

State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG) Institute of Atmospheric Physics Chinese Academy of Sciences

FGOALS-f High-resolution Coupled Climate Model and the simulated Asian Summer Monsoon Qing Bao ¹

Contributors: B. He¹, X. Wang¹, X. Wu², Y. Liu¹, G-X Wu¹, J-X Li¹, and L. Wang¹

1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 2.School of Atmospheric Sciences, Chengdu University of Information Technology

TTA 2017, ICTP, Aug 1, 2017

Climate modeling grew out of numerical weather prediction

Lewis F. Richardson (1881-1953)

In 1922, Richardson provided the first formulation of the atmospheric equations on a computational grid.

"If the coordinate chequer were 200 km square in plan, ... 64,000 computers would be needed to race the weather. In any case, the organisation indicated is a central forecast-factory."

7

This illustration depicts Richardson's "forecast factory." Image courtesy of L. Bengtsson.

Outlines

- Introduction
- FGOALS-f High-resolution Coupled Climate Model
- Simulated Asian Summer Monsoon
- S2S prediction system with FGOALS-f
 - Summary

Complex topography over the Asian summer monsoon regions

Produced by 12.5km topography

Schematic diagram of Asian Summer Monsoon

(Zhang and Tao, 1998, CJAS)

NATURE | COMMENT

Climate forecasting: Build high-resolution global climate models

Tim Palmer

19 November 2014

International supercomputing centres dedicated to climate prediction are needed to reduce uncertainties in global warming, says Tim Palmer.

How to improve the modeling skills?

Great Challenges in high-resolution climate modeling

Local effects such as thunderstorms, crucial for predicting global warming, could be simulated by fine-scale global climate models

Build high-resolution global climate models

Tim Palmer, 2014 Nature | COMMENT

- Huge computational cost
- Parameterizations :
 - Approximate the average effects of convective clouds
 - Sensitive to some of the parameters

Resolving convective cloud systems

Developing the next-generation climate system models

- \cdot To increase the resolutions of the model mesh
- $\cdot\,$ To improve the physics of the model

Great Challenges in CMIP models

However, an aspect of global coupled modeling that has changed little with improved model resolution and physics is that there are some systematic errors. Such persistent systematic errors noted in previous generations of global coupled models that still are present in the present generation include an overextensive and too-strong equatorial Pacific cold tongue, a double ITCZ, either weak or little intraseasonal convective activity in the Tropics [e.g., the Madden–Julian oscilla-

AMERICAN METEOROLOGICAL SOCIETY

(Meehl, et al 2005, BAMS)

Recent Progress in the cumulus parameterization

- Stochastic parameterization (Plant and Craig 2008;
 - G. Zhang, et al , 2016 Tsinghua; Berner et al., 2017, NCEP ...)
- (Plant and Craig 2008)
- Great potential to increase the predictive capability of next-generation weather and climate models.
- A Unified Convection Scheme (UNICON) (Park. 2014)
 - Double plume convective parameterization
 - (M. Zhao, GFDL)
- Cloud resolving scheme (Kodama et al 2015, NICAM)
- Super-parameterization
 - (Khairoutdinov,, and Randall,2001;Miura et al. 2007 Wang M. et al 2011, SPCAM, NCAR/PNNL)

Chinese fastest supercomputers

Tianhe1

Tianhe2

Sunway TaihuLight

No. 1: 2010-2011

No. 1: 2013-2016

No. 1: 2016-

Supercomputer is/was the world's fastest

 To improve the weather and climate variability related with the cumulus convection

• To be scale-aware and computational effective

Climate System Model: FGOALS-f

Introductions to AGCM S/FAMIL

Finite-volume/Spectral Atmospheric Model in IAP LASG 包庆等,2005;包庆等,2006; Bao et. al, 2010;2013; Bao et al., 2014; Zhou Bao* et al.,2014;Zhou Bao* et. al 2015

FV3 dynamic core:Lin and Rood, 1996; Lin, 1997, 1998, 2004; Putman and Lin, 2007

High-resolution AGCM: FAMIL

FGOALS-f in CMIP6

	CMIP5	CMIP6	
Name	FGOALS-s2 (Bao et al., 2013)	FGOALS-f (He et al In prep;Bao In Prep.)	
Atmosphere	SAMIL	FAMIL	
Dynamic core	Spectral on lon-lat grid (Wu et al 1996; Bao et al., 2010)	Finite Volume on Cubed-sphere grid (Lin 1996,2004; Zhou et al. 2015)	
Resolution	R42(2.81°X1.66°) L26	C96(1°X1°) L32 C384(0.25°X0.25°) L32	
Radiation	Edwards J. M. and A. Slingo, 1996 Sun, Z., 2005	RRTMG (Clough et al, 2005)	
Convection	Mass-flux Tiedtke, 1989;Nordeng,1994	Resolving Convective Precipitation Copyright (c) 2017 FAMIL development team One-moment bulk (Lin et al,,1983) Two-moment (Chen and Liu, 2004)	
Microphysics	None		
Boundary Layer	Non local (Holtslag and Boville, 1993)	UW (Bretherton and Park,2009)	

