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From genotype to phenotype

Directly estimating a map: GWAS. Computational tools: classical
hypothesis testing, regularised regression
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From genotype to phenotype

Open the box: targeted quantitative experiments on well-defined
subsystems. Computational tools: dynamical systems
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From genotype to phenotype

Blow-up the box: high-throughput experiments. Computational
tools/ questions?

All of above, plus a good dose of high-dimensional statistics and
machine learning, lots of open methodological problems →
model-based bioinformatics!
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NGS and gene expression

Each facet of gene expression measured by different NGS techniques.

Guido Sanguinetti (University of Edinburgh) ICTP 2017 5 / 77



What is Machine Learning?

Machine learning is the subfield of computer science that gives
computers the ability to learn without being explicitly
programmed [Wikipedia].

Really?

My definition: ML algorithms aim at encoding mathematically
predictive relationships hidden within the data

Generally balances human input (prior model assumptions) and
data

Statistics ++ and optimisation

Philosophy: taking a global look (i.e. integrating multiple
sources of information) to see further in the detail
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Talk outline

1 Spatial effects in epigenomic data
Statistical testing for epigenomic data
Transcription factors and histone modifications
Clustering and prediction from epigenomic data

2 Isoform quantification at very low coverage (Y. Huang)
Isoform quantification from time series RNA-seq
Splicing quantification in single cells

3 Conclusions
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The central dogma

Where does variability come into play? What can we measure?

Guido Sanguinetti (University of Edinburgh) ICTP 2017 8 / 77



Epigenetics

A modeller’s dream!
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A more accurate picture?

....CCACCGAACGCGCGCGGGAACGGCACGAGCGGGGCGCCG...Genome
DNA sequence

Epigenome

trans-factors
eg. Cfp-1

Transcriptome
RNA-Seq / Pol-II

Zhou et al., Nat Rev Genet, 2011
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The modelling cycle

Informatics will provide the synthesis!
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Epigenetics: what the data looks like

Each row is a tiny fraction of a next-generation sequencing
experiment’s data. Each row ≥1GB of data.
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What the data looks like

. . . after QC, mapping, alignment, . . .

Histone modification data DNA Methylation data

Even basic questions (significant difference?) are hard

Maybe local correlations can be exploited to borrow statistical
strength?
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Introduction: ChIP-Seq

 

  - Cross-linking

  - DNA fragmentation

  - Enrichment with
    specific antibody (ChIP)

  

 - Profiling of enriched DNA 
     (Seq)

DNA - binding
protein

DNA 

Individual 
sequencing 
read (tag)

Read (tag) density

 

  - Cross-linking

  - DNA fragmentation

  - Enrichment with
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  - Profiling of enriched DNA 
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Kim and Park, 2011
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What the data looks like

. . . after QC, mapping, alignment,. . .

How do you (statistically) tell the difference?
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Differential Peak Calling

Which Peaks are significantly different between WT and Null?

→ Current approaches mostly adopted from RNA-Seq based
methods e.g. DESeq (Anders and Huber, 2010)

DBChIP (Liang and Keles, 2012)
DiffBind (Ross-Innes et al., 2012)

- Assumptions: Negative Binomial distribution

- Information sharing across peaks:
Variance is a function of the mean.

- Test statistic: Total counts within a peak.

→ Draw-back: Peaks are represented by a single value: total counts

→ Peaks are extended over several kb.
changes in their shape are not considered
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Formulate the test question

Suppose for a peak i we are given

n observations (i.e. reads) in data set s (e.g. WT)

X s = {xs
1, ..., x

s
n}

m observations in data set s ′ (e.g. Null),

X s′ = {xs′

1 , ..., x
s′

m}

where xs , xs′ random variables
drawn i.i.d. from probability distributions p and p′.

Can we decide whether p 6= p′?

