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acoustic Bragg reflection, couples via radiation pressure to
both optical resonances.

An illustration of the experimental apparatus used to cool
and measure the OMC nanomechanical oscillator is shown
in Fig. 2. In order to precool the oscillator, the silicon sample
is mounted inside a Helium flow cryostat. For a sample
mount temperature of 6.3K, the thermal bath temperature of
the mechanical mode is measured to be 18 K (thermal
phonon occupation of nb ¼ 94 phonons) through optical
measurements described below. At this temperature the
breathing mode damping rate to the thermal bath is found
to be!i=2" ¼ 43 kHz. The optical resonances of the OMC
cavity aremeasured to have total damping rates of#c=2" ¼
390 MHz and #r=2" ¼ 1:0 GHz for the cooling and read-
out modes, respectively. An optical fiber taper is used to
evanescently couple light to and from the OMC cavity.
Utilizing piezoelectric stages, the taper is positioned to
the side of the nanobeam cavity and placed in contact
with the surface of the silicon microchip surrounding the
suspended nanobeam. In this scheme, the fiber taper runs
approximately parallel to the nanobeam, and can be rigidly
mounted at a prescribed nanoscale gap from the nanobeam.
For the taper-to-nanobeam gap used here (& 200 nm), the
coupling rate to the fiber taper waveguide is approximately
#e;c=2" ¼ 46 MHz for the cooling mode and #e;r=2" ¼
300 MHz for the readout mode.

A Hamiltonian describing the coupled OMC cavity sys-
tem is given by Ĥ ¼ @ð!r þ grx̂=xzpfÞâyâþ @ð!c þ
gcx̂=xzpfÞĉyĉþ @!mb̂

yb̂, where ĉ (ĉy) and â (ây) are the
annihilation (creation) operators for photons in the cooling
and readout modes, respectively, and x̂ % xzpfðb̂y þ b̂Þ is
the displacement operator of the breathing mode with b̂y

(b̂) the phonon creation (annihilation) operator. xzpf , the

mode’s zero-point fluctuation amplitude, is estimated to be
2.7 fm from FEM simulations. The zero-point optome-
chanical coupling rates are determined from measurements
of the optically-induced damping of the mechanical mode
[13] to be gc=2" ¼ 960 kHz and gr=2" ¼ 430 kHz for
the cooling and readout modes, respectively.
As alluded to above, resolved sideband cooling in opto-

mechanical cavities follows physics which is formally
similar to the Raman processes used to cool ions to their
motional ground state [1]. A cooling laser, with frequency
!l ¼ !c &!m, is tuned a mechanical frequency below
that of the cooling cavity resonance of the OMC, giving
rise to an intracavity photon population nc. Motion of the
mechanical oscillator causes scattering of the intracavity
cooling beam laser light into Stokes and anti-Stokes side-
bands at !c & 2!m and !c, respectively. Since the anti-
Stokes sideband is resonant with the cavity at !c, and
#c < !m, the anti-Stokes optical up-conversion
process is greatly enhanced relative to the Stokes
down-conversion process, leading to cooling of the me-
chanical mode. Assuming a deeply resolved sideband
system (#c=!m ' 1), the backaction cooled mechanical
mode occupancy is approximately given by hnic ¼
!inb=ð!i þ !cÞ [16,17].
Optical scattering of the intracavity light field can also

be used to read out the motion of the coupled mechanical

FIG. 2 (color online). Schematic of the experimental set-up.
Two narrowband lasers (linewidth (300 kHz) are used to inde-
pendently cool and readout the motion of the breathing mechani-
cal mode of the OMC cavity. The 1500 nm (readout) and
1400 nm (cooling) laser beams are passed through variable
optical attenuators (VOAs) to set the laser power, and combined
at a wavelength multiplexer ($-MUX) before being sent into the
cryostat through an optical fiber. Transmission of the 1500 nm
readout beam through the OMC cavity, collected at the output
end of the optical fiber, is filtered from the 1400 nm cooling
beam light via a bandpass filter, preamplified by an Erbium-
doped fiber amplifier (EDFA), and detected on a high-speed
photodetector (PD2) connected to a real-time spectrum analyzer
(RSA). An optical wave meter ($-meter) is used to monitor both
the cooling and readout laser frequencies. The optical reflection
from the cavity is used to perform EIT-like spectroscopy [22] on
both the readout and cooling cavity modes. Other components
are: amplitude-modulation (a-m) and phase-modulation (%-m)
electro-optic modulators, fiber polarization controller (FPC),
swept frequency radio-frequency signal generator (rf-sg), lock-
in amplifier (lock-in), and optical switches (SW).