Computational performance

	NICAM (KODAMA et al. 2015)	FGOALS-f_C384	FGOALS-f_C96
CSM	AGCM	CGCM	CGCM
Resolution	atm/Ind: 14km	atm/Ind: 25km ocn/ice: 100km	atm/Ind: 100km ocn/ice: 100km
Computer	K computer	Tianhe-2	Tianhe-2
CPU cores	5,120	864	864
1 wall-clock day	0.2 years	1.5 years	18 years

Tropical Precipitation Variability in FGOALS-f

- ITCZ
- MJO/ISO
- ENSO
- Precipitation frequency & intensity
- Tropical cyclone

BAADS AND SALL HILLS METEOROLOGY OVER SMALL HILLS

However, an aspect of global coupled modeling that has changed little with improved model resolution and physics is that there are some systematic errors. Such persistent systematic errors noted in previous generations of global coupled models that still are present in the present generation include an overextensive and too-strong equatorial Pacific cold tongue, a double ITCZ, either weak or little intraseasonal convective activity in the Tropics [e.g., the Madden–Julian oscilla-

AMERICAN METEOROLOGICAL SOCIETY

(Meehl, et al 2005)

CMIP3

CMIP5

Hwang and Frierson 2013 PNAS

ANN Precipitation in FGOALS-f

FGOALS-f mitigates the double ITCZ problem

ANN Precipitation in FGOALS-f

FGOALS-f mitigates the double ITCZ problem

Tropical Precipitation Variability in FGOALS-f

- ITCZ
- MJO/ISO
- ENSO
- Precipitation frequency & intensity
- Tropical cyclone

MJO/ISO

Impacts of MJO (TISO)

- Global weather and Climate in multi time scales
 - TC/TS
 - Monsoon
 - ENSO
 - AO et al.
- Regional weather and climate
 - TC in IO and WP
 - Drought and flood
 - Asian climate
 - Predictability

(e.g., Yasunari 1979; Liebman et al. 1994; Kessler 2001; Lin et al, 2006)

MJO remains a great challenge in GCMs

Figure 3. Longitude-time evolution of rainfall anomalies by lag regression of 20–100 day band-pass-filtered anomalous rainfall against itself averaged over the equatorial eastern Indian Ocean (75–85°E; 5°S–5°N). Rainfall anomalies are averaged over 10°S–10°N. Dashed lines in each panel denote the 5 m s⁻¹ eastward propagation phase speed.

Jiang, X., et al. (2015), Vertical structure and physical processes of the Madden- Julian oscillation: Exploring key model physics in climate simulations, J. Geophys. Res. Atmos., 120, 4718– 4748, doi:10.1002/2014JD022375.

Indian Ocean

MJO

MJO remains a great challenge in GCMs

Western Pacific MJO

Jiang, X., et al. (2015), Vertical structure and physical processes of the Madden- Julian oscillation: Exploring key model physics in climate simulations, J. Geophys. Res. Atmos., 120, 4718– 4748, doi:10.1002/2014JD022375.

Figure 4. Same as in Figure 3 but by lag regression against rainfall over a western Pacific box (130–150°E; 5°S–5°N).

MJO over the equatorial eastern Indian Ocean in boreal winter

MJO over the equatorial western Pacific Ocean in boreal winter

ISO over the Indian Ocean in boreal summer

Convectively Coupled Equatorial Waves(CCEWs)

TRMM

0.25° FGOALS-f coupled run

1° FGOALS-f AMIP type run

1° FGOALS-f coupled run

Convectively Coupled Equatorial Waves(CCEWs)

TRMM

0.25° FGOALS-f coupled run

1° FGOALS-f AMIP type run

1° FGOALS-f coupled run

Tropical Precipitation Variability in FGOALS-f

- ITCZ
- MJO/ISO
- ENSO
- Precipitation frequency & intensity
- Tropical cyclone

ENSO in FGOALS-s2 (CMIP5)

CLIMATE CHANGE 2013 The Physical Science Basis WGI WORKING CROUP I CONTRIBUTION TO THE 0 RETH ASSESSMENT REPORT OF THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

ENSO teleconnection pattern

-0.6 -0.4 -0.2 -0.1 0 0.1 0.2 0.4 0.6 0.8 1 1.2

Tropical Precipitation Variability in FGOALS-f

- ITCZ
- MJO/ISO
- ENSO
- Precipitation frequency & intensity
- Tropical cyclone

Precipitation frequency & intensity

CMIP3

Dai AG 2006 JC

NCAR CAM5.3

Revised Fig 3 Wang et al. (2016, GRL)

