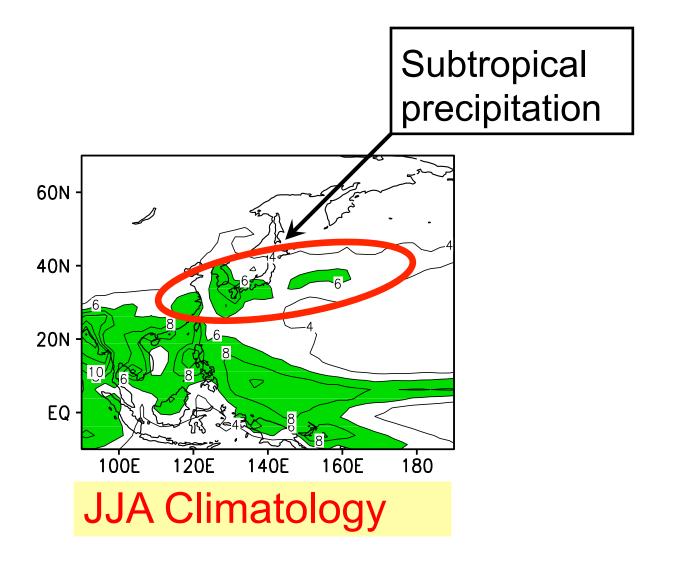
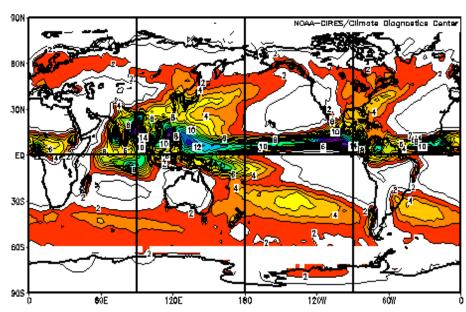
Interannual variability in East Asian summer rainfall: CMIP5 vs CMIP3

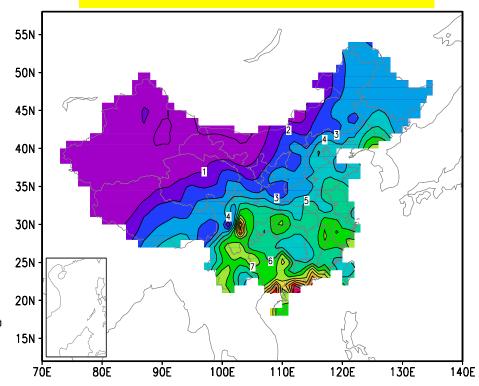
Riyu Lu, and Yuanhai Fu Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

