

Gaussian propagators = diffuson and cooperon in diagrammatics

1 d’q 1

< >=— [ ——S———=g|
@Q 2o / 472 2 — jw g log(s)

where the effective coupling constant which controls the

perturbative expansion is given by g = ﬁ (the resistivity)

_ _dg
~dlogs

(s energy scaling factor)

B(g)

g is the running coupling constant.



RG of NLSMs (Wigner-Dyson classes) in (2 + €)d
Beta-functions by e-expansion

» Class A (unitary symmetry class, broken 7))
Blg) = —eg +8°/2+3g°/8+ 0(g")
» Class Al (ortogonal symmetry class, preserved 7 and SU(2))

Blg) = —eg+8” +3((3)g°/4 + O(g°)
» Class All (simplettic symmetry class, preserved 7, no SU(2))
Blg) = —eg—g” +3((3)8°/4+ 0(g°)
(+g% = weak localization, —g? = weak anti-localization)

Anderson transitions (5(g:) = 0)

» 3D (e = 1). Example: class Al
critical point: g. = € — 3¢(3)e*/4 + O(¢%)
localization lenght exponent: v = —-1/5'(g.) =~ 1.7
(in good agreement with numerics, v ~ 1.57)

» 2D for class All
critical point: g. = (4/3¢(3))/3 ~ 1
Metal-Insulator transition in 2D



Two-subattice models (Chiral classes)
(Gade, Wegner, NPB (1991))

o o o o

The Hamiltonian is defined on a bipartite lattice

_ Z tij e cf CipCjo — %
(i) o

> t; = tjj random hopping,

®

> ¢ = —¢ji, if #0, breaks time reversal symmetry (7),
» 1 # 0 breaks sublattice symmetry (S)

The effective action
S[Q] = 17T60/dR Tr (VQVQ') - 4 Tr(@Q)
N 2
—gn/dR [ (Q'(RIVa(R))]

(foru 2#0=MN=0)



Results with and without sublattice symmetry in 2D

] | Coset space | Symm. class | B(g) |
ft # 0, ¢ = 0 || Sp(4n)/Sp(2n)xSp(2n) Al g
p#0, 05 #0 | U(4n)/U(2n)xU(2n) A O(g%)
pu=0,¢;=0 U(8n)/Sp(4n) BDI 0
p=0,¢;#0 | U(4n)xU(4n)/U(4n) Alll 0

» without sublattice symmetry (u # 0):
1
0 =09 — 52 log(7y,/T)

(insulator, like for the on-site disorder)

» with sublattice symmetry (u = 0):

o= 0g

(conductor, Gade-Wegner criticality) at any order in g
B(g) = 0 also for Cll (Fabrizio, Dell’Anna, Castellani, PRL (2002))




Superconductors (Bogoliubov-de Gennes classes)
(Altland, Zirnbauer, PRB(1997))

For BdG Hamiltonians, since U(1) is not preserved, charge
diffusion is massive. The scaling parameter is the spin (or heat)
conductivity:

» Classes C and Cl: positive corrections 3(g) ~ g2

= weak localization

» Classes D, DIII: negative corrections 3(g) ~ —g?
= weak anti-localization (spin-metal - spin-insulator
transition)

(Senthil, Fisher, Balents, Nayak, PRL (1998); Fabrizio, Dell’Anna, Castellani,
PRL (2002))

Class C can be obtain also from random hopping Hamiltonian with
magnetic impurities (Dell’Anna, AdP (2017))



Topological terms

For almost all classes (except for Al and BDI) in 2D the non-linear
o-model can be supplemented by a topological term:

» O-term for A, C, D (like the Pruisken term for the Integer
Quantum Hall, with § = ¢;/8) or All, Cl

Sp =10 / dRTre,, R0, Q0,Q

» WZW-term for Alll, Cl, DIII (chiral anomaly).

Swr = —— [ ar? / dR Tre,mn(Q19,Q)(Q19,Q)(Q 10, Q)

241
We can get WZW term taking the imaginary part of the
action, left over in the o-model derivation.
(Dell’Anna, Fabrizio, Castellani, JSTAT (2007))



Anderson criticality in 2D (summary)

» Metal-Insulator transitions breaking spin-rotation invariance:
classes All, D, DIII

» Gade-Wegner criticality, line of fixed-points: §(g) = 0 for
chiral classes: Alll, BDI, ClI

» Criticality from topological terms

» O-term: Z; topology (6 = 7) for classes All and CII.
Two hypotheses: attractive fixed point to (i) finite or (ii)
oo-(ideal) conductivity (Ostrovsky, Gorny, Mirlin, PRL (2007))
» O-term: Z topology for classes A, C, D.
IQHE-like classes = fixed point between localized to localized
» WZW terms: Classes Alll, CI, DIII.

Only one symmetry class Al is always in the localized phase.



