

Quantum Fluctuation Relations in the Presence of Conserved Quantities

Dieter Jaksch | Clarendon Laboratory, University of Oxford | 11th Sept. 2017

Classical fluctuation relations

Thermodynamics

 $w \ge \Delta F$, $\Delta S \ge 0$

- Fluctuation relations
 → Jarzynski equality
- $\langle e\uparrow -\beta w \rangle = e\uparrow -\beta \Delta F$
 - \rightarrow Crooks relation
- $P\downarrow f(w)=e\uparrow\beta(w-\Delta F)P\downarrow b(-w)$
- These relations constrain PDF(w)

C. Jarzynski, PRL 78, 2690 (1997); G.E. Crooks, J. Stat. Phys., 90, 1481 (1998).

Quantum fluctuation relations

\rightarrow Quantum Jarzynski equality

 $(e\uparrow -\beta w)=e\uparrow -\beta \Delta F$

→ Tasaki-Crooks relation

 $P\downarrow f(w)=e\uparrow\beta(w-\Delta F)P\downarrow b(-w)$

H. Tasaki, arXiv:cond-mat/0009244

\rightarrow Testing the Quantum Jarzynski equality

• Generalized Gibbs ensemble *ρ*↓*GGE*

 $\rho \downarrow GGE = 1/Z \downarrow GGE \ e^{\uparrow} - \beta H - \sum k^{\uparrow} \beta \downarrow k \ M \downarrow k$

erc

Generalized work W

$$\hat{H}, \{\hat{M}_k\} \\ \beta, \{\beta_k\} \\ U(\tau) \\ \hat{H}', \{\hat{M}'_l\} \\ \beta, \{\beta_k\} \\ U(\tau) \\ \hat{H}', \{\hat{M}'_l\} \\ E_{ini}, M_{k,ini} \\ \hat{H}', \{\hat{M}'_l\} \\ E_{ini}, M_{k,ini} \\ \hat{H}', \{\hat{M}'_l\} \\ \hat{H}', \{\hat{H}'_l\} \\ \hat{H}', \{\hat{H}', \{\hat{H$$

Hickey & Genway, PRE 2014; Yunger Halpern et al., Nat. Comms. (2016); J. Mur Petit, A. Relano, R. Molina, DJ, submitted.

Generalized fluctuation relations

 \rightarrow Generalized Jarzynski equality

 $(e\uparrow -W) = e\uparrow -\Delta F \downarrow GGE$

 $\hat{H}', \{\hat{M}'_l\}$ $\hat{H}, \{\hat{M}_k\}$ $\beta, \{\beta_k\}$ $U(\tau)$

→ Generalized Tasaki-Crooks relation

 $P\downarrow f(W) = e\uparrow W - \Delta F\downarrow GGE P\downarrow b(-W)$

with $F \downarrow GGE = -\ln(Z \downarrow GGE)$

 $\hat{H}, \{\hat{M}_k\}$ $\beta, \{\beta_k\}$ Ο U(τ) $\hat{H}, \{\hat{M}_k\}$

J. Mur Petit, A. Relano, R. Molina, DJ, submitted.

• Bosonic field *a* coupled to an ensemble of *N* spin $\frac{1}{2}$ systems $\sigma \downarrow i$

 $H=\omega\downarrow a a\uparrow a+\omega\downarrow s J\downarrow z+H\downarrow int$

with $J=1/2 \sum_{i=1}^{\infty} \sqrt{1} \sqrt{1}$, and

• For $\alpha=0$ the quantity

 $M = J \downarrow z + a \uparrow \uparrow a$

is conserved.

Tasaki-Crooks relation results

 $\rho_{ini} = \rho_{GGE}(\beta = 0.1, \beta_M = -0.1)$

Jarzynski equation results

Jarzynski equation results

Jarzynski equation results

• Hubbard Hamiltonian

 $H \downarrow \text{Hub} = -t \sum \langle i, j \rangle, \sigma \uparrow = (c \downarrow i \sigma \uparrow \uparrow c \downarrow j \sigma + h.c.) + U \sum i \uparrow = n \downarrow i \uparrow n \downarrow i \downarrow = H \downarrow \text{hop} + H \downarrow U$

with $c \downarrow i \sigma$ destroying a fermion with spin σ in site *i*.

