

Silvia Viola Kusminskiy

MAX PLANCK INSTITUTE

for the science of light

classical technologies

quantum technologies

- state preparation
- info processing
- communication

superconducting quantum circuit

Martinis group UCSB and Google (2015)

optical fiber

classical technologies

quantum technologies

- state preparation
- info processing
- communication

superconducting quantum circuit

Martinis group UCSB and Google (2015)

classical technologies

optical fiber

need hybrid systems

Hybrid Systems for Quantum Technologies

nano/micro scale systems

microwave optomechanics

Teufel et al, Nature 2011 (NIST)

use collective excitations

Osada et. al PRL 116, 223601 (2016)

Optomagnonics

Picture form Tabuchi et al, PRL 113, 083603 (2014)

Magnons and the Kittel mode

Microwave regime

Optically induced spin dynamics

Outlook and Summary

Magnons and the Kittel mode

Microwave regime

Optically induced spin dynamics

Outlook and Summary

Magnonics

elementary magnetic excitation (quantum of spin wave)

Magnonics

elementary magnetic excitation (quantum of spin wave)

Robust

Low Power

Tunable

Kittel mode

homogeneous magnetic mode $\mathbf{M}(\mathbf{r}) = \mathbf{M}$

spin wave with k=0

Magnonics

Kittel mode

homogeneous magnetic mode $\mathbf{M}(\mathbf{r}) = \mathbf{M}$

tunable precession frequency

$$\label{eq:GHz} \begin{split} \Omega &\sim GHz \\ \text{for 30mT} \end{split}$$

spin wave with $\mathbf{k} = 0$

Dynamics of the macrospin

precession frequency

Magnons and the Kittel mode

Microwave regime

Optically induced spin dynamics

Outlook and Summary

•

•

Tabuchi et. al PRL 113, 083603 (Nakamura's group, Tokyo) Zhang et. al PRL 113, 156401 (Hong Tang's group, Yale)

YIG

Yttrium Iron Garnet $Y_3 \operatorname{Fe}_5 O_{12}$

- ferrimagnetic
- insulator
- transparent in the infrared

Picture form Tabuchi et al, PRL 113, 083603 (2014)

٠

Tabuchi et. al PRL 113, 083603 (Nakamura's group, Tokyo) Zhang et. al PRL 113, 156401 (Hong Tang's group, Yale)

Tabuchi et. al PRL 113, 083603 (Nakamura's group, Tokyo) Zhang et. al PRL 113, 156401 (Hong Tang's group, Yale)

Microwave Regime

Magnons Microwaves

QUANTUM INFORMATION (Science 2015)

Coherent coupling between a ferromagnetic magnon and a superconducting qubit

Yutaka Tabuchi,¹* Seiichiro Ishino,¹ Atsushi Noguchi,¹ Toyofumi Ishikawa,¹ Rekishu Yamazaki,¹ Koji Usami,¹ Yasunobu Nakamura^{1,2}

MW Cavity

Coupling to Optics?

Motivation: magnon as a transducer

Magnons and the Kittel mode

Microwave regime

Optically induced spin dynamics

Outlook and Summary

Faraday Effect (1846)

Oil Lamp

Faraday Effect (1846)

Oil Lamp

Faraday Effect (1846)

RELATION OF LIGHT TO THE MAGNETIC FORCE.

¶ iii. General considerations.

2221. Thus is established, I think for the first time*, a true, direct relation and dependence between light and the magnetic and electric forces; and thus a great

Phil. Trans. R. Soc. Lond. 1846 136, 1-20

Before Maxwell equations (1860)!

15

$$\bar{U}_{\rm MO} = \theta_{\rm F} \sqrt{\frac{\varepsilon}{\varepsilon_0}} \int d\mathbf{r} \, \frac{\mathbf{M}(\mathbf{r})}{M_{\rm s}} \cdot \frac{\varepsilon_0}{2i\omega} \left[\mathbf{E}^*(\mathbf{r}) \times \mathbf{E}(\mathbf{r}) \right]$$

Quantize: $\hat{\mathbf{S}}$ \hat{a}^{\dagger} \hat{a}

$$\bar{U}_{\rm MO} = \theta_{\rm F} \sqrt{\frac{\varepsilon}{\varepsilon_0}} \int d\mathbf{r} \, \frac{\mathbf{M}(\mathbf{r})}{M_{\rm s}} \cdot \frac{\varepsilon_0}{2i\omega} \left[\mathbf{E}^*(\mathbf{r}) \times \mathbf{E}(\mathbf{r}) \right]$$