Interacting systems

(Altshuler, Aronov, SSC 1983; Finkel'stein, ZETF 1983; Castellani, Di Castro, PRB 1984)
3 scattering amplitudes (Finkel'stein, JETP 1984)

pk, 0+ q+k, o+v P O+ gk, o4y

1
s in p-h singlet channel: ™.¢ @y 2 pe v

Pk, e q+k, ;v

I; in p-h triplet channel: b e o
ey -qtk .o
e in p-p Cooper channel: pHey g f

6 scattering amplitudes with chiral symmetry (Dell’Anna, NPB 2006)
» T2 1% % previous scattering terms

» 3 13 13 with k = k + gy, where g, = (m,7)



Lattice model with disorder and interactions

The interacting Hamiltonian is

Z tj CIUCJU ZILL’CIG’CIG’ + ) Z Z

|k\<<kF p1p2wnm

o 0 0 o

{FO ch(p1) 00 Cnvew(pr + K) €l (P2) 00 Cm—ws (P2 — K)
—T2 cl(p1) @ carw(pr + k) ch(p2) & cm—w(p2 — k)
+10 3 el (p) b7k = pr) i (P2) €5k — p2) |

o#o’!

(Finkel'stein, JETP 1984)



Lattice model with disorder and interactions

The interacting Hamiltonian is

1
T Iy oy

(ij)y o |k|< ke P1P2wnm

‘o o 0 o
o o o o

{FS ch(p1) 90 Cayw(pr + k) ch(p2) 00 Cm—w(p2 — k)

_rg CE(PI)ECner(Pl + k) CL(P2)5Cm w(p2 — k)

103"l (pr) €7 ok = p1) €5 (p2) €5k — p2)
o#o’

+12 ¢/ (p1) 00 Coyes(P1 + k + Gr) €1 (P2) 00 Cmco(P2 — k — )
—I7 ch(p1) & crrwlpr + k + Gr) ch(P2) & Cm—w(P2 — k — )
(p

)
123" 7 (pr) el (k= pr + 4x) €5y (P2) C_ (k= P2 + )}
o#a’!

(Dell’Anna, NPB 2006)



Interacting effective action
(Finkel'stein, JETP (1984); Dell'Anna, NPB (2006))

The corresponding effective action can be renormalized and reads

S[Q] = Snism

/
- Z rg Z / Tr(Qs?nerTZ 0o '711) Tr(Q;ajLw,mTf 0o 'Ya)

a=0,3  ¢=0,3

/!
+ 212 Y [ THQR e v) THQE e 5)

a=0,3 (=03

!
+ Y2 Y [ QR meonma) THQE - ne0%a)

a=0,3 (=172

J

Ti, i, vi Pauli matrices in particle-hole, spin and sublattice spaces
and [ = [dR Y,




Results with interactions
Very rich and not universal behaviors of the S-functions, not uniquely
determined by symmetry classes (Dell’Anna, AdP (2017))
> Class A

» yes S, no T, SU(2) — U(1)

Antiferromagnetic fluctuations induce by disorder
» no S, no T, yes SU(2)

RG — clean system with long-range interaction
» noS, no T, no SU(2)

Interaction is RG irrelevant, RG — free case

» Class Alll

» yes S, no T, yes SU(2)
Antiferromagnetic fluctuations induce by disorder
» no S, no T, SU(2) = U(1)
Localization (unlike free case), interactions — scale invariants

» Class C

» yes S, no SU(2) (broken by magnetic impurities)
Localization or Anti-localization, depending on the interaction



Results with interactions
Class Al and Class BDI

» Far from instabilities
for Fg >0, (and I >0, T'{ < 0 for BDI)

] H No Interaction \ Yes Interaction

Al Anderson Insulator
BDI Anderson-Mott Insulator

» Close to instabilities

» % < 0 can diverge under RG = Superconductivity (SC)
» 2 < 0 can diverge under RG = Charge density wave (CDW)
» ? > 0 can diverge under RG = Antiferromagnetism (AFM)

Since the dephasing time (time scale for the coherence to be
destroyed by inelastic processes) is 7, ~ T1

= temperature T is the IR cutoff

(Burmistrov, Gornyi, Mirlin, PRL 2012 (Al); Dell’Anna, PRB 2013 (BDI))



Solving RG equations

0 002 GOd 006 GOS8 6l 012 014

En

Te > TBSS
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Enhancement of T. for class BDI

Two counterintuitive results in the presence of disorder (go) and
interactions (7p) (with 7o < go < 1) in the presence of short-range
repulsive interaction

» Enhancement of superconductivity by disorder
_ e
Te~ (TES) @0 > TBS d=2

T~ (TEC) 00> TBS  d=3

» Antiferromagnetic fluctuations driven by random hopping

294
T~ (TN) 3% > TN d=2
Ten (T2 > TN 4=3
(Dell’Anna, PRB (2013))

Multifractal wavefunctions AN — inomogeneity of the pairing A
= enhancement of T, (Feigelman, loffe, Kravtsov, Cuevas, AoP (2010))



Thank you for your attention
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