Define test statistic:

should summarize the data, preferably in a single number

should capture higher order moments

→ use the MMD kernel method (Gretton et al 2012)
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MMD Test statistics

Nonlinear kernel function k(xs , xs′)→ the mean embedding of a
distribution p (in the RKHS F) contains the information of all
higher-order moments.

The maximum mean discrepancy, (MMD) is the distance
between mean embeddings

MMD[F , p, p′] = supf ∈F(Ex∼p[f (x)]− Ex∼p′[f (x ′)])

Theorem: MMDp,p′ = 0 if and only if p = p′

Finite sample estimates of MMD will be different from zero, but
their distribution can be estimated (by bootstrapping)

MMD can be efficiently computed in terms of Kernel functions

MMD(s,s′) =

[
1

(n)2
k(xs , xs)− 2

n ·m
k(xs , xs′) +

1

m2
k(xs′ , xs′)

] 1
2
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MMDiff: testing for shape changes in ChIP-Seq

(Schweikert et al, BMC Gen 2013)

MMD values are computed for each peak independently

Every time, we compare two sets of observations:
e.g. WT vs Null, WT vs Resc etc.

Each read mapping to a given peak is considered an observation

The feature we use is the 5’ end of the alignment

We use RBF Kernels to capture neighbourhood information

The Kernel width is chosen to be the median distance between
all observations

Empirical p-Values are determined on peaks with similar total
counts
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DNA Methylation

Addition of a methyl group to a cytosine

Predominantly occurs in the CpG context

Tightly controlled epigenetic phenomenon
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Methylation Data

Bisulfite conversion: unmethylated Cytosine to Uracil

NGS, conversion aware alignment

RRBS: focus on CpG-rich regions
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Testing for differential methylation: M3D (Mayo et

al, Bioinformatics 2015)

DNA methylation as measured by BS-seq also presents some of
the same features as ChIP-seq

Strong spatial correlations between neighbouring CpG sites

Insufficient replication for testing individual CpGs (if at all
meaningful)

We adapted the MMD metric to devise a non-parametric test for
differentially methylated regions, M3D (Maximum Mean
Methylation Discrepancy)

Technically, a bit more involved due to fractional nature of
methylation measurements
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Experiments on ENCODE data

Compare ChIP-Seq/ RRBS-Seq marks across different cell types

Studied two different marks: broad histone mark H3K27ac

Cell types: human K562 (leukaemia) vs GM12878 for H3K27ac,
mouse brain cortex, cerebellum and liver for CTCF

Guido Sanguinetti (University of Edinburgh) ICTP 2017 24 / 77



ENCODE results
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Both called by MMDiff/ M3D and not competing methods
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Genetics strikes back

MMDiff gives a powerful test for changes in ChIP-Seq, yet the
basis of its power are not obvious: why is shape so conserved
among replicates?

Results in Cfp1 data set suggest a role for transcription factors
(TFs) in regulation of histone methylation, which could explain
shape conservation

How general is TF regulation in the establishment of histone
marks?
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Mechanistic traces in big data?

If TF binding determined the histone mark signal, it should be
possible to predict histone modifications from TF binding

At a simpler level, it should be possible to predict the presence/
absence of marks from TF ChIP-Seq data

This does NOT provide a mechanistic proof; rather it is a
necessary but not sufficient condition

Isolated examples of interactions between TFs and histone
modifiers are known
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Testing the hypothesis: data

We interrogated the ENCODE data sets in the three Tier I cell
lines (GM12878, K562, H1 hESC)

Outputs: five histone modifications, H3K4me1, H3K4me3,
H3K9ac, H3K27ac, H3K27me3 found near transcription start
sites. Genomic regions defined positive if they intersect with a
histone peak

Inputs: normalised read counts for ALL TF chipped in the Tier I
cell lines

Prediction method: logistic regression. Probabilistic predictor
which computes relative importance of input features as a
weight vector
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TFs can predict very accurately

