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An enduring legacy of lattice model research...
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Hubbard model in infinite dimensions
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A generalization of the numerical renormalization-group procedure used first by Wilson for the Kondo
problem is presented. It is shown that this formulation is optimal in a certain sense. As a demonstration
of the effectiveness of this approach, results from numerical real-space renormalization-group calcula-

Steven R. White

tions for Heisenberg chains are presented.
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FIG. 8. DFT4+DMFT 5 f spectral functions of §-Pu compared
the GGA and GGA+U 5 f projected density of states (DOS) us
for the cRPA calculation of U. Calculations are done at 800 K a
GGA+U and GGA DOS are widened (with a 0.5 eV broadening) to

be easily compared to DFT+DMFT spectral function.
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present an exact mapping of the Hubbard model in infinite dimensions onto a single-impurity

ion (or Wolff) model supplemented by a self-consistency condition. This provides a mean-field

of strongly correlated systems, which becomes exact as d — o. We point out a special integr-
ise of the mean-field equations, and study the general case using a perturbative renormalization

around the atomic limit. Three distinct Fermi-liquid regimes arise, corresponding to the Kondo,
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valence, and empty-orbitals regimes of the single-impurity problem. The Kondo resonance and
ellite peaks of the single-impurity model correspond to the quasiparticle and Hubbard-bands
s of the Hubbard model, respectively.
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Wavefunction (ground state) approaches to lattice models:

* Long history: Gutzwiller, RVB, ...

* More recently:
— Tensor Networks: MPS, PEPS
(White, Cirac, Verstrate, Corboz,...)

- Wfn-QMC: VMC, AFQMC, GFMC

(Sorella, Becca, Zhang...)
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Projector QMC

U — o—BH
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e Stochastically apply projector
* Discretize and sample from amplitudes

Various flavors
(Choice of projector, Hilbert space):
AFQMC, GFMC, FCIQMC, DMC,...

x Sign problem
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Variational QMC
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* Choose an explicit non-linear parameterization
* Optimize parameters via Metropolis sampling

* How to choose parameterization?
? * How to optimize variables with MC?

O
 How to reduce parameter space?

4,



Correlator Product States / Entangled Plaquette States
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Local (correlated)

entanglement Delocalized (KE)
physics
* Linear parameters with system size
e Exponential growth of parameters with correlator size



Non-linear projector Monte Carlo

Overlapping 5-site correlators x Slater determinant for 98-site, 2D Hubbard (U=8t)
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Schwarz, Alavi, Booth, Phys. Rev. Lett. (2017)



Similar problems found in optimization of non-linear neural networks...

oV N Momentumg
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* Chebyshev expansion of optimal projection operator



Non-linear projector Monte Carlo

Overlapping 5-site correlators x Slater determinant for 98-site, 2D Hubbard (U=8t)
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Non-linear projector Monte Carlo

Overlapping 5-site correlators x Slater determinant for 98-site, 2D Hubbard (U=8t)
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Non-linear projector Monte Carlo

4 x 4 Graphene sheet
Local p-space Gaussian functions from VASP

Low-energy correlated spin-fluctuations



 How to optimize variables with MC?

? * How to choose parameterization?
O

* How to reduce parameter space?

AEE R

2

‘Parameter-space’ ‘ ‘Data-space’

Modern fitting of Potential Energy Surfaces E(’rlq ro,r3,...,T ...\,-*)

Statistical inference
(Gaussian Process Regression)

Aldo Glielmo




‘Parameter-space’

f(plaquette parameters)

Explicit parameters

Iterative Non-linear fitting

Restricted to ‘small’ numbers
of parameters

Optimize parameters

‘Data-space’

f (distance from data points)

* Implicit parameters
(never referenced directly)

Analytic optimal fitting without
expanding in variables

* No restriction in number
of parameters

* Optimize datapoints
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* Independent of number of underlying parameters
* Linear with number of “data” configurations



Data:
Subset of configurations and their amplitudes

e.g. All configurations on ‘small’ system, then infer
amplitudes on ‘large’ system

Distance “Covariance
Kernel”:

Quantify ‘similarity’ (covariance) between two configurations:
How likely is it that their amplitudes are similar?



Many-body expansion
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K1: How many unoccupied (Holons), up, down, Doubly-occupied (Doublons)?
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K1: How many unoccupied (Holons), up, down, Doubly-occupied (Doublons)?

J
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Does not need to refer to the same sized system
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K1: How many unoccupied (Holons), up, down, Doubly-occupied (Doublons)?

K2: Start to build in (local) anti-ferromagnetic correlation, Holon-Doublon binding

16-dimensional ‘feature’ space
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K1: How many unoccupied (Holons), up, down, Doubly-occupied (Doublons)?

K2: Start to build in (local) anti-ferromagnetic correlation, Holon-Doublon binding

K3: 3-site descriptors



Gutzwiller Projection:

=1.0

=1.0

=1.0



real log coefficient

Extrapolation errors: Can we reproduce 10-site wave function from 6-site data?
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All 6-site fluctuations with all symmetries conserved
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Energy persite / t
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How to we avoid constructing these vectors...?



How to we avoid constructing these vectors...?
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L2 cost to evaluate contribution to kernel function between any two
configurations, for any plaquette topology, independent of size




How to we avoid constructing these vectors...?

TTTITRIY
TI11I 0

L2 cost to evaluate contribution to kernel function between any two
configurations, for any plaquette topology, independent of size
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How to we avoid constructing these vectors...?

TTIITRIY
TI111 0N

* L3 cost to evaluate all possible plaquettes of all topology to quantify
configurational similarity (k)

* Exponentially large ‘feature’ space of implicit plaguette parameters

* Exact results with exact data

* Beware of overfitting... (Hyperparameters avoid this)
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Optimize parameters Optimize Data
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Conclusions

* Accelerated Gradient Descent technique for
combining projector and variational QMC

e Data-driven wavefunctions as an intriguing new
approach to formulations of lattice models
— Early development, but clear extension to 2D systems
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