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Imaging
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Finite objetive lens




Infinite objetives work with tube lens to produce an image




Projecting the image to your eyes

Eyepiece
Objective 2
Intermediate /N
N, R .. Image A 3
Speci

Intermediate
Image

........................................................

¢ Infinity Space _:




Imaging with a camera at the intermediate imaging plane
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Imaging with a camera at the eyepiece imaging plane

Photomicrography with an Integral Lens Camera
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llluminating the specimen

Modern Microscope Component Configuration
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Kohler illumination

Kohler lllumination
Kohler illumination (specimen illuminating light rays)
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Light Path
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This technique is recommended by all
manufactures of modern laboratory
objeciive microscopes because it can produce
C oca - . . - - . -
I pine specimen illumination that is uniformly bright
y _:.:::: and free from glare, allowing the user to
e -~ realize the microscope’s full potential.
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Critical illumination

Critical lllumination Ray Trace Diagram
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Kohler illumination versus critical illumination

why kohler illumination?

Light source image planes: eld lenses. e
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Conjugates planes

Finite objetive

Conjugate Focal Planes in the Microscope for Kéhler lllumination
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Conjugate planes are simultaneously in focus and appear superimposed when viewing through the microscope
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Objective lenses and optical aberrations

There are many classes of objective lenses

Common objective optical correction factors

10x Achromat

10x Fluorite

10x Apochromat

4% Lens
171 Doublet Lens
L] E Triplet
Lens
. Triplet —
Lens
Lens Doublet
Doublet Groups

v" Aberration correction
v" Transmission

v" Resolving power



Aberration correction

* Achromats

e Axial - red and blue (656 nm-486 nm)

e Spherical - Green - 546 nm

* Fluorites (Semi-Apo)

* Axial -2 to 4 colors

 Spherical - 2 to 4 colors

* Apochromats

* Axial - 4 to 5 colors - violet, blue, green and red

All available in “Plan” versions



Numerical aperture

NA= n.sin (a)
Numerical Aperture ., _ . a: the half opening angle of the
(@) =7 NA=0.12 objective or angle of the cone of
(b) o = 20° NA = 0.34 illumination

(c) ¢ = 60° NA = 0.87

n: the refractive index of the
immersion medium used between

Light
Cone the objective and the object
(a)  Airn=1.0

e Watern=1.33
* QOiland glass n=1.5



Numerical aperture

Numerical Aperture Comparison
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Why immersion media increases NA?

optical axis
| Immersion Qil in Optical Microscopy
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How immersion medium affects the true N.A. and consequently
resolution

e Max. Value for oo =90° (sin=1)

e Attainable: sina =0.95 (o =72° ) Beampath
Snell’ s Law: [ N
e Actual angle a;: N sin Bie o s No oil +  Oil
1 Sin B1= N, sin P |
\ o1 o,
. NA . 0.95 0
o, = arcsine— =arcsine—— =39
n 1.52
(3) n=1.518

 No Total Reflection

* Objective aperture fully usable

1) Objective
* N.A. ., =1.45>Actual angle o, : 2) Cover Slip, on slide
3) Immersion Oil

. NA . 1.45
o, =arcsine—— =arcsine
n 1.518

=73°




Chromatic aberrations

Axial Chromatic Aberration
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Chromatic aberrations correction




Chromatic aberrations correction

Focal Plane
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Spherical aberrations

Spherical Aberration Longitudinal and Transverse Spherical Aberration
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Spherical aberrations correction

How does a correction collar work??
Correction Collar for Spherical Aberration
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Objective Magnification

Magnification of the Microscope
*M Microscope = M Objective X M Eyepiece X M Intermediate Factor

M = Maghnification
Example: Objective = 60 x
Eyepiece = 10 x

Intermediate Factor = 1 x
Overall M = 600 x




Features of an objective

60x Plan Apochromat Objective

Nosepiece
Manufacturer Mﬁ:mtigg
Flat-Field b
Correction Nikon Aberration
Lateral Plan Apo Correction
Magnification —==—60Xx/ 0.95 Numerical
Specialized DIC M Aperture
Optical /011023 WD 0.1 Working
Properties Distance
Tube Length” . | | s Magnification
N o 1 :la 'zo 23 Color Code
Cover Glass Co i
Thickness rection
Range COllal'
Front
%%vsrﬂ?nl::{. Lens Element

uage Assembly
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