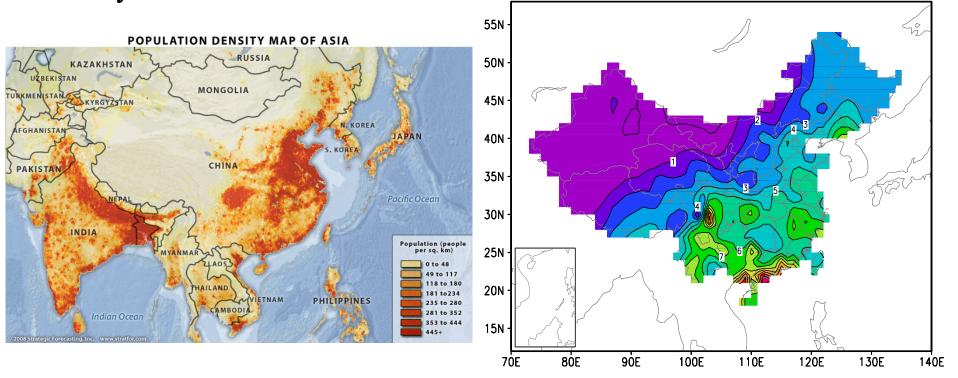

2017-08-02

ITCP-Monsoons and Climate Change

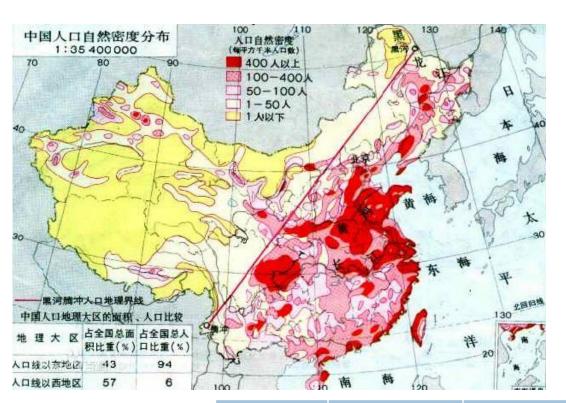

Outline

- Introduction
- Relationship to ENSO
- Projected change
- Summary



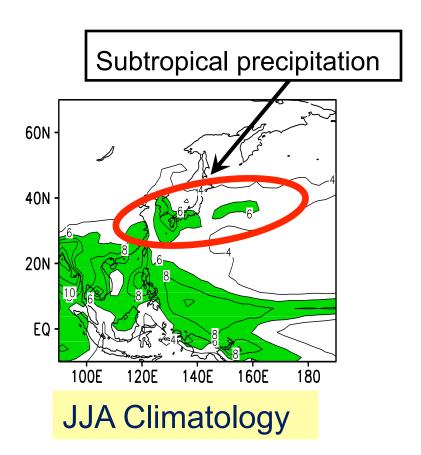

Summer rainfall

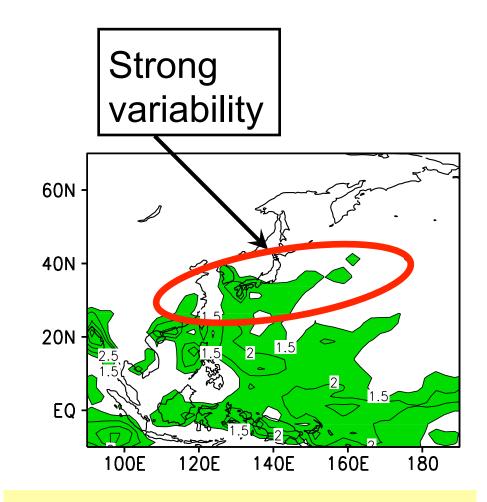
China station rainfall



Consistency between population density and rainfall

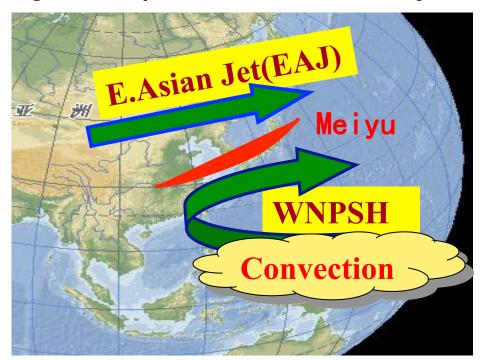
Rainfall is important for human life


Population in East and West China

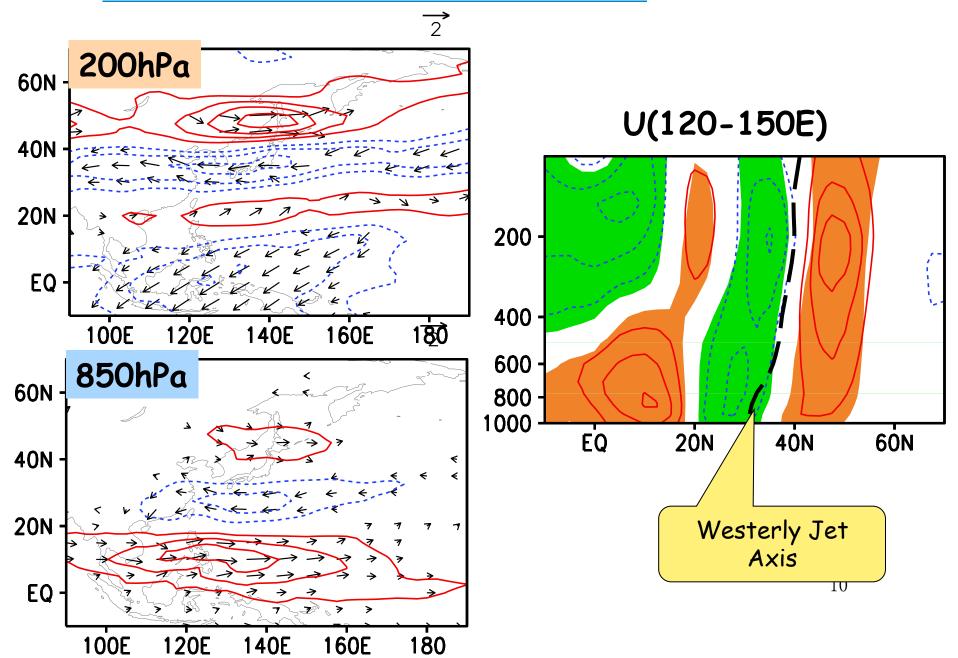


China rainfall

	Area	Population
East	43%	94%
West	57%	6%

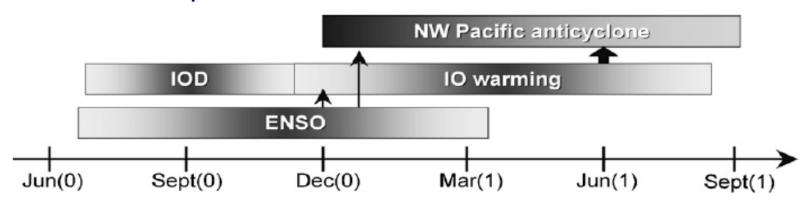

Interannual Standard Deviation

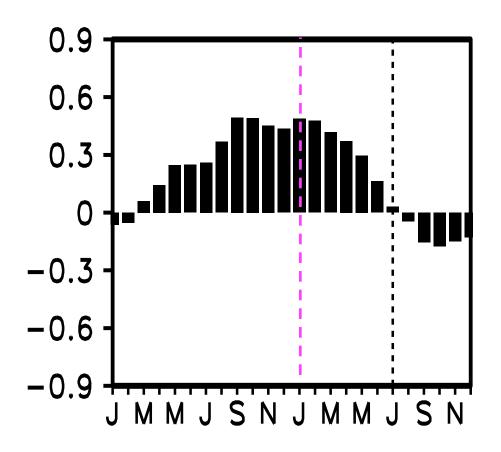
Floods and droughts occur frequently in East Asia



Major components of EASM system

There are meridional teleconnections on the interannual timescale


3-D structure of the Meridional Teleconnection


ENSO – Indian Ocean SST – WNP anticyclone – East Asian Summer Rainfall

(e.g., Huang and Wu, 1989; Wang et al., 2000; Li et al. 2008; Xie et al. 2009)

Indian Ocean capacitor

ENSO events in winter are used as a predictor by East Asian meteorologists to forecast summer precipitation anomaly.

Q:<u>Can models capture</u> <u>this ENSO–EASR</u> relationship?

Correlation coefficient between East Asian summer rainfall and monthly Nino3.4

Outline

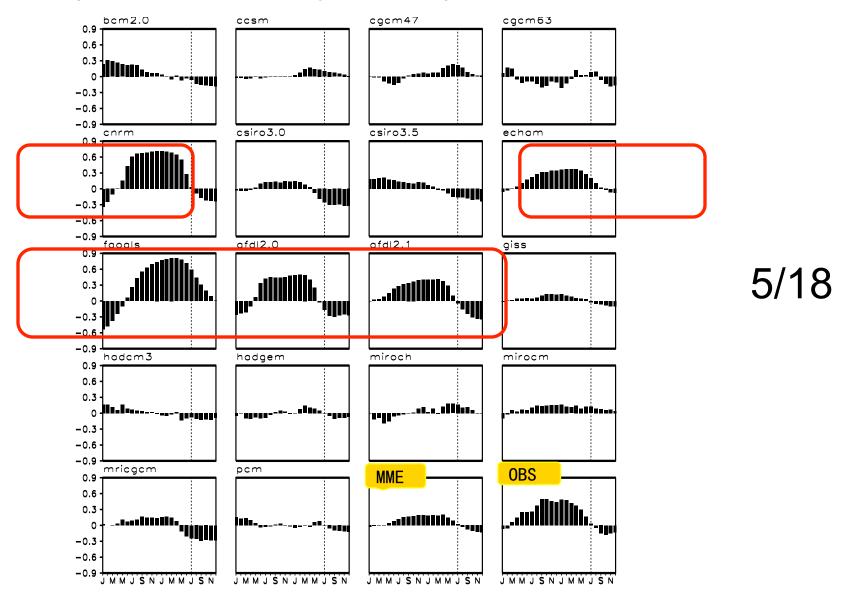
- Introduction
- Relationship to ENSO
- Projected change
- Summary

18 models in CMIP3

Model I.D.	Abbreviation	Atmospheric Resolution
BCCR-BCM2.0	bcm2.0	128 × 64, L17
CCSM3	ccsm	256×128 , L17
CGCM3.1(T47)	cgcm47	$96 \times 48, L17$
CGCM3.1(T63)	cgcm63	$128 \times 64, L17$
CNRM-CM3	cnrm	$128 \times 64, L17$
CSIRO-MK3.0	csiro3.0	$192 \times 96, L17$
CSIRO-MK3.5	csiro3.5	$192 \times 96, L17$
ECHAM5/MPI-OM	echam	$192 \times 96, L16$
FGOALS-G1.0	fgoals	$128 \times 60, L17$
GFDL-CM2.0	gfdl2.0	$144 \times 90, L17$
GFDL-CM2.1	gfdl2.1	$144 \times 90, L17$
GISS-EH	giss	$72 \times 46/45$, L17
UKMO-HadCM3	hadcm3	$96 \times 73/72$, L15
UKMO-HadGEM1	hadgem	192×145 , L16
MIROC3.2(hires)	miroch	$320 \times 160, L17$
MIROC3.2(medres)	mirocm	$128 \times 64, L17$
MRI-CGCM2.3.2	mricgcm	$128 \times 64, L17$
PCM	pcm	$128 \times 64, L17$

