Geometrical Optics I: refraction, reflection, lenses and image formation

Refraction, reflection, lenses, and image formation

Basic components and their functions

What is inside?

Topics:

1. Properties o light
2. Light matter interaction
3. Refraction and reflection. Refractive lenses
4. Image formation

Properties of light. Electromagnetic spectrum

Electromagnetic spectrum and tissue absorption

Absorption in tissue chromophores

Properties of light. Waves

$$
\begin{gathered}
\lambda \mathrm{v}=\mathrm{c} \\
I=\frac{\mathrm{c} n \epsilon_{0}}{2 \cdot}|E|^{2}
\end{gathered}
$$

amplitude E
wavelength (λ)
frequency (v)
speed (c)
phase (ϕ)
polarization intensity (I)

Properties of light. Waves

Wavelength: $\lambda=635 \mathrm{~nm}$
Power: $\mathrm{P}=2 \mathrm{~mW}$
Spot (area): A=8 mm
Speed: $\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Area: $A=8 \mathrm{~mm}^{2}$

$$
\mathrm{I}=\mathrm{P} / \mathrm{A}=250 \mathrm{~W} / \mathrm{m}^{2}
$$

$$
\mathrm{E}=430 \mathrm{~V} / \mathrm{m}
$$

Spot (area) $=8 \mathrm{~mm}$
Speed (c) $=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$v=5 \times 10^{14} \mathrm{~Hz}$
$\varepsilon_{0}=8.854187817 \ldots \times 10^{-12} \mathrm{~F} \cdot \mathrm{~m}$

Properties of light. Speed

$$
n=1 \quad n>1 \quad n=1
$$

wavelength

$$
\mathrm{n}_{\text {material }}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{\mathrm{~V}_{\text {material }}}
$$

Properties of light. Rays and wavefronts

WAVE FRONTS

Wave fronts are parallel surfaces connecting equivalent points on adjacent waves.

(To simplify drawing light, rays and wavefronts are used instead)

Light matter interaction. Refraction and reflection

LAW OF REFRACTION

Reflection

- The Law of Reflection states that the angle of incidence is equal to the angle of reflection.
- Angles are measured with respect to the 'normal' line.

PLANE MIRROR

- $\theta_{\mathrm{i}}=\theta_{\mathrm{r}}$ Law of Reflection

Light matter interaction. Snell's law

Light matter interaction. Fresnel equations for normal incidence

$$
\begin{array}{ll}
R_{\perp}=\left(n_{1}-n_{2}\right)^{2} /\left(n_{1}+n_{2}\right)^{2} \quad \sim 4 \% \text { for air-glass } \\
T_{\perp}=4 n_{1} n_{2} /\left(n_{1}+n_{2}\right)^{2} \quad \sim 96 \% \text { for air-glass }
\end{array}
$$

Refractive lenses. Focusing

Positive (converging) lens

Lens maker's equation:

$$
\frac{1}{f}=(n-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}+\frac{(n-1) d}{n R_{1} R_{2}}\right],
$$

where n is the index of refraction of the lens material, and R_{1} and R_{2} are the radii of curvature of the two surfaces. For a thin lens, d is much smaller than one of the radii of curvature (either R_{1} or R_{2})

$$
\frac{1}{f} \approx(n-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]
$$

Refractive lenses. Lens shapes

Refractive lenses. Focus size

Is the focus really a point?,
No, the focus has a size proportional to the wavelength

Airy disk

Refractive lenses. Aberrations

Spherical aberration

A lens with spherical aberation focuses different
rays to different points along the optic axis

A perfect lens without Spherical aberration focuses all incoming rays to a single point on the optic axis

Refractive lenses. Ray tracing

1. Any ray that enters parallel to the axis on one side of the lens proceeds towards the focal point f on the other side
2. Any ray that arrives at the lens after passing through the focal point on the front side, comes out parallel to the axis on the other side
3. Any ray that passes through the center of the lens will not change its direction

Refractive lenses. Ray tracing

$>$ With ray tracing rules 1,2 and 3 , the position and size of an image can be determined from the position and size of an object
$>$ By tracing these rays, the relationship between the object distance and the image distance can be shown to be (thin lens equation):

$$
\frac{1}{S_{1}}+\frac{1}{S_{2}}=\frac{1}{f}
$$

$>$ And the magnification of the image:

$$
M=-\frac{S_{2}}{S_{1}}=\frac{h_{2}}{h_{1}}
$$

Image Formation by Lenses

https://www.youtube.com/watch?v=OSUGRvYwxw8

Image formation: Real and virtual images

