Preparatory School to the Winter College on Optics: Advanced Optical Techniques for Bio-imaging

Geometrical Optics II: paraxial theory, microscope imaging and Kohler illumination, objectives and eyepieces

Humberto Cabrera

Venezuelan Institute for Scientific Research International Centre for Theoretical Physics

Imaging

Imaging

Finite objetive lens

Infinite objetives work with tube lens to produce an image

Projecting the image to your eyes

Imaging with a camera at the intermediate imaging plane

Imaging with a camera at the eyepiece imaging plane

Photomicrography with an Integral Lens Camera

Illuminating the specimen

Kohler illumination

Köhler Illumination

Köhler illumination (specimen illuminating light rays)

This technique is recommended by all manufactures of modern laboratory microscopes because it can produce specimen illumination that is uniformly bright and free from glare, allowing the user to realize the microscope's full potential.

Critical illumination

Kohler illumination versus critical illumination why kohler illumination?

Light source image planes:

- •Lamp filament
- •Condenser diaphragm
- Back focal plane of the objective
- •The eyepoint

Specimen image planes:

- Field diaphragm
- •Specimen
- •Intermediate image plane (the eyepiece diaphragm)
- •The eye retina or camera sensor

Conjugates planes

Infinite objetive

Finite objetive

Conjugate planes are simultaneously in focus and appear superimposed when viewing through the microscope

Objective lenses and optical aberrations

There are many classes of objective lenses

Common objective optical correction factors

 \checkmark Aberration correction

- ✓ Transmission
- ✓ Resolving power

Aberration correction

Achromats

- Axial red and blue (656 nm-486 nm)
- Spherical Green 546 nm
- Fluorites (Semi-Apo)
- Axial -2 to 4 colors
- Spherical 2 to 4 colors
- Apochromats
- Axial 4 to 5 colors violet, blue, green and red

All available in "Plan" versions

Numerical aperture

NA= n.sin (α)

α: the half opening angle of the objective or angle of the cone of illumination

n: the refractive index of the immersion medium used between the objective and the object

- Air n=1.0
- Water n=1.33
- Oil and glass n=1.5

Numerical aperture

Numerical Aperture Comparison

Why immersion media increases NA?

Immersion Oil in Optical Microscopy

Maximum NA=1.49 in oil and NA=1.27 in water

How immersion medium affects the true N.A. and consequently resolution

Snell's Law:

 $n_1 \sin \beta_1 = n_2 \sin \beta_2$

No immersion (dry)

- Max. Value for $\alpha = 90^{\circ}$ (sin = 1)
- Attainable: $\sin \alpha = 0.95 \ (\alpha = 72^{\circ})$
- Actual angle α_1 :

$$\alpha_1 = \arcsin\frac{NA}{n} = \arcsin\frac{0.95}{1.52} = 39^\circ$$

With immersion oil (3) n=1.518

- No Total Reflection
- Objective aperture fully usable
- N.A._{max} = 1.45 > Actual angle α_2 :

$$\alpha_2 = \arcsin\frac{NA}{n} = \arcsin\frac{1.45}{1.518} = 73^\circ$$

- 1) Objective
- 2) Cover Slip, on slide
- 3) Immersion Oil

Chromatic aberrations

Chromatic aberrations correction

Chromatic aberrations correction

Spherical aberrations

Spherical aberrations correction

How does a correction collar work??

Objective Magnification

Magnification of the Microscope

•M Microscope = M Objective X M Eyepiece X M Intermediate Factor

M = Magnification

Example: Objective = $60 \times$ Eyepiece = $10 \times$ Intermediate Factor = $1 \times$ Overall M = $600 \times$

Features of an objective

60x Plan Apochromat Objective

Thanks