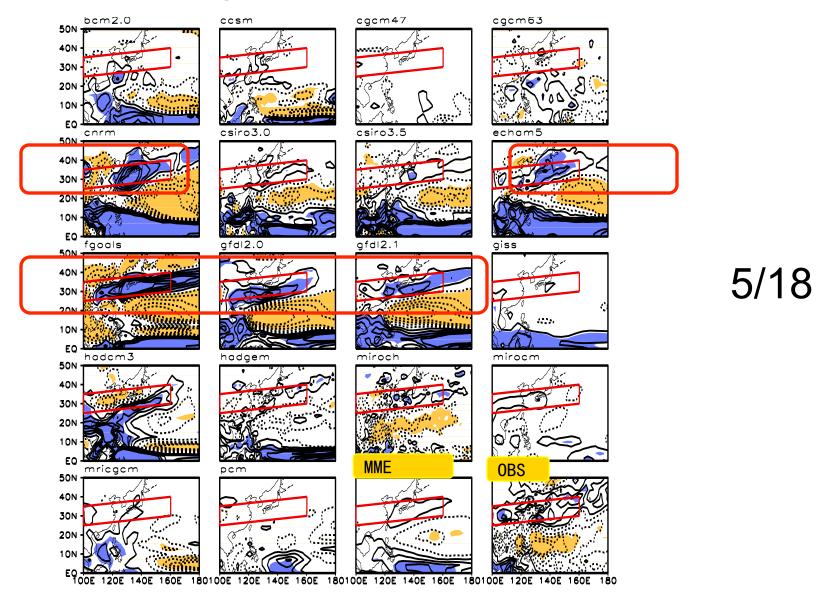
Method and data

 9-year gauss filter is used to obtain the component of interannual variability.

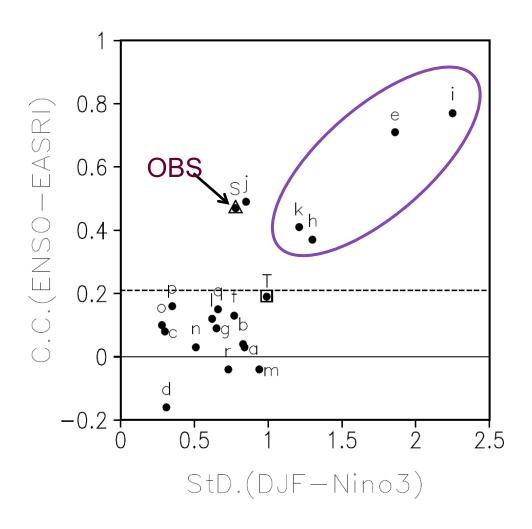

Models:

20th century (1901-2000), 21st century (2001-2100)

Observations:


NCEP-NCAR (1958-2007), GPCP (1979-2007)

CC(EASR, monthly Nino3) in CMIP3


Fu et al., 2013, J. Geophys. Res. Atmos.

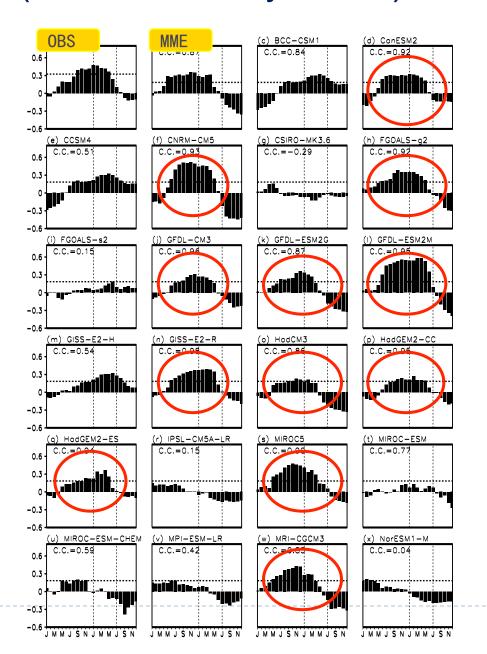
DJF Nino3-regressed summer rainfall in CMIP3

Fu et al., 2013, J. Geophys. Res. Atmos.

In CMIP3, the models capturing ENSO-EASR relationship strongly overestimate ENSO

Fu et al. 2013

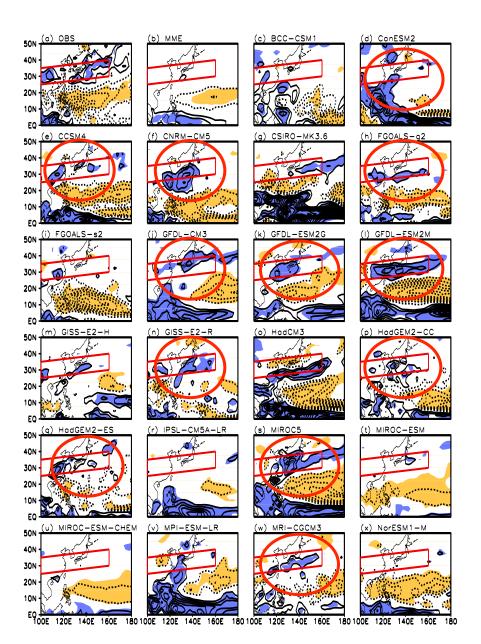
Ques:


Can the CMIP5 models show any improvements in representing the ENSO-EASR relationship?

22 models in CMIP5

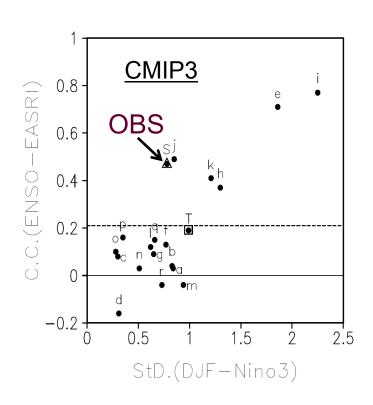
	Model I.D.	Atmospheric Resolution
а	BCC-CSM1	128×64, L17
b	CanESM2	128×64, L22
С	CCSM4	288×192, L17
d	CNRM-CM5	256×128, L17
е	CSIRO-MK3.6	192×96, L18
f	FGOALS-g2	128×60, L17
g	FGOALS-s2	128×108, L17
h	GFDL-CM3	144×90, L23
i	GFDL-ESM2G	144×90, L17
j	GFDL-ESM2M	144×90, L17
k	GISS-E2-H	144×89, L17
- 1	GISS-E2-R	144×89, L17
m	HadCM3	96×73/72, L17
n	HadGEM2-CC	192×145/144, L23
0	HadGEM2-ES	192×145/144, L17
р	IPSL-CM5A-LR	96×96, L17
q	MIROC5	256×128, L17
r	MIROC-ESM	128×64, L35
s	MIROC-ESM-CHEM	128×64, L35
t	MPI-ESM-LR	196×96, L25
u	MRI-CGCM3	320×160, L25
٧	NorESM1-M	144×96, L17

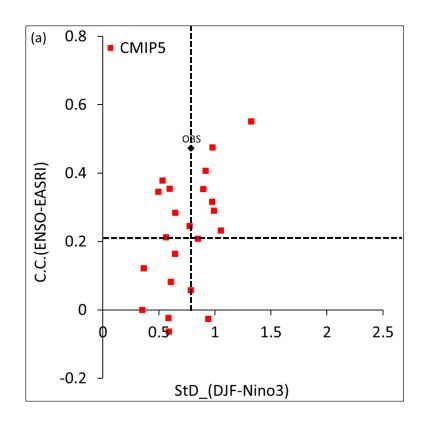
CC(EASR, monthly Nino3) in CMIP5



A large improvement in the CMIP5 models.