FIG. 1 (color online). (a) A scanning electron micrograph of
the silicon nanobeam optomechanical cavity. Finite-element
method (FEM) numerical simulations of the electric field am-
plitude of the (b) first- and (c) second-order optical modes of the
cavity which are used for cooling and probing the mechanical
motion, respectively. (d) FEM numerical simulation showing the
displacement amplitude of the coupled breathing mechanical
mode.
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is applied perpendicular to the plane of the WGM orbits.
A loop coil near the YIG sphere generates an ac magnetic
field perpendicular to the dc field and drives FMR. The
magnetization then acquires its horizontal component
rotating at the angular frequency of the Kittel mode.
Because of the finite loss, the microwave reflection picked
up by the loop coil shows a dip at the resonant frequency.
The resonant frequency and the quality factor are found to
be ωmag=2π ¼ 6.81 GHz and Q ∼ 3000, respectively.
Laser light with a wavelength of 1.5 μm from an ECDL

is introduced through a FPC and then coupled to the WGM
resonator via a tapered silica optical nanofiber, with a waist
diameter of about 700 nm and a waist length of around
4 mm. Figure 1(b) shows the transmission spectra for the
transverse-electric (TE) modes and the transverse-magnetic
(TM) modes. The rich structures in the spectra indicate that
there are various spatial modes within the FSR of 62.1 GHz.
For WGMs in the large sphere limit, frequencies of the TM
modes are known to be higher than those of the TE modes
with the same mode indices because of the geometrical
birefringence [22–24]. For the 750-μm-diameter sphere we

use, the difference is estimated to be 51.8 GHz, which is
consistent with the observed spectra in Fig. 1(b) [25]. The
intrinsic quality factors of the WGMs are found to be
around 1 × 105 when they are measured in the under-
coupled regime.
When the light propagates in the direction of the mean

magnetization in ferromagnets, the well-known Faraday
effect occurs. When, on the other hand, the mean mag-
netization is perpendicular to the direction of light propa-
gation, magnon-induced Brillouin scattering takes place
[26–28]. In the presence of magnons in the Kittel mode,
photons in the WGM undergo Brillouin scattering to create
sideband photons with the frequency shifted by "ωmag=2π.
A HWP and a PBS make the scattered sideband photons
and the unscattered input photons interfere to generate a
beat signal at ωmag=2π. The signal is amplified and
measured with a vector network analyzer.
The orange (light blue) plot in Fig. 2 shows the observed

spectrum of the beat signal for the input laser being the TM
mode and coupled to the anticlockwise (clockwise) orbit of
the WGM resonator. The frequency of the input photons is
tuned to be ω=2π ¼ 193130 GHz where the beat signal
associated with the anticlockwise orbit is maximized.
While both peaks in Fig. 2 have the same linewidth as
the FMR signal, there is a large difference in their signal
strengths of almost 20 dB.
The nonreciprocity of the magnon-induced Brillouin

scattering can be explained by considering the conservation
of energy, momentum, and angular momentum under the
situation in which the spin-orbit coupling of the photons
and the geometrical birefringence associated with the
WGM resonator are blended with the time-reversal sym-
metry breaking in the magnon dynamics.
Suppose that the input laser polarization is adjusted to

couple to the TM mode of the anticlockwise WGM orbit
(orange orbit in Fig. 2). The light in the resonator is then σþ

polarized due to the spin-orbit coupling [see Fig. 3(a)]. To
see why the Brillouin scattering is more noticeable in this
situation, we consider the following three points. (i) The

FIG. 1. Transmission through WGMs in a YIG sphere.
(a) Experimental setup. WGMs of the YIG sphere are addressed
with an optical nanofiber. Microwave radiation from a vector
network analyzer excites magnons, and ac and dc components of
the light intensity are monitored with a high-speed photodetector
(PD). The polarization of the light from an external-cavity diode
laser (ECDL) is adjusted by a fiber polarization controller (FPC).
A half-wave plate (HWP) and a polarization beam splitter (PBS)
are placed before the PD. The inset shows a picture of the YIG
sphere and the nanofiber. (b) Observed WGM spectra for the
750-μm-diameter YIG sphere. Red and blue lines correspond to
the TM and TE modes, respectively. The transmission signals are
normalized by their maximal values. The free spectral range
(FSR) and the estimated spectral shift due to the geometrical
birefringence (GB) are indicated.
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FIG. 2. Nonreciprocal Brillouin scattering. The orange (light
blue) plot is the observed spectrum of the beat signal for the input
laser being TM mode from port 1 (2). The right inset shows an
expanded plot of the light blue curve. The left inset depicts the
input ports and the direction of the dc magnetic field.
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Microwave regime