ROC curves for predictions of histone modifications at promoters in
H1 cells (left). TF-based predictions vs sequence based predictions in
H1 cells (right)
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TFs can predict genome wide

Table: Predictions of histone modification presence in H1 cells

Mark Seq. (promoters) TF promoters DNase Enhancers F5
H3K4me1 N.D. N.D. 0.854 ± 0.001 0.842± 0.003
H3K4me3 0.918 (± 0.001) 0.950 (± 0.001) 0.974 (± 0.001) 0.962 (± 0.001)
H3K9ac 0.867 (± 0.001) 0.921 (± 0.001) 0.976 (± 0.001) 0.961 (± 0.001)

H3K27ac 0.828 (± 0.002) 0.909 (± 0.001) 0.968 (± 0.001) 0.950(± 0.001)
H3K27me3 0.808 (± 0.002) 0.877 (± 0.002) 0.916 (± 0.001) 0.918 (± 0.002)
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Cross-cell and interpretable predictions

Left: TF features enables cross-cell predictions with high accuracy.
Right: LR weights for TF-based histone modification predictions in
H1 cells. Many known TF-histone modifier interactions are
represented.
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Why does shape matter?

Spatial patterns of epigenomic modifications seem highly
reproducible

One possibility: the ”shape” of the mark is a readout of what
else is happening to the chromatin

MMDiff differential peaks were enriched for TF binding sites

Generally, histone modifications are systematically predictable
from TF binding (more than from sequence, Benveniste et al,
PNAS 2014)

More functional implications of shape?
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Quantifying methylation profiles (Kapourani and

G.S, Bioinformatics 2016)

Input Output
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The BPRM model

We assume the methylation pattern of a region to be determined
by an unobserved methylation function f (x) = Φ

(
g(x)

)
, where

Φ is the probit transform, defined on the whole region (not just
CpGs)

We represent the unconstrained function g(x) = wξ(x) as a
linear combination of fixed basis functions ξj (e.g. RBF)

The actual number of methylated reads at position i is binomial
distributed

ni ∼ Bin (mi , f (xi)) (1)

with mi the coverage at position i .

Optimising the likelihood given by (1) w.r.t. the weights w
associates each region with methylation profile features
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Predicting gene expression

Predicting gene expression from methylation profiles (left) or mean
methylation levels (right). Overall improvement in Pearson r from
0.31 to 0.72.
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Clustering methylation profiles at promoters

K562 GM12878 H1−hESC
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BPRM identifies five prototypical methylation profiles across different
cell lines, with distinctive expression levels
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Mining similarities across epigenomic patterns?

0
20

40
60

80

x.coords

co
un

ts

Index

8020000 8021000 8022000 8023000 8024000

Index

1 | uc001aou.4

chr1

0
20

40

x.coords

co
un

ts

12039000 12040000 12041000 12042000 12043000

Index

1 | uc001atn.4

chr1

0
40

80
12

0

x.coords

co
un

ts

Index

12039000 12040000 12041000 12042000 12043000

Index

1 | uc001atn.4

chr1

0
10

30

x.coords

co
un

ts

48779000 48780000 48781000 48782000 48783000

Index

1 |uc003gyh.1 |||

chr4

0
10

20
30

x.coords

co
un

ts

Index

48779000 48780000 48781000 48782000 48783000

Index

1 |uc003gyh.1

chr4

0
20

40
60

x.coords

co
un

ts

8020000 8021000 8022000 8023000 8024000

Index

1 | uc001aou.4

chr1

H3k4me3.Rep1
H3k4me3.Rep2
Input

macs2 peaks

known genes

H3k9ac.Rep1
H3k9ac.Rep2
Input

Peak id:188

Peak id: 280

Peak id: 23768

co
un

ts
co

un
ts

co
un

ts

co
un

ts
co

un
ts

co
un

ts

Can we find prototypical combinations of marks at genes?
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Mining similarities across epigenomic patterns?