Fu and Lu, J. Climate, in press.

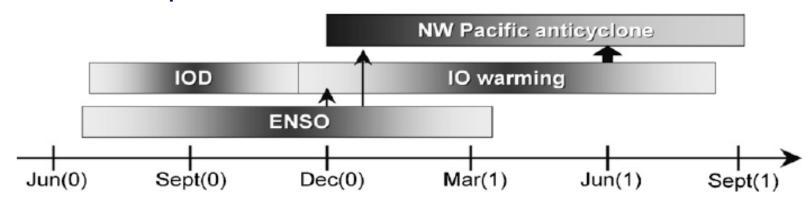

DJF Nino3-regressed summer rainfall in CMIP5



More than half CMIP5 models VS only five CMIP3 models reasonably replicate the positive EASR anomaly.

MME simulates a very weak precipitation anomaly.

In CMIP5, the models better capturing ENSO-EASR relationship and do not overestimate ENSO

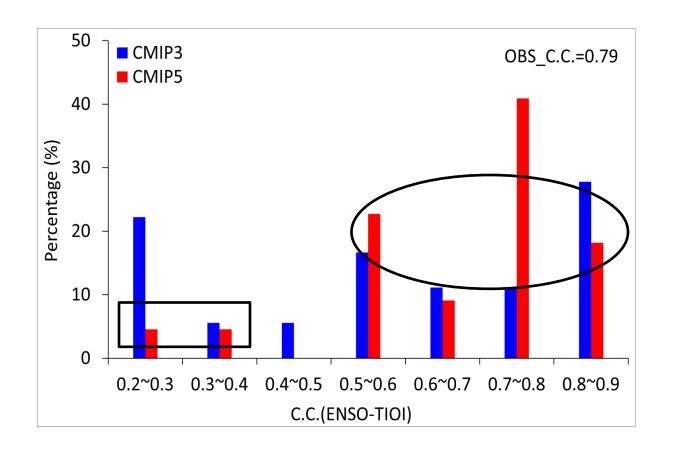


Possible processes:

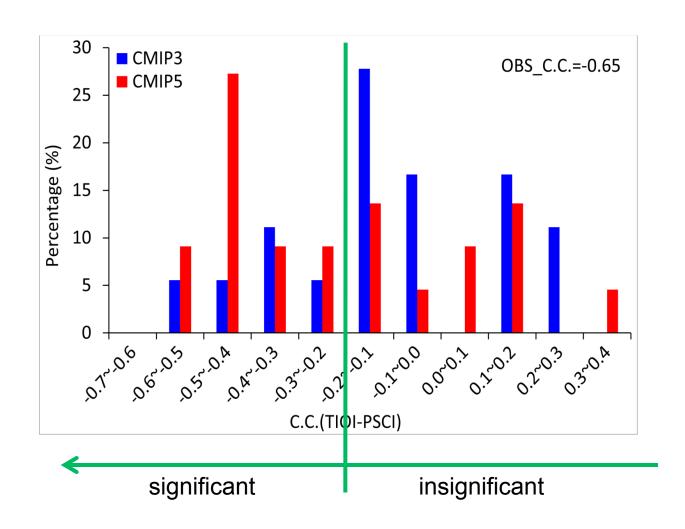
ENSO – Indian Ocean SST – WNP anticyclone – East Asian Summer Rainfall

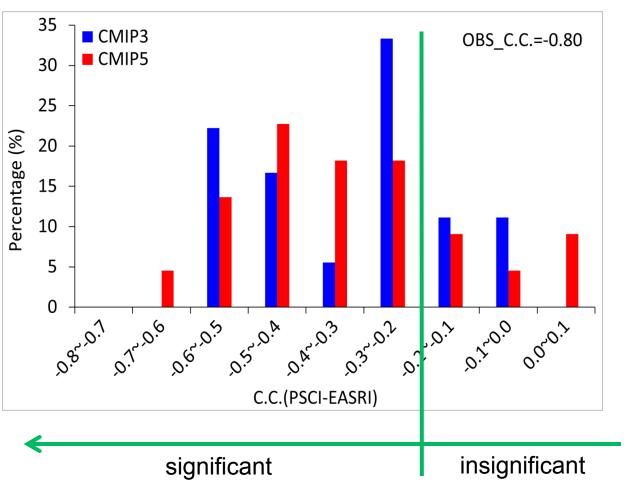
(e.g., Huang and Wu, 1989; Wang et al., 2000; Li et al. 2008; Xie et al. 2009)

Indian Ocean capacitor



Four indices:


- $\ \ \mathsf{EASRI:} \ \mathsf{Precip}_{[\ (100^{\circ}\mathsf{E},\ 25^{\circ}\mathsf{N}),\ (100^{\circ}\mathsf{E},\ 35^{\circ}\mathsf{N}),\ (160^{\circ}\mathsf{E},\ 30^{\circ}\mathsf{N}),\ (160^{\circ}\mathsf{E},\ 40^{\circ}\mathsf{N})\]}$
- Niño3: SST [5°S-5°N, 150°-90°W]
- TIOI: SST [20°S-20°N, 40°-110°E]
- PSCI: Precip [110°-160°E, 10°-20°N]


Physical Processes-1: ENSO-TIO

Physical Processes-2: TIO-PSC

Physical Processes-3: PSC-EASR

No appreciable improvement

CMIP5: 77% significant CMIP3: 78% significant

- Large uncertainty
- All underestimate the relationship

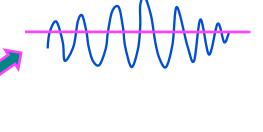
Outline

- Introduction
- Relationship to ENSO
- Projected change
- Summary

Motivation

Great interannual variability in East Asian summer monsoon leads to frequent occurrence of floods and droughts

Question:


What will the interannual variability be like under global warming?