Precipitation frequency & intensity

Units: mm/day

Tropical Precipitation Variability in FGOALS-f

- ITCZ
- MJO/ISO
- ENSO
- Precipitation frequency & intensity
- Tropical cyclone

"The present annual global damage from tropical cyclones is US\$26 billion (which is equal to 0.04% of the gross world product (GWP). In 2100, global baseline damage more than doubles to US\$56 billion per year (0.01% of GWP)".— Medelsohn, Emanuel et al, nature climate change, 2012

NCAR CESM in ~25km (C180) (R. Justin Small et al, 2014)

Fig.8. Seasonal cycle of tropical cyclones' numbers in Western Pacific Ocean (Fig 8a), and Northern Indian Ocean (Figure 8b). Time periods of FAMIL simulation and IBTrACS are both from 1983 to 2002.

Tropical Cyclone Roanu - May 2016

CNN Sri Lanka floods

Southwestern China Suffering from Drought

Fig.10. 1-day lead forecast for tropical cyclone named Roanu genesis and tracks in monthly sea surface temperature (left of panel) and daily sea surface temperature (right of panel). Blue star and line means observation from RSMC; red dots and lines means 4 assembles which use nudging method to drive model until the two days earlier than Roanu become to tropical storm, then do hindcast at every 6 hours.

Outlines

- Introduction
- FGOALS-f High-resolution Coupled Climate Model
- Simulated Asian Summer Monsoon
- S2S prediction system with FGOALS-f
 - Summary

Asian Summer Monsoon (ASM)

TRMM

90E

20N

Asian Summer Monsoon (ASM)

-10 -8 -6 -4 -3 -2 -1 0 1 2 3 4 6 8 10

Annual cycle of EA precipitation

з

Extreme precipitation over china

Extreme precipitation over china: reanalysis?

Extreme precipitation over china: CMIP5?

Extreme precipitation over china:FGOALS-f 100km vs. 25km

Accumulated rainfall (mm)

Frequency&intensity(%)

Himalayan region

Outlines

- Introduction
- FGOALS-f High-resolution Coupled Climate Model
- Simulated Asian Summer Monsoon
- S2S prediction system with FGOALS-f

Summary

Practice is the sole criterion for testing knowledge(truth)实践是检验认识(真理)的唯一标准

S2S prediction system

- FGOALS-f (atm/ocn: 1°)
- Nudging
 - atm: T/U/V/P/Z3 (6hr,JRA55)
 - ocn: PT (30day, EC-S4/GODAS)
- Time-lagged ensemble approach: 24~35
- Monthly Hindcast: 1981~ 2016 (36 years)
- Real-time Forecast: Jun, 2017 ~ (~1.5day delay)
- Forecast Users
 - Chinese MME, National Climate Center,
 CMA, China

 National Marine Environmental Forecasting Center,SOA,China

Skill of Seasonal ENSO prediction

(Barnston et al,2012, BAMS)

SKILL OF REAL-TIME SEASONAL ENSO MODEL PREDICTIONS DURING 2002–11 Is Our Capability Increasing?

IN ANTHONY G. BANNETON, MICHAEL K. TIMETT, MICHAEL L. L'HELAGUE, BINARA LA AND DAVID G. DEWITT

Skill of Real-time Seasonal ENSO Model Predictions during 2002–2011

Real-time Seasonal ENSO Predictions

FGOALS-f: Jul 20, 2017预测

CECMWF

ECMWF: Jul 1, 2017预测

热带气旋(TC/Hurricane)

FGOALS-f: r=0.57 (95%) C96 ~100km L32 top 1mb 4 ensemble members Hindcast from Jun ECMWF: r=0.44 T319 ~62km L91 top 0.01mb 51 ensemble members Hindcast from May

ECMWF: TC genesis frequency

FGOALS-f: TC genesis frequency

Summary

- FGOALS-f is targeting for higher resolution with a goal to improve both physical realism and simulation fidelity (mean&variability: ASM, ITCZ, TC, MJO, ENSO, extreme precipitation, ...)
- The scale-aware RCP scheme used in FGOALS-f
 - mitigates the double ITCZ problem
 - improve simulation of ENSO teleconnection
 - improve MJO simulation

0

- maintain a competitive simulation of WP/IO TC FCOALS-f prediction system shows substantial skill in ENSO and TC prediction

State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG) Institute of Atmospheric Physics Chinese Academy of Sciences

Thank you for your attention!

MJO in FAMIL (控制试验 & 无显式云试验)

Indian Ocean MJO

FAMIL ctrl

FAMIL No_RCP