Problems:

Enriched Regions are detected by Peak callers such as Macs

Each Peak has a different length
(which might be determined by an underlying gene structure)

Peaks are not anchored / aligned, for example to the
transcription start site.

Epigenomic marks may have some local variation, which might
not be relevant for the their function

Our approach: Dynamic Genome Warping (DGW)

Flexible alignment using Dynamic Time Warping (DTW)
allowing local stretching or shrinking, subject to constraints.

Computing pairwise distances between warped peaks

Hierarchical clustering

Guido Sanguinetti (University of Edinburgh) ICTP 2017 40 / 77



Mining similarities across epigenomic patterns?

Problems:

Enriched Regions are detected by Peak callers such as Macs

Each Peak has a different length
(which might be determined by an underlying gene structure)

Peaks are not anchored / aligned, for example to the
transcription start site.

Epigenomic marks may have some local variation, which might
not be relevant for the their function

Our approach: Dynamic Genome Warping (DGW)

Flexible alignment using Dynamic Time Warping (DTW)
allowing local stretching or shrinking, subject to constraints.

Computing pairwise distances between warped peaks

Hierarchical clustering

Guido Sanguinetti (University of Edinburgh) ICTP 2017 40 / 77



Analogy: speech recognition

Situation similar to what speech engineers faced in ’70s:
identify robustly spectral / temporal patterns
regardless of speed of elocution

Buechel,Plos Biology, 2004

Solution: adaptive rescaling of time: Dynamic Time warping, DTW)

Guido Sanguinetti (University of Edinburgh) ICTP 2017 41 / 77



Example: H3K4me3 and H3K9ac

Epigenomic marks H3K4me3 and H3K9ac

Data from ENCODE K562 leukaemia cell line
(accession code wgEncodeBroadHistoneK562)

These marks have been shown to accumulate at transcription
start sites and splicing sites
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Results: Encode Data
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Results: Cluster 7
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Results: DGW aligns genomic landmarks
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Talk outline

1 Spatial effects in epigenomic data

2 Isoform quantification at very low coverage (Y. Huang)

3 Conclusions
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RNA splicing and alternative isoform

RNA splicing: exon,
intron

Alternative isoforms:
1) exon1-exon3;
2) exon1-exon2-exon3

Common in Eukaryotes:
∼ 20,000 human genes ⇒
∼ 200,000 proteins

Important in biological
processes, etc

Slow

P P P

Fast

DNA Damage

Pol II

alternative 
splicing

Figure modified from Heyd & Lynch, Tren. Bioche. Sci., 2011.
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RNA-seq for isoform quantification

Exon 1 Exon 2 Exon 3 

Figure: A gene with two isoforms from three exons, and aligned RNA-seq
reads.

Challenges in isoform quantification

Isoforms have shared information

RNA-seq reads are short: 30∼150bp

⇒ ambiguous reads identity In = 1 or In = 2
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Isoforms quantification (Counting or Inferring)

Exon 1 Exon 2 Exon 3 

Figure: A gene with two isoforms from three exons, and aligned RNA-seq
reads.

Measure isoforms ratios Ψ from reads set R1:N

Direct method: junction reads, counting
ψ1 : ψ2= exon1 exon2 : exon1 exon3 = 2:3
Probabilistic method: all reads, approximating
L(Ψ) =

∏N
n=1 P(Rn|Ψ) =

∏N
n=1

∑2
In=1{P(Rn|In)P(In|Ψ)}

In|Ψ: multinomial distribution.
Rn|In: denoted by the reads position; pre-computed
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Isoforms quantification (Counting or Inferring)
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Figure: Benefits of probabilistic methods (Katz et al Nature Methods, 2010)

How about very low expression? Use side information.
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The biological question

Studying splicing kinetics through time-series of labelled RNA-seq
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Increasing time series RNA-seq experiments
Barrass et al Genome Bio. 2015.