Quantize: $\hat{\mathbf{S}}$ \hat{a}^{\dagger} \hat{a}

two-photon process

$$\bar{U}_{\rm MO} = \theta_{\rm F} \sqrt{\frac{\varepsilon}{\varepsilon_0}} \int d\mathbf{r} \, \frac{\mathbf{M}(\mathbf{r})}{M_{\rm s}} \cdot \frac{\varepsilon_0}{2i\omega} \left[\mathbf{E}^*(\mathbf{r}) \times \mathbf{E}(\mathbf{r}) \right]$$

Quantize:
$$\hat{\mathbf{S}} \qquad \hat{a}^{\dagger} \qquad \hat{a}$$

two-photon process

Microscopic Hamiltonian

Parametric coupling

 $\hat{H}_{MO} = \hbar \sum_{j\beta\gamma} \hat{S}_{j} G^{j}_{\beta\gamma} \hat{a}^{\dagger}_{\beta} \hat{a}_{\gamma}$

Microscopic Hamiltonian

Parametric coupling

 $\hat{\mathbf{S}}$

 \hat{a}

G

$$\hat{H}_{MO} = \hbar \sum_{j\beta\gamma} \hat{S}_j G^j_{\beta\gamma} \hat{a}^{\dagger}_{\beta} \hat{a}_{\gamma}$$

Optomagnonic coupling

$$G_{\beta\gamma}^{j} = -i \frac{\theta_{\rm F} \lambda}{2\pi\hbar S} \frac{\varepsilon_{0}\varepsilon}{2} \epsilon_{jmn} \int \mathrm{d}\mathbf{r} E_{\beta m}^{*}(\mathbf{r}) E_{\gamma n}(\mathbf{r})$$

Microscopic Hamiltonian

Parametric coupling

 $\hat{\mathbf{S}}$

 \hat{a}

G

$$\hat{H}_{MO} = \hbar \sum_{j\beta\gamma} \hat{S}_j G^j_{\beta\gamma} \hat{a}^{\dagger}_{\beta} \hat{a}_{\gamma}$$

Optomagnonic coupling

$$G_{\beta\gamma}^{j} = -i \frac{\theta_{\rm F}\lambda}{2\pi\hbar S} \frac{\varepsilon_{0}\varepsilon}{2} \epsilon_{jmn} \int d\mathbf{r} \frac{E_{\beta m}^{*}(\mathbf{r})E_{\gamma n}(\mathbf{r})}{\sqrt{2\pi\hbar S}}$$
overlap electric field
mode functions

Microscopic Hamiltonian

Parametric coupling

 $\hat{\mathbf{S}}$

 \hat{a}

G

$$\hat{H}_{MO} = \hbar \sum_{j\beta\gamma} \hat{S}_j G^j_{\beta\gamma} \hat{a}^{\dagger}_{\beta} \hat{a}_{\gamma}$$

Optomagnonic coupling

$$\begin{split} G^{j}_{\beta\gamma} = \overbrace{i\frac{\theta_{\rm F}\lambda}{2\pi\hbar S}}^{\underline{\varepsilon}_{0}\varepsilon} \epsilon_{jmn} \int \mathrm{d}\mathbf{r} E^{*}_{\beta m}(\mathbf{r}) E_{\gamma n}(\mathbf{r}) \\ & \text{Faraday rotation} \end{split}$$

Microscopic Hamiltonian

Parametric coupling

 $\hat{\mathbf{S}}$

 \hat{a}

G

$$\hat{H}_{MO} = \hbar \sum_{j\beta\gamma} \hat{S}_j G^j_{\beta\gamma} \hat{a}^{\dagger}_{\beta} \hat{a}_{\gamma}$$

Optomagnonic coupling

$$\begin{split} G^{j}_{\beta\gamma} = -i \frac{\theta_{\rm F} \lambda}{2\pi \hbar S} \frac{\varepsilon_{0} \varepsilon}{2} \epsilon_{jmn} \int \mathrm{d}\mathbf{r} E^{*}_{\beta m}(\mathbf{r}) E_{\gamma n}(\mathbf{r}) \\ \swarrow \\ \text{number of spins} \end{split}$$

Coupling demonstrated in 2016

- Osada et. al PRL 116, 223601 (Nakamura's group, Tokyo)
- Haigh et. al PRL 117, 133602 (Ferguson's group, Cambridge)
- Zhang et. al PRL 117, 123605 (Hong Tang's group, Yale)

A cavity enhances the effect

 Osada et. al PRL 116, 223601 (Nakamura's group, Tokyo)