the spectral lines at the anticrossing; (iii) the limited
filtering in the microwave measurement setup allowed
thermal excitations of magnons and photons in the sample.
The present work resolves all these issues as discussed
below. A nearly uniform microwave field in the large cavity
volume, combined with the selection of a spherical sample,
suppresses the coupling to other magnetostatic modes
because of their symmetry. Meanwhile, the high spin
density of YIG and the large volume of the sphere lead
to an enormous magnetic-dipole coupling strength between
the Kittel mode and the cavity mode, namely, two harmonic
oscillators. Normal-mode splitting with the cavity mode is
clearly observed even in the quantum regime where both
the average numbers of thermally excited magnons and
photons are nearly zero and that of the probe microwave
photons in the cavity is less than one.
Our experimental setup is shown in Fig. 1. The cavity

made of oxygen free copper has the fundamental-mode
(TE101) frequency ωc=2π of 10.565 GHz, and its internal
cavity loss κint=2π is about 1.0 MHz at low temperature.
This cavity has two connector ports for the transmission
spectroscopy; an asymmetric port configuration is used
where input and output ports have different coupling
strengths κ1=2π and κ2=2π of 0.13 and 1.5 MHz, respec-
tively. An YIG sphere made by Ferrisphere Inc. [20] is

mounted in the cavity at the magnetic antinode of the
fundamental mode. We apply a static magnetic field of
approximately 370 mT along the crystal axis h100i which
is the hard magnetization axis for YIG. The sample is
supposed to be uniformly magnetized and saturated.
We first measure the transmission spectrum of the cavity

loaded by an YIG sphere with a diameter of 0.5 mm.
Figure 2(a) shows the transmission coefficient ReðS21Þ as a
function of the frequency and the magnetic field tuned by
the bias current I in the coil. A pronounced normal-mode
splitting is observed, indicating strong coupling between a
collective excitation mode in the YIG sphere and the cavity
mode. We assign the mode in the sphere to the Kittel mode;
it gives the maximum coupling strength to the nearly
uniform cavity field and the frequency which is linearly
dependent on the static field. Although it is difficult to
recognize in Fig. 2(a), we also see a few hints of other tiny
anticrossings, for example, at I ¼ −1.6, 2.3, and 3.3 mA.
These are due to weak coupling of the cavity mode with
other magnetostatic modes in the YIG sphere, induced by
the small inhomogeneity of the magnetic fields. Several
cross sections of the 2D color plot are depicted in Fig. 2(b).
As a function of the magnetic field, the Kittel mode
approaches the cavity mode. At the degeneracy point
(I ≡ 0 mA) where the Kittel-mode frequency coincides
with the cavity frequency, we see the normal-mode splitting
of nearly 100 MHz, orders of magnitude wider than
the linewidths. At this point, the Kittel and cavity modes
form “magnon-polariton” modes, i.e., hybridized modes
between the collective spin excitation and the cavity
excitation.
We now evaluate the coupling strength and the cavity

and magnon linewidths by fitting the transmission coef-
ficient S21ðωÞ with an equation derived from the input-
output theory. The transmission coefficient of the hybrid
system is written as