4tU-labelling RNA-seq for splicing
kinetics

Estimate pre-mRNA and mRNA

Zhang et al PNAS. 2014.

Circadian RNA-seq expression

Estimate mRNA ratios and
dynamics

Honkela et al PNAS. 2015.

Time series RNA-seq and ChIP-seq

Estimate pre-mRNA and many
mRNA

Many more time series RNA-seq experiments ...
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Time-series isoform quantification: separate or

joint?

Figure: The temporal correlation may be useful.
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Bayesian method: prior for temporal correlation

Likelihood

L(Ψ) =
T∏
t=1

P(R
(t)
1:Nt
|Ψ(t)) =

T∏
t=1

Nt∏
n=1

C∑
I

(t)
n =1

P(R (t)
n |I (t)

n )P(I (t)
n |Ψ(t)) (2)

T : number of time point; Ψ: isoform ratio; R : reads; I : identity.
In|Ψ: multinomial distribution.
Rn|In: pre-computed, with modelling biases, etc.

Posterior

P(Ψ|Θ,R) ∝ P(Θ)P(Ψ|Θ)×
T∏
t=1

P(R
(t)
1:Nt
|Ψ(t)) (3)

Posterior Joint Prior Likelihood
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GP prior: modelling the temporal correlation

Joint Prior: Gaussian process (GP)

P(Ψ|Θ) = P(Y |M ,K ) =
C−1∏
c=1

N (Yc |mc ,Kc) (4)

Assumptions

latent variable Y = Softmax−1(Ψ), i.e.,
ψc = eyc/

∑C
i=1 e

yi , and yc = 0.

latent vector Yc = [y
(1)
c , ..., y

(T )
c ] follows a GP:

Yc |T ,θc ∼ N (mc ,Kc), c ∈ [1, ...,C − 1]
where mc : vector of mean, K : covariance matrix

K is defined by the hyperparameters θc = (θc,1, θc,2):

Cov(y
(t1)
c , y

(t2)
c ) = θc,1exp(− 1

2θc,2
(t1 − t2)2)

Note: θc,2 governing the strength of temporal correlation.
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Inference: Metropolis-Hastings sampler

Algorithm 1 Metropolis-Hastings sampler for posterior of latent Y
Require: T ,R,Θ, λ
Initialize: Y (0)

Calculate: Ψ(0) = Softmax(Y (0)); K = GPcov(Θ,T )
for i = 0 to H do

Sample: µ ∼ U(0, 1)

Sample: Y ∗ ∼ Qy (Y ∗|Y (i), λK)
Calculate: Ψ∗ = Softmax(Y ∗)

if µ < min
{ P(Ψ∗|R)× Qy (Y (i)|Y ∗, λK)

P(Ψ(i)|R)× Qy (Y ∗|Y (i), λK)
, 1

}
then

Y (i+1) ← Y ∗; Ψ(i+1) ← Ψ∗

else
Y (i+1) ← Y (i); Ψ(i+1) ← Ψ(i)

end if
end for

fixed θ1 = 3.0 and θ2 covers 1/3 duration (user setting).

The proposal distribution Qy : N (Y
(i)
c , λKc)

with λ = (5σ2
y )/(CTθc,1) to ensure 30-50% acceptance ratio.
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Methods performance in simulation (human)

Mean absolute error 95% confidence interval
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Figure legends shared in two panels

Simulation on 11,462 human genes with different RPK

RPK: reads per kilo base-pair

DICEseq has clear advantages at lower coverage

More confident in estimate by using temporal information
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Time series experiment design (human)

Q: how many time points to use and how deep of the
sequencing?