• We consider the strongly correlated limit $U \gg t$

Driving local vibrations

- Include driving of a-b lattice with frequency $\boldsymbol{\Omega}$

 $H \downarrow d(\tau) = V/2 \sum_{j \in a} \lim_{m \to \infty} (\Omega \tau - \phi) n \downarrow_j + V/2 \sum_{j \in b} \lim_{m \to \infty} (\Omega \tau + \phi) n \downarrow_j$

we assume the driving to be out of phase $\phi = \pi/2$

Driving local vibrations

- Include driving of a-b lattice with frequency $\boldsymbol{\Omega}$

 $H \downarrow d(\tau) = V/2 \sum_{j \in a} \lim_{m \to \infty} (\Omega \tau - \phi) n \downarrow_j + V/2 \sum_{j \in b} \lim_{m \to \infty} (\Omega \tau + \phi) n \downarrow_j$

we assume the driving to be out of phase $\phi = \pi/2$

Driving local vibrations

- Include driving of a-b lattice with frequency $\boldsymbol{\Omega}$

 $H \downarrow d(\tau) = V/2 \sum_{j \in a} \lim_{m \to \infty} (\Omega \tau - \phi) n \downarrow_j + V/2 \sum_{j \in b} \lim_{m \to \infty} (\Omega \tau + \phi) n \downarrow_j$

we assume the driving to be out of phase $\phi = \pi/2$

J. Coulthard, SR Clark, S. Al-Assam, A. Cavalleri, DJ, Phys. Rev. B 96, 085104 (2017).

We use td-iDMRG to study the dynamics for a slowly increasing drive and starting from the ground state

We look at correlation functions and their structure factors

Density-density correlations

Spin-spin correlations SU/=(SU/2SU/2)where SU/2=(nU(n-nU(1))/2)

Pair correlations Plij = (bli, i+1? + blj, j+1)where $blij = (cli? clj! - cli! clj?) / \sqrt{2}$

Density structure factor

U=20t $\Omega=6t$ $L=\infty$ n=1/2 $k\downarrow F=\pi/$

For small quasi-momentum

$N(q) \approx K \downarrow \rho q / \pi$

Repulsive Luttinger liquid (M) for $Kl\rho < 1$ Attractive Luttinger liquid (SC) for $Kl\rho > 1$

The q=2kTF spin wave in the Hubbard ground state gives way to AFM bound pairs.

Long-range pair correlations are enhanced by the driving

Correlations spread with speed $r/4 \approx r$

• We project double occupancies out of the Hubbard model in second order to obtain an effective low energy model valid in the limit *t*<<*U*

J. Coulthard, SR Clark, S. Al-Assam, A. Cavalleri, DJ, Phys. Rev. B 96, 085104 (2017).

Initial state at time
$$\tau=0$$
: $\rho(\tau=0) = \frac{1}{Z} \exp\left[-\beta \left(H_{0J} - \mu M\right)\right]$
Process: $\ell=0 \rightarrow 0.1$

Standard work:
$$\langle w \rangle = \langle H_{tJ} - H_{0J} \rangle = -t \sum_{j,\sigma} \langle c_{j,\sigma}^{\dagger} c_{j+1,\sigma} + H.c. \rangle \equiv 0$$

 $\langle w^2 \rangle = \langle H_{tJ}^2 - 2H_{tJ}H_{0J} + H_{0J}^2 \rangle$

Calculations: Jonathan Coulthard [L=

[L=16, J=1, μ=0.8, χ=100]

Results (preliminary)

Initial state at time
$$\tau=0$$
: $\rho(\tau=0) = \frac{1}{Z} \exp\left[-\beta \left(H_{0J} - \mu M\right)\right]$
Process: $\ell=0 \rightarrow 0.1$

Generalized work: $\langle W \rangle = \beta \langle H_{tJ} - (H_{0J} - \mu M) \rangle \equiv \beta \mu \langle M \rangle$

Initial state at time
$$\tau=0$$
: $\rho(\tau=0) = \frac{1}{Z} \exp\left[-\beta \left(H_{0J} - \mu M\right)\right]$
Process: $\tau=0 \rightarrow 0.1$

Generalized work: $\langle W \rangle = \beta \langle H_{tJ} - (H_{0J} - \mu M) \rangle \equiv \beta \mu \langle M \rangle$

 $\langle W^2 \rangle = \beta^2 \langle H_{tJ}^2 - 2H_{tJ}(H_{0J} - \mu M) + (H_{0J} - \mu M)^2 \rangle$

- Use extended quantum fluctuation relations to
 - Track formation and destruction of charges in quantum quenches
 - Detect pre-thermalized GGE states and parameters
 - Identify non-thermalized (conserved) degrees of freedom
 - Indirectly observe dynamically induced symmetry breaking
- References
 - T.H. Johnson et al., Phys Rev. A 93, 053619 (2016)
 - J. Coulthard *et al.*, Phys. Rev. B **96**, 085104 (2017)
 - J. Mur Petit, A. Relano, R. Molina, DJ, submitted.

Thanks to the Team 2017/18

- Post-Docs
 - Dr Martin Kiffner
 - Dr Jordi Mur Petit
 - Dr Frank Schlawin
 - Dr Michael Lubasch
 - Dr Alexander Glaetzle
 - Dr Karsten Leonhardt
 - Dr Jaewoo Joo
 - Dr Berislav Buca
- DPhil students
 - Jonathan Coulthard

- Anastasia Dietrich
- Paolo Rosson
- Joe Tindall
- Hongmin Gao

Jordi

Jonathan

Quantum Information

Rafael **Molina**