S21ðωÞ ¼
ffiffiffiffiffiffiffiffiffi
κ1κ2

p

iðω − ωcÞ − κ1þκ2þκint
2 þ jgmj2

iðω−ωFMRÞ−γm=2

; ð1Þ

where gm is the coupling strength of the Kittel mode to the
cavity, and ωFMR and γm are the frequency and the line-
width of the Kittel mode, respectively. The input and output
port couplings of the cavity are determined separately by
measuring additionally the reflection of the cavity output.
As depicted by the dashed white lines in Fig. 2(b), the
spectra are well fitted with Eq. (1). The coupling strength of
the Kittel mode to the cavity gm=2π, the total cavity
linewidth κ=2π ¼ ðκ1 þ κ2 þ κintÞ=2π, and the Kittel-mode
linewidth γm=2π are determined as 47 MHz, 2.7 MHz, and
1.1 MHz, respectively. From the parameters, the hybrid
system turns out to be deep in the strong coupling regime
where gm ≫ γm, κ, even at the lowest temperature and with
the weakest probe power. A dimensionless measure which
indicates how well the spins couple to the cavity mode is
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FIG. 1 (color online). Experimental setup. (a) An YIG sphere
mounted in a rectangular cavity made of oxygen free copper. The
sphere is glued to an alumina (aluminum-oxide) rod oriented to
the crystal axis h110i. The inset is a magnified picture of a sphere
with a diameter of 1.0 mm. The cavity has two connector ports for
transmission spectroscopy and dimensions of 22 × 18 × 3 mm
that give the fundamental-mode (TE101) resonant frequency
ωc=2π of 10.565 GHz. (b) Measurement apparatus. The YIG
sphere, cavity, and magnet are cooled to 10 mK using a dilution
refrigerator. A series of attenuators and isolators prevent thermal
noise from reaching the sample space. The total attenuation of the
input port is 48 dB at 10 GHz. The output signal is amplified by
two low-noise amplifiers at 4 K and the room temperature. We
use a vector network analyzer (VNA) for transmission and
reflection spectroscopy. A static magnetic field perpendicular
to the microwave magnetic field and parallel to the crystal axis
h100i is applied by using permanent neodymium magnets and a
magnetic yoke made of pure iron. We use a superconducting coil
for fine tuning of the static field.
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is applied perpendicular to the plane of the WGM orbits.
A loop coil near the YIG sphere generates an ac magnetic
field perpendicular to the dc field and drives FMR. The
magnetization then acquires its horizontal component
rotating at the angular frequency of the Kittel mode.
Because of the finite loss, the microwave reflection picked
up by the loop coil shows a dip at the resonant frequency.
The resonant frequency and the quality factor are found to
be ωmag=2π ¼ 6.81 GHz and Q ∼ 3000, respectively.
Laser light with a wavelength of 1.5 μm from an ECDL

is introduced through a FPC and then coupled to the WGM
resonator via a tapered silica optical nanofiber, with a waist
diameter of about 700 nm and a waist length of around
4 mm. Figure 1(b) shows the transmission spectra for the
transverse-electric (TE) modes and the transverse-magnetic
(TM) modes. The rich structures in the spectra indicate that
there are various spatial modes within the FSR of 62.1 GHz.
For WGMs in the large sphere limit, frequencies of the TM
modes are known to be higher than those of the TE modes
with the same mode indices because of the geometrical
birefringence [22–24]. For the 750-μm-diameter sphere we

use, the difference is estimated to be 51.8 GHz, which is
consistent with the observed spectra in Fig. 1(b) [25]. The
intrinsic quality factors of the WGMs are found to be
around 1 × 105 when they are measured in the under-
coupled regime.
When the light propagates in the direction of the mean

magnetization in ferromagnets, the well-known Faraday
effect occurs. When, on the other hand, the mean mag-
netization is perpendicular to the direction of light propa-
gation, magnon-induced Brillouin scattering takes place
[26–28]. In the presence of magnons in the Kittel mode,
photons in the WGM undergo Brillouin scattering to create
sideband photons with the frequency shifted by "ωmag=2π.
A HWP and a PBS make the scattered sideband photons
and the unscattered input photons interfere to generate a
beat signal at ωmag=2π. The signal is amplified and
measured with a vector network analyzer.
The orange (light blue) plot in Fig. 2 shows the observed

spectrum of the beat signal for the input laser being the TM
mode and coupled to the anticlockwise (clockwise) orbit of
the WGM resonator. The frequency of the input photons is
tuned to be ω=2π ¼ 193130 GHz where the beat signal
associated with the anticlockwise orbit is maximized.
While both peaks in Fig. 2 have the same linewidth as
the FMR signal, there is a large difference in their signal
strengths of almost 20 dB.
The nonreciprocity of the magnon-induced Brillouin

scattering can be explained by considering the conservation
of energy, momentum, and angular momentum under the
situation in which the spin-orbit coupling of the photons
and the geometrical birefringence associated with the
WGM resonator are blended with the time-reversal sym-
metry breaking in the magnon dynamics.
Suppose that the input laser polarization is adjusted to

couple to the TM mode of the anticlockwise WGM orbit
(orange orbit in Fig. 2). The light in the resonator is then σþ

polarized due to the spin-orbit coupling [see Fig. 3(a)]. To
see why the Brillouin scattering is more noticeable in this
situation, we consider the following three points. (i) The