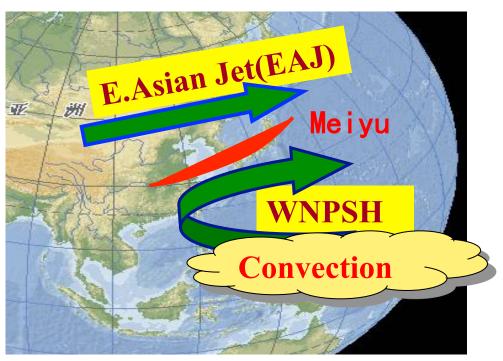
Previous results

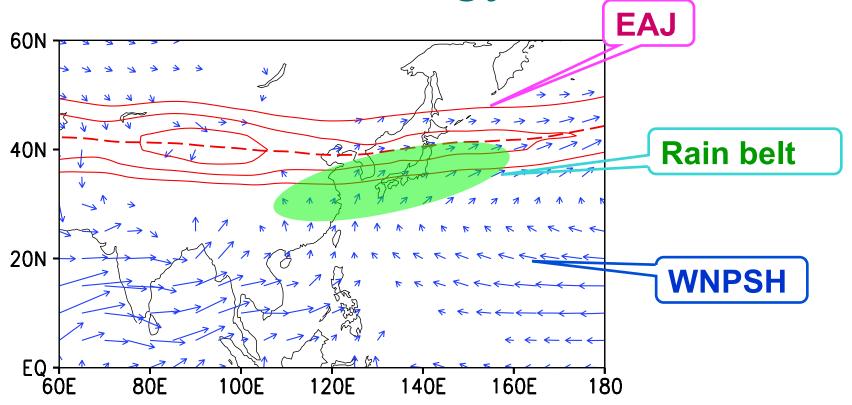
under global warming:


East Asian summer rainfall will be enhanced

Hu et al., 2000; Bueh et al., 2003; Min et al., 2004; Kimoto, 2005; Kitoh et al., 2005; Kripalani et al., 2007; Lu et al., 2007; Lee et al., 2008

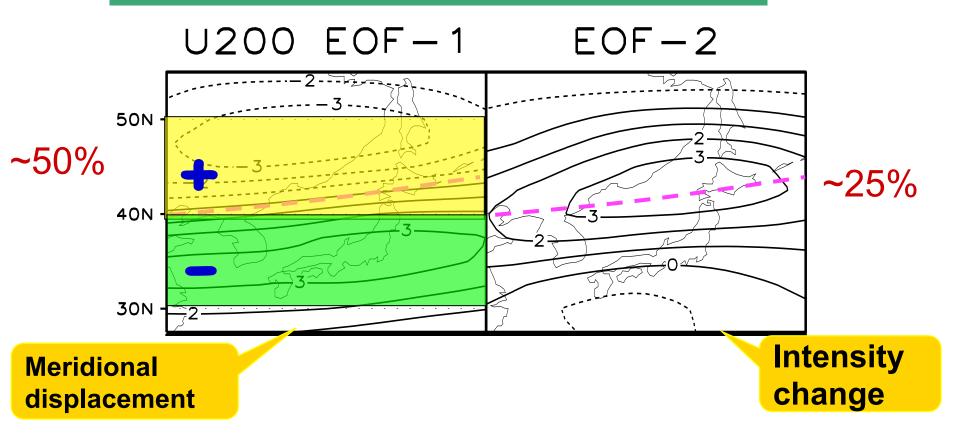
 Interannual variability of East Asian summer rainfall may be enhanced


Kripalani et al. (2007)


In this study

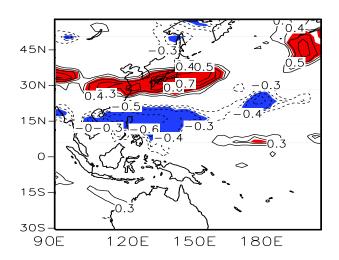
- We focus on the simulated changes in rainfall variability along the East Asian summer rain belt
- Dynamical components of East Asian monsoon are also investigated
 - Circulation can be more reliably simulated than rainfall

Major components of EASM system


JJA Climatology

EAJ: East Asian up-level Jet

WNPSH: Western North Pacific Subtropical High


EOF analysis on 200hPa zonal wind

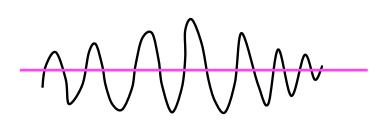
EAJI=U200[120-150E,40-50N]-U200[120-150E,30-40N]

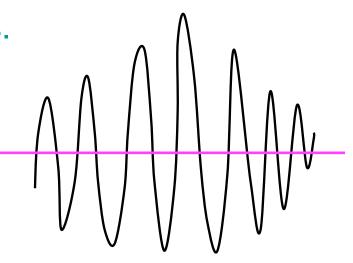
Lin and Lu, 2005, Adv. Atmos. Sci. Lu, 2004, J. Meteor. Soc. Japan

Corr. (EAJI & OLR)