Sidebands at the magnon frequency

Magnons and the Kittel mode

Microwave regime

Optically induced spin dynamics

Outlook and Summary

Cavity Optomagnonics: 1 optical mode

$$\hat{H}_{MO} = \hbar \sum_{j\beta\gamma} \hat{S}_j G^j_{\beta\gamma} \hat{a}^{\dagger}_{\beta} \hat{a}_{\gamma}$$

acquires a simple form

Cavity Optomagnonics: 1 optical mode

Total Hamiltonian for one optical mode

$$H = -\hbar\Delta\hat{a}^{\dagger}\hat{a} - \hbar\Omega\hat{S}_z + \hbar G\hat{S}_x\hat{a}^{\dagger}\hat{a}$$

driving laser detuning $\Delta = \omega_{las} - \omega_{cav}$

Classical Equation of Motion

Fast Cavity Limit

 $\kappa \gg \Omega$ integrate out the light field

Effective equation of motion for **S**:

$$\dot{\mathbf{S}} = \mathbf{B}_{\text{eff}} \times \mathbf{S} + \frac{\eta_{\text{opt}}}{S} \left(\dot{S}_x \, \mathbf{e}_x \times \mathbf{S} \right)$$

Fast Cavity Limit

$\kappa \gg \Omega$ integrate out the light field

Effective equation of motion for **S**:

$$\dot{\mathbf{S}} = \mathbf{B}_{\text{eff}} \times \mathbf{S} + \frac{\eta_{\text{opt}}}{S} \left(\dot{S}_x \, \mathbf{e}_x \times \mathbf{S} \right)$$

optically induced

effective field

$$\mathbf{B}_{\text{eff}} = -\Omega \mathbf{e}_z + \mathbf{B}_{\text{opt}} \qquad \mathbf{B}_{\text{opt}} = \frac{G}{\left[\left(\frac{\kappa}{2}\right)^2 + (\Delta - GS_x)^2\right]} \left(\frac{\kappa}{2} \alpha_{\max}\right)^2 \mathbf{e}_x$$

tunable by the external laser drive

Fast Cavity Limit

$\kappa \gg \Omega$ integrate out the light field

Effective equation of motion for **S**:

$$\dot{\mathbf{S}} = \mathbf{B}_{\text{eff}} \times \mathbf{S} + \frac{\eta_{\text{opt}}}{S} \left(\dot{S}_x \, \mathbf{e}_x \times \mathbf{S} \right)$$

optically induced

effective field $\mathbf{B}_{\text{eff}} = -\Omega \mathbf{e}_z + \mathbf{B}_{\text{opt}} \qquad \mathbf{B}_{\text{opt}} = \frac{G}{\left[\left(\frac{\kappa}{2}\right)^2 + (\Delta - GS_x)^2\right]} \left(\frac{\kappa}{2} \alpha_{\max}\right)^2 \mathbf{e}_x$

damping can change sign

$$\eta_{\text{opt}} = -2G\kappa S \left| \mathbf{B}_{\text{opt}} \right| \frac{\left(\Delta - GS_x\right)}{\left[\left(\frac{\kappa}{2}\right)^2 + \left(\Delta - GS_x\right)^2 \right]^2}$$

tunable by the external laser drive

Fast Cavity Limit: Spin Dynamics

Fast Cavity Limit: Spin Dynamics

magnetic switching

See experimental realization with cold atoms, Dan M. Stamper-Kurn Group Phys. Rev. Lett. **118**, 063604 (2017)

Full Nonlinear Dynamics

Full Nonlinear Dynamics

- » Coherent optical control
- » Magnetic switching
- » Self-sustained oscillations
- » Optically induced route to chaos

- Collaborators
- Florian Marquardt (Erlangen)
- Hong Tang (Yale)

Magnons and the Kittel mode

Microwave regime

Optically induced spin dynamics

Outlook and Summary

Outlook

Problem

the state of the art optomagnonic coupling is too small

Coupling per photon $g \approx 60 \, {\rm Hz}$ Cooperativity ${\cal C} \approx 10^{-7}$

for small oscillations: spin → harmonic oscillator

$$\rightarrow \hbar G \hat{S}_x \hat{a}^{\dagger} \hat{a} \approx \hbar G \sqrt{S/2} \hat{a}^{\dagger} \hat{a} (\hat{b} + \hat{b}^{\dagger})$$

same form as the optomechanical Hamiltonian

coupling per magnon

$$(g_0 = G\sqrt{S/2} \approx 0.1 \text{MHz})^3$$

Outlook

Problem the state of the art optomagnonic coupling is too small

Coupling per photon $g \approx 60 \, {\rm Hz}$ Cooperativity ${\cal C} \approx 10^{-7}$

Some solutions

smaller systems

better overlap of modes

smaller systems

Magnetic textures

Vortex in a micro disk

Outlook

smaller systems

Magnetic textures

Vortex in a micro disk

better overlap of modes

optomechanical crystals

Safavi-Naeini et al, PRL 2012 (Caltech)

Optomagnonic crystals?

Summary

- Hybrid systems for quantum technologies
- Magnetic excitations: robust, designable, quantum
- Cavity optomagnonics: promising new field

Open positions starting January 2018!

MAX PLANCK INSTITUTE

for the science of light

New Max Planck Research Group "Theory of hybrid systems for quantum technologies"

Erlangen, Germany