FIG. 1. Transmission through WGMs in a YIG sphere.
(a) Experimental setup. WGMs of the YIG sphere are addressed
with an optical nanofiber. Microwave radiation from a vector
network analyzer excites magnons, and ac and dc components of
the light intensity are monitored with a high-speed photodetector
(PD). The polarization of the light from an external-cavity diode
laser (ECDL) is adjusted by a fiber polarization controller (FPC).
A half-wave plate (HWP) and a polarization beam splitter (PBS)
are placed before the PD. The inset shows a picture of the YIG
sphere and the nanofiber. (b) Observed WGM spectra for the
750-μm-diameter YIG sphere. Red and blue lines correspond to
the TM and TE modes, respectively. The transmission signals are
normalized by their maximal values. The free spectral range
(FSR) and the estimated spectral shift due to the geometrical
birefringence (GB) are indicated.
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FIG. 2. Nonreciprocal Brillouin scattering. The orange (light
blue) plot is the observed spectrum of the beat signal for the input
laser being TM mode from port 1 (2). The right inset shows an
expanded plot of the light blue curve. The left inset depicts the
input ports and the direction of the dc magnetic field.
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â†â (â† photon creation operator, G optomagnonic coupling). In our recent work we developed

the theory for cavity optomagnonics starting from the Faraday effect [10]. We showed that G scales in-

versely with the magnon mode volume and can be remarkably large for samples near the diffraction limit

⇠ (1µm)3, giving a coupling per magnon g0 ⇠ 0.1MHz in YIG [the current state of the art is ⇠ (1mm)3,

with g0 ⇠ 10Hz]. We derived the optically induced classical nonlinear dynamics for the Kittel mode,

and showed the possibility of magnetic switching and self-oscillations, as well as chaos (see Fig. 2).
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Figure 2: Example of nonlinear spin dynamics in cavity
optomagnonics. Bifurcation diagram from Ref. [10].

This is a very new field and several possi-

bilities are open for future research. i) Linear

regime. For small oscillations, a spin can be ap-

proximated by a harmonic oscillator and concepts

of optomechanics can be borrowed. Achievable

regimes will be however different (e.g. strong co-

operativity limit). ii) Quantum nonlinear regime.

Here one has to retain the spin algebra. This is

distinct from optomechanics and will have conse-

quences on quantum noise and quantum measure-

ment protocols. iii) Dissipation processes. From

FMR it is known that pumping the Kittel mode

can lead to instabilities due to three- and four-magnon processes. These are known as Suhl instabilities

and depend on the geometry of the sample. Study of the interplay between optically induced dissipation

(which can be negative for a driven system [10]) and these processes could improve magnon lifetimes.

While for simple geometries analytical progress can be made, more complicated structures will require

micromagnetic simulations. iv) Magnetic textures. This is theoretically challenging in the nonlinear

regime since Ŝ(r) cannot be written in a linear bosonic basis. It opens however a completely novel

regime with no analogue in optomechanics, and could lead to coherent manipulation of magnetic tex-

tures with light. Experimentally, it was shown recently that skyrmions in doped YIG can be imaged by

circularly polarized light. v) Photonic/magnonic crystals. Structures to optimize the coupling between

photon and magnon modes could be in principle designed. The rationale follows the success of photonic

crystals in optomechanics, with the added richness (and challenge) in this case of magnetic textures.

Magnonic crystals in thin films have been experimentally demonstrated. vi) Hybrid systems. Study of

the coupling of optomagnonic systems to mechanical or electronic degrees of freedom.
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the spectral lines at the anticrossing; (iii) the limited
filtering in the microwave measurement setup allowed
thermal excitations of magnons and photons in the sample.
The present work resolves all these issues as discussed
below. A nearly uniform microwave field in the large cavity
volume, combined with the selection of a spherical sample,
suppresses the coupling to other magnetostatic modes
because of their symmetry. Meanwhile, the high spin
density of YIG and the large volume of the sphere lead
to an enormous magnetic-dipole coupling strength between
the Kittel mode and the cavity mode, namely, two harmonic
oscillators. Normal-mode splitting with the cavity mode is
clearly observed even in the quantum regime where both
the average numbers of thermally excited magnons and
photons are nearly zero and that of the probe microwave
photons in the cavity is less than one.
Our experimental setup is shown in Fig. 1. The cavity

made of oxygen free copper has the fundamental-mode
(TE101) frequency ωc=2π of 10.565 GHz, and its internal
cavity loss κint=2π is about 1.0 MHz at low temperature.
This cavity has two connector ports for the transmission
spectroscopy; an asymmetric port configuration is used
where input and output ports have different coupling
strengths κ1=2π and κ2=2π of 0.13 and 1.5 MHz, respec-
tively. An YIG sphere made by Ferrisphere Inc. [20] is