Models

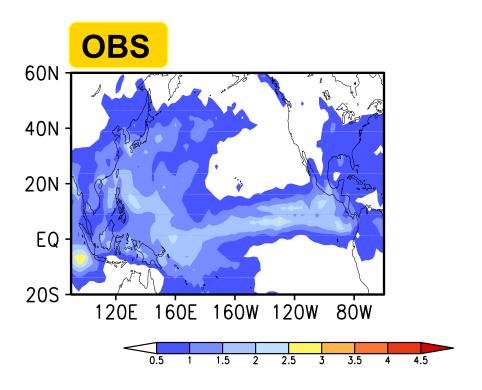
Information of the 12 models

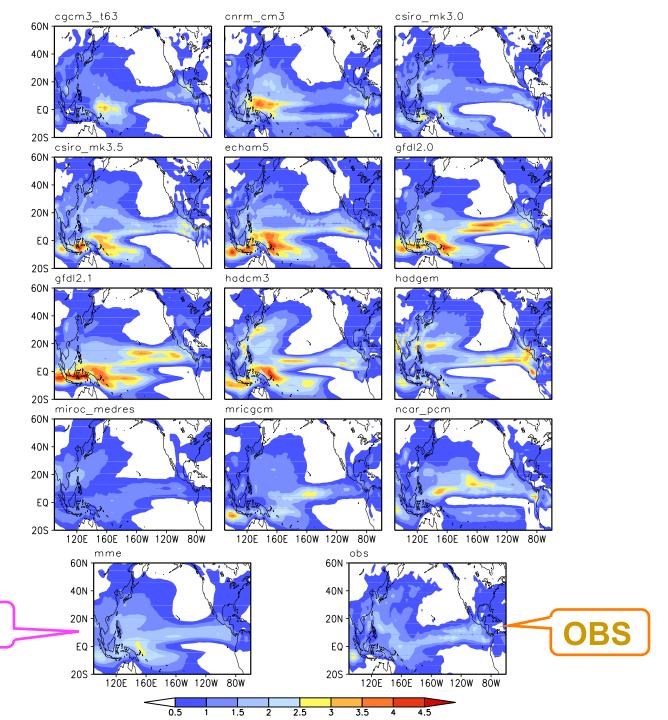

Modeling group	IPCC I.D.	Country	Resolution		Ensemble members		
Modeling group	IPCC I.D.	Country	Atmosphere	Ocean	20C3M	AlB	A2
Canadian Centre for Climate Modeling and Analysis	CGCM3.1(T63)	Canada	T42L17	0.9° × 1.4° L29	1	1	×
Météo-France/Centre National de Recherches Météorologiques	CNRM-CM3	France	T42L17 128*64	0.5–2° × 2° L31	1	1	1
Commonwealth Scientific and Industrial Research Organization	CSIRO-Mk3.0	Australia	T63L17	0.00 1.00 T.21	2	1	1
Atmospheric Research	CSIRO-Mk3.5	Australia	192*96	0.8° x 1.9° L31	1	1	1
Max Planck Institute for Meteorology	ECHAM5/MPI-OM	Germany	T63L16	1.5° x 1.5° L40	4	4	3
U.S. Dept. of Commerce/NOAA/Geophysical Fluid	GFDL-CM2.0	USA	2.0°*2.5°L17		3	1	1
Dynamics Laboratory	GFDL-CM2.1	USA	144*90	0.3–1° x 1°	3	1	1
Center for Climate System Research (The University of Tokyo), National Institute for Environmental Studies, and Frontier Research Center for Global Change (JAMSTEC)	MIROC3.2(medres)	Japan	T42L17	0.5-1.4° x 1.4° L43	3	3	3
Meteorological Research Institute	MRI-CGCM2.3.2	Japan	T42L17	0.5–2.0° x 2.5° L23	5	5	5
National Center for Atmospheric Research	NCAR-PCM	USA	T42L17	0.5-0.7° x 1.1° L40	4	4	4
	UKMO-HadCM3	UK	~2.5°*3.8°L15	1.5° x 1.5° L20	2	1	1
Hadley Centre for Climate Prediction and Research, Met Office	UKMO-HadGEM1	UK	~1.3°*1.9°L16	0.3-1.0° x 1.0° L40	2	1	1


Method

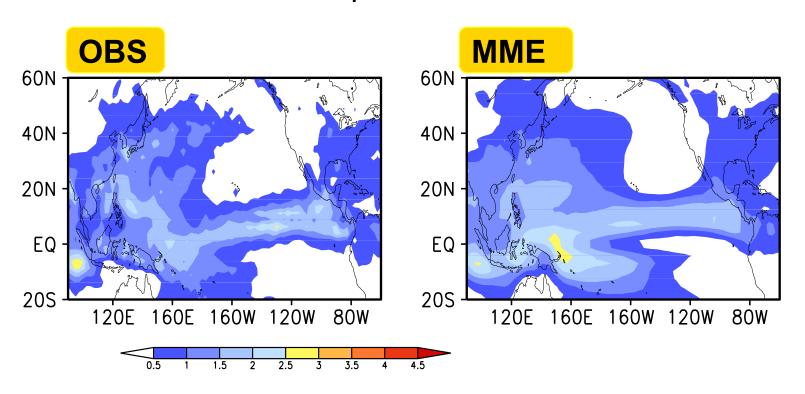
Standard deviation is used to depict the intensity of interannual variability.

SD =
$$\sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$


Here, *i* represent the number of years.

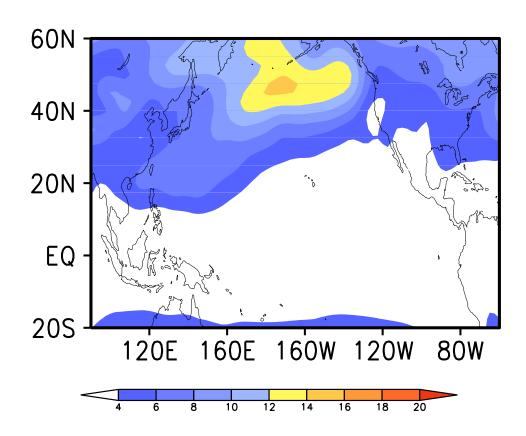

Evaluation of models capacity in simulating interannual variability

Standard Deviation of JJA Precipitation



Standard Deviation of JJA Precipitation

MME



Standard Deviation of JJA Precipitation

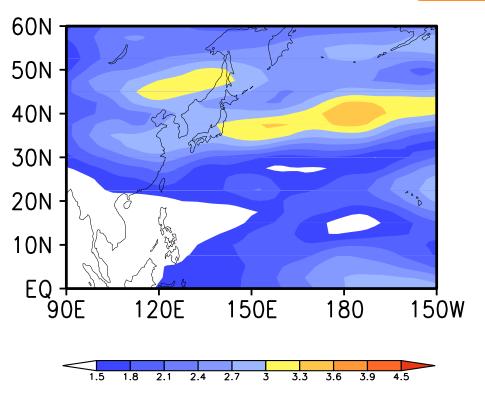
Standard Deviation of 850-hPa height

csiro_mk3.0 cgcm3_t63 cnrm_cm3 60N 40N 20N **Standard Deviation of** gfdl2.0 echam5 60N 850-hPa height 40N 20N EQ-20S hadcm3 gfdl2.1 hadgem 60N 40N 20N 20S miroc_medres mricgcm ncar_pcm 60N 40N 20N 20S 120E 160E 160W 120W 80W 120E 160E 160W 120W 80W 120E 160E 160W 120W 80W 60N 60N 40N 40N **MME** 20N -20N EQ EQ 20S 120E 160E 160W 120W 80W 120E 160E 160W 120W 80W