T=4 (RPK=200) T=8 (RPK=100) T=8 (noisy)
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Two cases with similar total reads counts (similar costs)

4 time points with RPK=200 (left)

8 time points with RPK=100 (middle)

What if a time point with higher noise (right)
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Application 1: 4tU-seq for RNA splicing kinetics

(yeast)

Experiments

labelling: newly
transcribed mRNA

Isoforms: pre- and
mature mRNA

Time: 1.5, 2.5, 5
min

No 95%CI N(95%CI<0.3)=174
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Application 2: Circadian gene expression (mouse)

Experiments

Circadian gene
expression

Isoforms: >2, each
gene

Time: 6 hours x 8
points
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Application 1&2: Lowly expressed genes

Pearson’s correlation: two replicates (4tU-seq) and two
techniques (circadian)

1/3 bottom (4tU-seq) and 1/3 middle (circadian) genes in
expression

IsoEM Cufflinks MISO DICEseq
4tU-seq, all 0.851 0.830 0.848 0.896
4tU-seq, 1/3 low 0.775 0.657 0.757 0.860
circadian, all 0.712 0.700 0.757 0.791
circadian, 1/3 mid 0.336 0.296 0.408 0.513

Improvement is more significant for lowly expressed genes.

Guido Sanguinetti (University of Edinburgh) ICTP 2017 62 / 77



Talk outline

1 Spatial effects in epigenomic data
Statistical testing for epigenomic data
Transcription factors and histone modifications
Clustering and prediction from epigenomic data

2 Isoform quantification at very low coverage (Y. Huang)
Isoform quantification from time series RNA-seq
Splicing quantification in single cells

3 Conclusions

Guido Sanguinetti (University of Edinburgh) ICTP 2017 63 / 77



RNA-seq in single-cell experiment: technical noise

Very limited original RNA

large technical noise (low correlation between technical
replicates)

around 40% expressed genes detected (high drop-out)

Left: Philip Brennecke et al., Nat Met. 2013. Right: Angela R Wu et al., Nat Met. 2014.
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Splicing in single cell: example
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What to do with missing data?

A glance at the data shows that, at least for some genes, there
may be evidence for alternative splicing in single cells

Large fraction of missing data means we cannot say anything for
a majority of genes

Idea: learn an informative prior distribution from data!

When missing data, impute. When plenty, let data speak. In
between, do Bayesian inference!
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Genetic regulatory code for splicing

Genetic sequence motifs can predict skipping event well
Exon triplets: 7 bins and over 1300 sequence features

Left: Yoseph Barash et al., Nature. 2010. Right: Hui Y. Xiong et al., Science. 2014.
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BRIE: Bayesian regression for isoform estimate
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Benchmark single cell RNA-seq data (Wu et al, no

prior info)
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BRIE graphical presentation

K
Nk

σ2

W RnΨk

Xk

Inλ

Graphical presentation of brie model

Xk : feature vector for the kth isoform

θk : expression level for the kth isoform

In: isoform identity for the nth read

Rn: variable for the nth read

Bayesian regression: P(θk |W ,Xk , σ) = N (θk |W>Xk , σ
2)

Mixture model: P(R1:N |Θ) =
∏N

n=1

∑K
k=1 P(Rn|In = k)P(In = k |Θ)
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BRIE on Wu et al): 11478 skipping exons
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BRIE for differential splicing (Wu et al and

Brennecke et al)
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Conclusions

High-throughput biology poses challenges that are beyond
classical statistics

Machine learning can help extract patterns from
high-throughput data and suggest biological functions/ clarify
links between different data types

Outstanding challenges

Systematic integration of data sources

Translational applications: heterogeneity

How to make causal/ mechanistic inferences
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Software packages

MMDiff2

http://www.bioconductor.org/packages/release/bioc/html/MMDiff2.html

M3D http://www.bioconductor.org/packages/devel/bioc/html/M3D.html

BPRMeth
https://bioconductor.org/packages/release/bioc/html/BPRMeth.html

DGW https://pypi.python.org/pypi/dgw

DICEseq https://pypi.python.org/pypi/diceseq/0.2.6

BRIE https://pypi.python.org/pypi/brie/0.1.0
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