mounted in the cavity at the magnetic antinode of the
fundamental mode. We apply a static magnetic field of
approximately 370 mT along the crystal axis h100i which
is the hard magnetization axis for YIG. The sample is
supposed to be uniformly magnetized and saturated.
We first measure the transmission spectrum of the cavity

loaded by an YIG sphere with a diameter of 0.5 mm.
Figure 2(a) shows the transmission coefficient ReðS21Þ as a
function of the frequency and the magnetic field tuned by
the bias current I in the coil. A pronounced normal-mode
splitting is observed, indicating strong coupling between a
collective excitation mode in the YIG sphere and the cavity
mode. We assign the mode in the sphere to the Kittel mode;
it gives the maximum coupling strength to the nearly
uniform cavity field and the frequency which is linearly
dependent on the static field. Although it is difficult to
recognize in Fig. 2(a), we also see a few hints of other tiny
anticrossings, for example, at I ¼ −1.6, 2.3, and 3.3 mA.
These are due to weak coupling of the cavity mode with
other magnetostatic modes in the YIG sphere, induced by
the small inhomogeneity of the magnetic fields. Several
cross sections of the 2D color plot are depicted in Fig. 2(b).
As a function of the magnetic field, the Kittel mode
approaches the cavity mode. At the degeneracy point
(I ≡ 0 mA) where the Kittel-mode frequency coincides
with the cavity frequency, we see the normal-mode splitting
of nearly 100 MHz, orders of magnitude wider than
the linewidths. At this point, the Kittel and cavity modes
form “magnon-polariton” modes, i.e., hybridized modes
between the collective spin excitation and the cavity
excitation.
We now evaluate the coupling strength and the cavity

and magnon linewidths by fitting the transmission coef-
ficient S21ðωÞ with an equation derived from the input-
output theory. The transmission coefficient of the hybrid
system is written as

S21ðωÞ ¼
ffiffiffiffiffiffiffiffiffi
κ1κ2

p

iðω − ωcÞ − κ1þκ2þκint
2 þ jgmj2

iðω−ωFMRÞ−γm=2

; ð1Þ

where gm is the coupling strength of the Kittel mode to the
cavity, and ωFMR and γm are the frequency and the line-
width of the Kittel mode, respectively. The input and output
port couplings of the cavity are determined separately by
measuring additionally the reflection of the cavity output.
As depicted by the dashed white lines in Fig. 2(b), the
spectra are well fitted with Eq. (1). The coupling strength of
the Kittel mode to the cavity gm=2π, the total cavity
linewidth κ=2π ¼ ðκ1 þ κ2 þ κintÞ=2π, and the Kittel-mode
linewidth γm=2π are determined as 47 MHz, 2.7 MHz, and
1.1 MHz, respectively. From the parameters, the hybrid
system turns out to be deep in the strong coupling regime
where gm ≫ γm, κ, even at the lowest temperature and with
the weakest probe power. A dimensionless measure which
indicates how well the spins couple to the cavity mode is
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FIG. 1 (color online). Experimental setup. (a) An YIG sphere
mounted in a rectangular cavity made of oxygen free copper. The
sphere is glued to an alumina (aluminum-oxide) rod oriented to
the crystal axis h110i. The inset is a magnified picture of a sphere
with a diameter of 1.0 mm. The cavity has two connector ports for
transmission spectroscopy and dimensions of 22 × 18 × 3 mm
that give the fundamental-mode (TE101) resonant frequency
ωc=2π of 10.565 GHz. (b) Measurement apparatus. The YIG
sphere, cavity, and magnet are cooled to 10 mK using a dilution
refrigerator. A series of attenuators and isolators prevent thermal
noise from reaching the sample space. The total attenuation of the
input port is 48 dB at 10 GHz. The output signal is amplified by
two low-noise amplifiers at 4 K and the room temperature. We
use a vector network analyzer (VNA) for transmission and
reflection spectroscopy. A static magnetic field perpendicular
to the microwave magnetic field and parallel to the crystal axis
h100i is applied by using permanent neodymium magnets and a
magnetic yoke made of pure iron. We use a superconducting coil
for fine tuning of the static field.
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is applied perpendicular to the plane of the WGM orbits.
A loop coil near the YIG sphere generates an ac magnetic
field perpendicular to the dc field and drives FMR. The
magnetization then acquires its horizontal component
rotating at the angular frequency of the Kittel mode.
Because of the finite loss, the microwave reflection picked
up by the loop coil shows a dip at the resonant frequency.
The resonant frequency and the quality factor are found to
be ωmag=2π ¼ 6.81 GHz and Q ∼ 3000, respectively.
Laser light with a wavelength of 1.5 μm from an ECDL