10

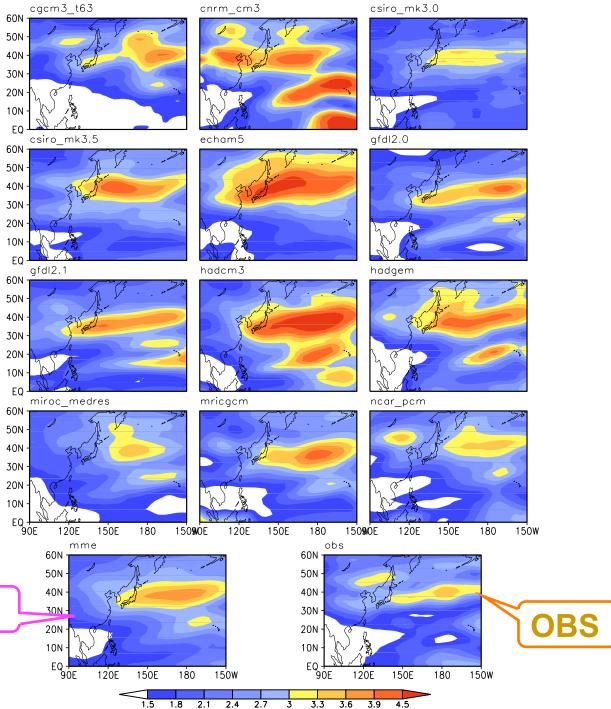
12

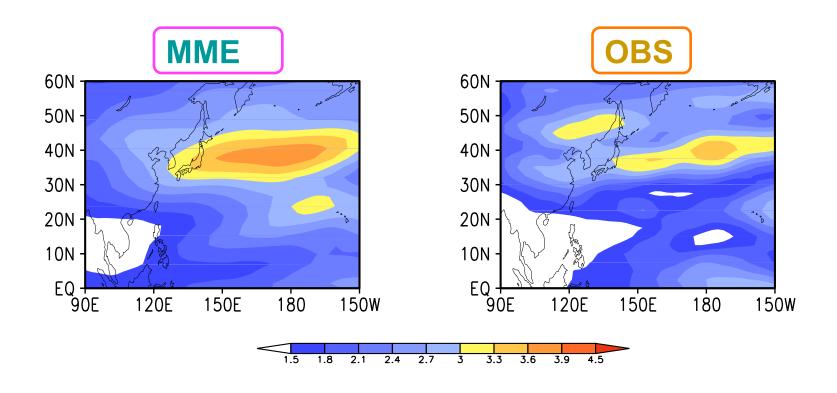
16


18

Standard deviations of EASRI and WNPSHI

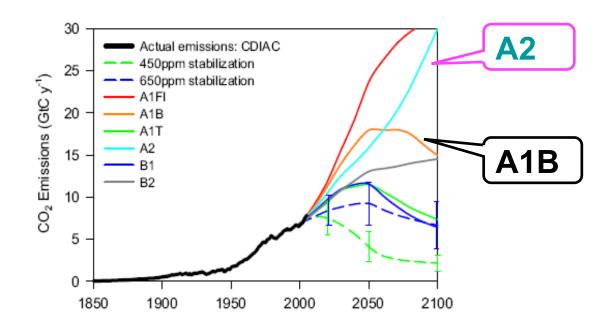
	EASRI	WNPSHI
CGCM3.1(T63)	0.32	4.4
CNRM-CM3	0.37	5.3
CSIRO-Mk3.0	0.36	7.0
CSIRO-Mk3.5	0.42	6.3
ECHAM5/MPI	0.42	5.1
GFDL-CM2.0	0.45	5.8
GFDL-CM2.1	0.45	7.1
MIROC3.2(m)	0.35	4.9
MRI-CGCM2.3.2	0.38	4.5
NCAR-PCM	0.27	5.0
UKMO-HadCM3	0.62	5.2
UKMO-HadGEM1	0.45	7.1
ENSEMBLE	0.41	5.6
OBSERVATION	0.56	5.0


Standard Deviation of 200-hPa zonal wind

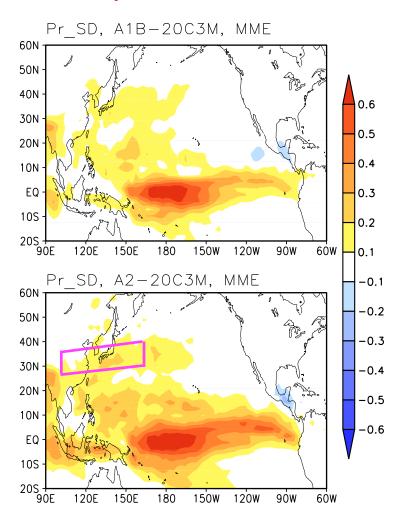


Standard Deviation of 200-hPa zonal wind

MME



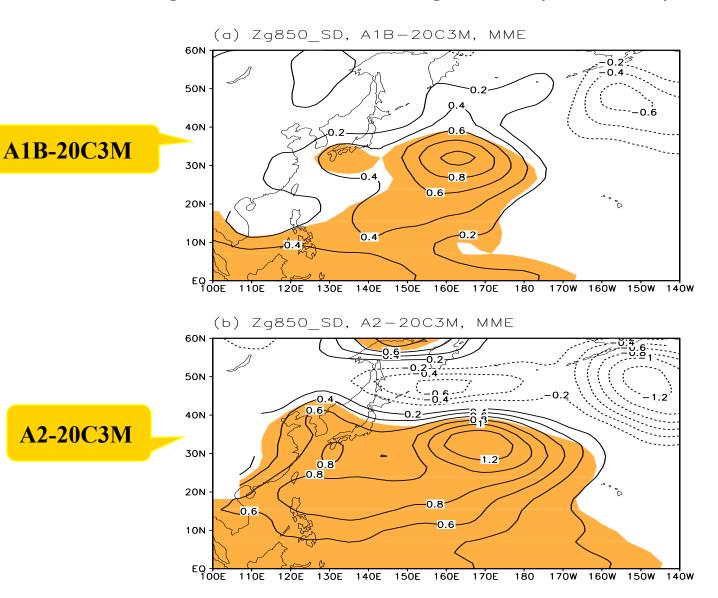
Standard Deviation of 200-hPa zonal wind


Projected changes in the 21st century

Scenarios: A1B, A2

Including Climate of twentieth century (20c3m)

Precipitation

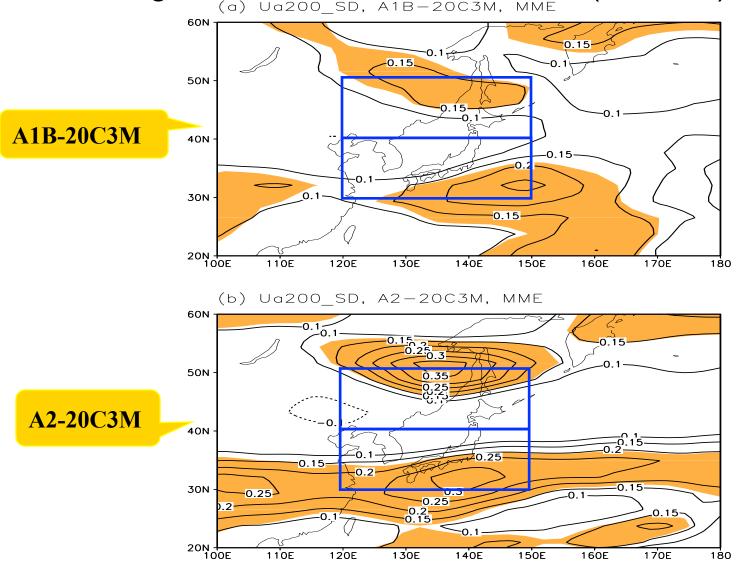

SD difference between 21st and 20th century

Standard deviations of East Asian precipitation

Madal	EASRI_SD			
Model	20C3M	SRESA1B	SERSA2	
ccsm	0.30	0.39**	0.44**	
cgcm	0.32	0.38**	×	
cnrm	0.37	0.36	0.42	
csiro3.5	0.43	0.53**	0.51**	
echam5	0.43	0.46*	0.52**	
gfdl2.0	0.45	0.39	0.48**	
gfdl2.1	0.46	0.51	0.54**	
mirocm	0.35	0.50**	0.49**	
miroch	0.38	0.50**	×	
mricgcm	0.38	0.45**	0.43**	
hadcm3	0.62	0.65	0.61	
hadgem	0.45	0.51*	0.64**	
mme	0.42(0.43)	0.47**(12%)	0.51**(19%)	

^{* 10%} significant level

Changes of 850hPa Height SD (21st-20th)

