

Developments in wave function-based approaches to two-dimensional materials

George Booth

King's College London

Conference on Frontiers in Two-dimensional Quantum Systems Trieste, Italy 14/11/17

An enduring legacy of lattice model research...

Hubbard model in infinite dimensions

Antoine Georges*

Physics Department, Princeton University, Princeton, New Jersey 08544

Gabriel Kotliar

Serin Physics Laboratory, Rutgers University, Piscataway, New Jersey 08854 (Received 23 September 1991)

VOLUME 69, NUMBER 19

PHYSICAL REVIEW LETTERS

9 NOVEMBER 1992

Density Matrix Formulation for Ouantum Renormalization Groups

Steven R. White

Department of Physics, University of California, Irvine, California 92717 (Received 22 May 1992)

A generalization of the numerical renormalization-group procedure used first by Wilson for the Kondo problem is presented. It is shown that this formulation is optimal in a certain sense. As a demonstration of the effectiveness of this approach, results from numerical real-space renormalization-group calculations for Heisenberg chains are presented.

present an exact mapping of the Hubbard model in infinite dimensions onto a single-impurity on (or Wolff) model supplemented by a self-consistency condition. This provides a mean-field of strongly correlated systems, which becomes exact as $d \rightarrow \infty$. We point out a special integrse of the mean-field equations, and study the general case using a perturbative renormalization around the atomic limit. Three distinct Fermi-liquid regimes arise, corresponding to the Kondo, valence, and empty-orbitals regimes of the single-impurity problem. The Kondo resonance and ellite peaks of the single-impurity model correspond to the quasiparticle and Hubbard-bands s of the Hubbard model, respectively.

Wavefunction (ground state) approaches to lattice models:

- Long history: **Gutzwiller, RVB, ...**
- More recently:
	- Tensor Networks: MPS, PEPS

(White, Cirac, Verstrate, Corboz,...)

- Wfn-QMC: **WMC, AFQMC, GFMC**

(Sorella, Becca, Zhang...)

∑ $|\psi\rangle = \sum_{l} C^{q_1 q_2 q_3 ... q_m} |q_1 q_2 q_3 ... q_m\rangle$ *q*1*q*2*q*3...*qm* **CISD Choose subset?** -0.10 Correlation energy per site -0.15 Linear problem -0.20 Zero correlation in thermodynamic -0.25 limit 0.00 0.05 0.10 0.15 0.20 0.25 1/sites

 $|\psi\rangle = \sum_{n=0}^{\infty} C^{q_1 q_2 q_3 ... q_m} |q_1 q_2 q_3 ... q_m\rangle$ *q*1*q*2*q*3...*qm* ∑

Projector QMC

 $\Psi = e^{-\beta H}$

- Stochastically apply projector
- Discretize and sample from amplitudes

Various flavors (Choice of projector, Hilbert space): AFQMC, GFMC, FCIQMC, DMC,...

$$
|\psi\rangle = \sum_{q_1q_2q_3\ldots q_m} C^{q_1q_2q_3\ldots q_m} |q_1q_2q_3\ldots q_m\rangle
$$

Variational QMC

$$
|\psi\rangle = \sum_{q_1q_2q_3\ldots q_m} f(q_1q_2q_3\ldots q_m; \underline{X}) |q_1q_2q_3\ldots q_m\rangle
$$

- Choose an explicit *non-linear* parameterization
- Optimize parameters via Metropolis sampling

?

- How to choose parameterization?
- How to optimize variables with MC?
- How to reduce parameter space?

Correlator Product States / Entangled Plaquette States

- Linear parameters with system size
- Exponential growth of parameters with correlator size

Overlapping 5-site correlators x Slater determinant for 98-site, 2D Hubbard (U=8t)

Schwarz, Alavi, Booth, *Phys. Rev. Lett.* (2017)

Similar problems found in optimization of non-linear neural networks...

Chebyshev expansion of optimal projection operator

Overlapping 5-site correlators x Slater determinant for 98-site, 2D Hubbard (U=8t)

Schwarz, Alavi, Booth, *Phys. Rev. Lett.* (2017)

Overlapping 5-site correlators x Slater determinant for 98-site, 2D Hubbard (U=8t)

4 x 4 Graphene sheet Local p-space Gaussian functions from VASP

Low-energy correlated spin-fluctuations

- How to choose parameterization?
- How to optimize variables with MC?
- How to reduce parameter space?

Modern fitting of Potential Energy Surfaces

 $E(r_1, r_2, r_3, \ldots, r_N)$

Statistical inference *(Gaussian Process Regression)*

Aldo Glielmo

Parameter-space' The Contract of Second Line of Second Line (Data-space'

- **Explicit parameters**
- Iterative Non-linear fitting
- Restricted to 'small' numbers of parameters
- Optimize parameters

f(plaquette parameters) $\qquad \qquad$ **f**(*distance* from *data* points)

- Implicit parameters (never referenced directly)
- Analytic optimal fitting without expanding in variables
- No restriction in number of parameters
- Optimize datapoints

- Independent of number of underlying parameters
- Linear with number of "data" configurations

Data:

Subset of configurations and their amplitudes e.g. All configurations on 'small' system, then infer amplitudes on 'large' system

Distance "Covariance Kernel":

> Quantify 'similarity' (covariance) between two configurations: How likely is it that their amplitudes are similar?

$$
\begin{pmatrix} \#unocc \\ \#up \\ \#down \\ \#doub \end{pmatrix}
$$

$$
k_{1,2} = \begin{pmatrix} \#unocc \\ \#up \\ \#down \\ \#doub \end{pmatrix} \cdot \begin{pmatrix} \#unocc \\ \#up \\ \#down \\ \#doub \end{pmatrix} \cdot 2
$$

Does not need to refer to the same sized system

K2: Start to build in (local) anti-ferromagnetic correlation, Holon-Doublon binding

16-dimensional 'feature' space

K2: Start to build in (local) anti-ferromagnetic correlation, Holon-Doublon binding

K3: 3-site descriptors

Gutzwiller Projection:

Extrapolation errors: Can we reproduce 10-site wave function from 6-site data?

All 6-site fluctuations with all symmetries conserved

1D Hubbard Model, U=8t

400 linear coefficients from 6-site model

1D Hubbard Model, U=8t

400 linear coefficients from 6-site model

1D Hubbard Model, U=8t

400 linear coefficients from 6-site model

1D Hubbard Model, U=8t

400 linear coefficients from 6-site model

1D Hubbard Model, U=2t

400 linear coefficients from 6-site model

1D Hubbard Model, U=2t

400 linear coefficients from 6-site model

L² cost to evaluate contribution to kernel function between any two configurations, for any plaquette topology, independent of size

L² cost to evaluate contribution to kernel function between any two configurations, for any plaquette topology, independent of size

- **L³ cost** to evaluate *all* possible plaquettes of *all* topology to quantify configurational similarity (k_d)
- **Exponentially** large 'feature' space of implicit plaquette parameters
- **Exact results with exact data**
- Beware of *overfitting*... (Hyperparameters avoid this)

Exact results for data with complete plaquette space

Optimize parameters **Community** Optimize Data

Conclusions

• Accelerated Gradient Descent technique for combining projector and variational QMC

- **Data-driven wavefunctions** as an intriguing new approach to formulations of lattice models
	- $-$ Early development, but clear extension to 2D systems

Thanks

Non-linear stochastic optimizations:

Lauretta Schwarz

Gaussian Process Wavefunctions:

Aldo Glielmo, Sandro de Vita, Gabor Csanyi