is introduced through a FPC and then coupled to the WGM
resonator via a tapered silica optical nanofiber, with a waist
diameter of about 700 nm and a waist length of around
4 mm. Figure 1(b) shows the transmission spectra for the
transverse-electric (TE) modes and the transverse-magnetic
(TM) modes. The rich structures in the spectra indicate that
there are various spatial modes within the FSR of 62.1 GHz.
For WGMs in the large sphere limit, frequencies of the TM
modes are known to be higher than those of the TE modes
with the same mode indices because of the geometrical
birefringence [22–24]. For the 750-μm-diameter sphere we

use, the difference is estimated to be 51.8 GHz, which is
consistent with the observed spectra in Fig. 1(b) [25]. The
intrinsic quality factors of the WGMs are found to be
around 1 × 105 when they are measured in the under-
coupled regime.
When the light propagates in the direction of the mean

magnetization in ferromagnets, the well-known Faraday
effect occurs. When, on the other hand, the mean mag-
netization is perpendicular to the direction of light propa-
gation, magnon-induced Brillouin scattering takes place
[26–28]. In the presence of magnons in the Kittel mode,
photons in the WGM undergo Brillouin scattering to create
sideband photons with the frequency shifted by "ωmag=2π.
A HWP and a PBS make the scattered sideband photons
and the unscattered input photons interfere to generate a
beat signal at ωmag=2π. The signal is amplified and
measured with a vector network analyzer.
The orange (light blue) plot in Fig. 2 shows the observed

spectrum of the beat signal for the input laser being the TM
mode and coupled to the anticlockwise (clockwise) orbit of
the WGM resonator. The frequency of the input photons is
tuned to be ω=2π ¼ 193130 GHz where the beat signal
associated with the anticlockwise orbit is maximized.
While both peaks in Fig. 2 have the same linewidth as
the FMR signal, there is a large difference in their signal
strengths of almost 20 dB.
The nonreciprocity of the magnon-induced Brillouin

scattering can be explained by considering the conservation
of energy, momentum, and angular momentum under the
situation in which the spin-orbit coupling of the photons
and the geometrical birefringence associated with the
WGM resonator are blended with the time-reversal sym-
metry breaking in the magnon dynamics.
Suppose that the input laser polarization is adjusted to

couple to the TM mode of the anticlockwise WGM orbit
(orange orbit in Fig. 2). The light in the resonator is then σþ

polarized due to the spin-orbit coupling [see Fig. 3(a)]. To
see why the Brillouin scattering is more noticeable in this
situation, we consider the following three points. (i) The

FIG. 1. Transmission through WGMs in a YIG sphere.
(a) Experimental setup. WGMs of the YIG sphere are addressed
with an optical nanofiber. Microwave radiation from a vector
network analyzer excites magnons, and ac and dc components of
the light intensity are monitored with a high-speed photodetector
(PD). The polarization of the light from an external-cavity diode
laser (ECDL) is adjusted by a fiber polarization controller (FPC).
A half-wave plate (HWP) and a polarization beam splitter (PBS)
are placed before the PD. The inset shows a picture of the YIG
sphere and the nanofiber. (b) Observed WGM spectra for the
750-μm-diameter YIG sphere. Red and blue lines correspond to
the TM and TE modes, respectively. The transmission signals are
normalized by their maximal values. The free spectral range
(FSR) and the estimated spectral shift due to the geometrical
birefringence (GB) are indicated.
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FIG. 2. Nonreciprocal Brillouin scattering. The orange (light
blue) plot is the observed spectrum of the beat signal for the input
laser being TM mode from port 1 (2). The right inset shows an
expanded plot of the light blue curve. The left inset depicts the
input ports and the direction of the dc magnetic field.
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â†â (â† photon creation operator, G optomagnonic coupling). In our recent work we developed

the theory for cavity optomagnonics starting from the Faraday effect [10]. We showed that G scales in-

versely with the magnon mode volume and can be remarkably large for samples near the diffraction limit

⇠ (1µm)3, giving a coupling per magnon g0 ⇠ 0.1MHz in YIG [the current state of the art is ⇠ (1mm)3,

with g0 ⇠ 10Hz]. We derived the optically induced classical nonlinear dynamics for the Kittel mode,

and showed the possibility of magnetic switching and self-oscillations, as well as chaos (see Fig. 2).
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Figure 2: Example of nonlinear spin dynamics in cavity
optomagnonics. Bifurcation diagram from Ref. [10].