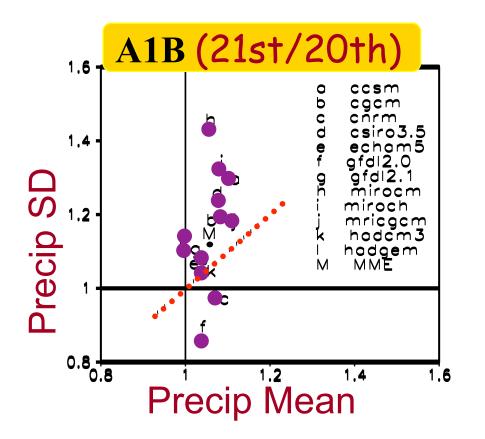

Standard deviations of WNPSHI

Model	WNPSHI_SD			
Model	20C3M	SRESA1B	SERSA2	
ccsm	3.9	4.0	3.6	
cgcm	4.4	3.9	×	
cnrm	5.3	6.4**	7.6**	
csiro3.5	6.3	6.5	6.7	
echam5	5.1	6.3**	7.0**	
gfdl2.0	5.8	6.8**	6.6*	
gfdl2.1	7.1	6.7	7.2	
mirocm	4.9	5.0	5.4**	
miroch	4.2	4.3	×	
mricgcm	4.5	5.4**	5.0**	
hadcm3	5.2	6.2**	6.5**	
hadgem	7.1	6.7	8.1*	
mme	5.4(5.6)	5.8**(7%)	6.5**(16%)	

^{* 10%} significant level

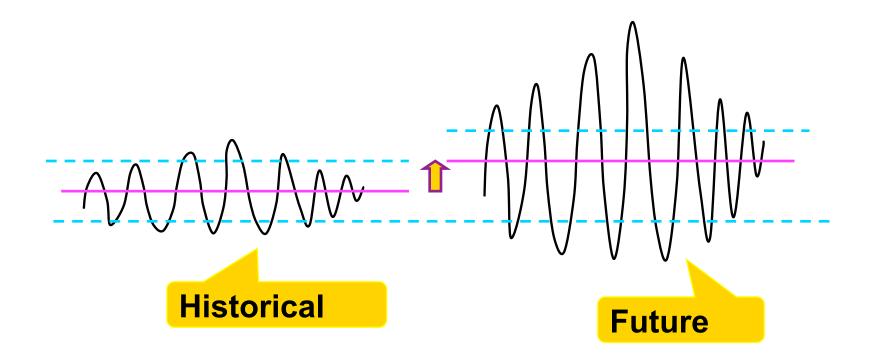
^{** 5%} significant level

Changes of 200hPa Zonal Wind SD (21st-20th), m/s



Standard deviations of EAJI

MODELLD	EAJI _SD			
MODEL I.D.	20C3M	SRESA1B	SERSA2	
ccsm	4.4	4.6	4.8**	
cgcm	3.4	3.5	×	
cnrm	3.6	4.6**	4.3**	
mk3.5	3.3	3.1	3.5	
echam	4.4	4.9**	4.8*	
gfdl2.0	3.8	4.3*	4.1	
gfdl2.1	3.6	3.9	4.2**	
mirocm	2.9	3.3**	3.3**	
miroch	3.6	3.6	×	
mricgcm	3.0	3.3**	3.3**	
hadcm3	4.5	4.7	5.3**	
hadgem	4.0	4.1	3.9	
mme	3.8(3.8)	4.0**(5.3%)	4.2**(10.5%)	


^{* 10%} significant level

^{** 5%} significant level

Increase in precipitation SD is stronger than that in precipitation mean

Stronger variability and more occurrence of floods in the 21st century

Contents lists available at ScienceDirect

Quaternary International

Interannual variability of western North Pacific subtropical high, East Asian jet and East Asian summer precipitation: CMIP5 simulation and projection

Yongjian Ren ^{a, c, d}, Botao Zhou ^{b, c, *}, Lianchun Song ^c, Ying Xiao ^d

^a College of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing, China

^b Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

^c National Climate Center, China Meteorological Administration, Beijing, China

d Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan, China

Table 1Information of the 19 CMIP5 models used in the present analysis.

Name	Modeling group	Atm. Resolution (lon \times lat)
ACCESS1-0	Common wealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology (BOM), Australia	192 × 145
ACCESS1-3	Common wealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology (BOM), Australia	192 × 145
BCC-CSM1-1-m	Beijing Climate Center, China Meteorological Administration, China	320 × 160
BNU-ESM	Beijing Normal University/China	128 × 64
CanESM2	Canadian Centre for Climate Modeling and Analysis, Canada	128 × 64
CCSM4	National Center for Atmosphere Research, United States	288 × 192
CMCC-CMS	Centro Euro-Mediterraneo per I Cambiamenti Climatici, Italy	192 × 96
CNRM-CM5	Centre National de Recherches Meteorologiques and Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique, France	256 × 128
FGOALS-g2	State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, China	128 × 60
FIO-ESM	First Institute of Oceanography, China	128 × 64
GFDL-CM3	NOAA Geophysical Fluid Dynamics Laboratory, United States	144×90
GFDL-ESM2G	NOAA Geophysical Fluid Dynamics Laboratory, United States	144×90
GFDL-ESM2M	NOAA Geophysical Fluid Dynamics Laboratory, United States	144×90
HadGEM2-AO	Met Office Hadley Centre, United Kingdom	192 × 144
HadGEM2-CC	Met Office Hadley Centre, United Kingdom	192 × 144
HadGEM2-ES	Met Office Hadley Centre, United Kingdom	192 × 144
IPSL-CM5A-MR	Institute Pierre-Simon Laplace, France	144 × 143
MIROC-ESM	Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental	128×64
	Studies, and Japan Agency for Marine-Earth Science and Technology, Japan	
NorESM1-M	Norwegian Climate Centre/Norway	144×96

Model	EASRI (mm/d)			
	Historical	RCP4.5	RCP8.5	
ACCESS1-0	1.64	1.88	1.84	
ACCESS1-3	1.53	1.67	1.75	
BCC-CSM1-1-m	1.01	1.11	1.18	
BNU-ESM	1.12	1.31	1.37	
CanESM2	0.91	1.00	1.20	
CCSM4	1.16	1.35	1.40	
CMCC-CMS	1.23	1.36	1.43	
CNRM-CM5	1.07	1.16	1.14	
FGOALS-g2	0.93	0.95	0.92	
FIO-ESM	1.16	1.21	1.30	
GFDL-CM3	0.96	1.05	1.06	
GFDL-ESM2G	0.97	1.13	1.16	
GFDL-ESM2M	1.07	1.19	1.24	
HadGEM2-AO	1.56	1.77	1.83	
HadGEM2-CC	1.48	1.64	1.77	
HadGEM2-ES	1.56	1.74	1.83	
IPSL-CM5A-MR	0.98	1.05	1.12	
MIROC-ESM	1.03	1.15	1.16	
NorESM1-M	1.22	1.36	1.38	
MME	1.19	1.32	1.37	
OBS	1.22			

Summary

- The CMIP5 models capture the ENSO–EASR relationship more realistically than the CMIP3 models.
- The Philippine Sea Atmospheric Convection (PSC)—EASR relationship may be the most crucial physical process for current models to reproduce the ENSO—EASR relationship.
- In the 21st century, East Asia will experience greater variability in summer rainfall, shown by both the CMIP3 and CMIP5 models.