This is a very new field and several possi-

bilities are open for future research. i) Linear

regime. For small oscillations, a spin can be ap-

proximated by a harmonic oscillator and concepts

of optomechanics can be borrowed. Achievable

regimes will be however different (e.g. strong co-

operativity limit). ii) Quantum nonlinear regime.

Here one has to retain the spin algebra. This is

distinct from optomechanics and will have conse-

quences on quantum noise and quantum measure-

ment protocols. iii) Dissipation processes. From

FMR it is known that pumping the Kittel mode

can lead to instabilities due to three- and four-magnon processes. These are known as Suhl instabilities

and depend on the geometry of the sample. Study of the interplay between optically induced dissipation

(which can be negative for a driven system [10]) and these processes could improve magnon lifetimes.

While for simple geometries analytical progress can be made, more complicated structures will require

micromagnetic simulations. iv) Magnetic textures. This is theoretically challenging in the nonlinear

regime since Ŝ(r) cannot be written in a linear bosonic basis. It opens however a completely novel

regime with no analogue in optomechanics, and could lead to coherent manipulation of magnetic tex-

tures with light. Experimentally, it was shown recently that skyrmions in doped YIG can be imaged by

circularly polarized light. v) Photonic/magnonic crystals. Structures to optimize the coupling between

photon and magnon modes could be in principle designed. The rationale follows the success of photonic

crystals in optomechanics, with the added richness (and challenge) in this case of magnetic textures.

Magnonic crystals in thin films have been experimentally demonstrated. vi) Hybrid systems. Study of

the coupling of optomagnonic systems to mechanical or electronic degrees of freedom.
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the spectral lines at the anticrossing; (iii) the limited
filtering in the microwave measurement setup allowed
thermal excitations of magnons and photons in the sample.
The present work resolves all these issues as discussed
below. A nearly uniform microwave field in the large cavity
volume, combined with the selection of a spherical sample,
suppresses the coupling to other magnetostatic modes
because of their symmetry. Meanwhile, the high spin
density of YIG and the large volume of the sphere lead
to an enormous magnetic-dipole coupling strength between
the Kittel mode and the cavity mode, namely, two harmonic
oscillators. Normal-mode splitting with the cavity mode is
clearly observed even in the quantum regime where both
the average numbers of thermally excited magnons and
photons are nearly zero and that of the probe microwave
photons in the cavity is less than one.
Our experimental setup is shown in Fig. 1. The cavity

made of oxygen free copper has the fundamental-mode
(TE101) frequency ωc=2π of 10.565 GHz, and its internal
cavity loss κint=2π is about 1.0 MHz at low temperature.
This cavity has two connector ports for the transmission
spectroscopy; an asymmetric port configuration is used
where input and output ports have different coupling
strengths κ1=2π and κ2=2π of 0.13 and 1.5 MHz, respec-
tively. An YIG sphere made by Ferrisphere Inc. [20] is

mounted in the cavity at the magnetic antinode of the
fundamental mode. We apply a static magnetic field of
approximately 370 mT along the crystal axis h100i which
is the hard magnetization axis for YIG. The sample is
supposed to be uniformly magnetized and saturated.
We first measure the transmission spectrum of the cavity

loaded by an YIG sphere with a diameter of 0.5 mm.
Figure 2(a) shows the transmission coefficient ReðS21Þ as a
function of the frequency and the magnetic field tuned by
the bias current I in the coil. A pronounced normal-mode
splitting is observed, indicating strong coupling between a
collective excitation mode in the YIG sphere and the cavity
mode. We assign the mode in the sphere to the Kittel mode;
it gives the maximum coupling strength to the nearly
uniform cavity field and the frequency which is linearly
dependent on the static field. Although it is difficult to
recognize in Fig. 2(a), we also see a few hints of other tiny
anticrossings, for example, at I ¼ −1.6, 2.3, and 3.3 mA.
These are due to weak coupling of the cavity mode with
other magnetostatic modes in the YIG sphere, induced by
the small inhomogeneity of the magnetic fields. Several
cross sections of the 2D color plot are depicted in Fig. 2(b).
As a function of the magnetic field, the Kittel mode
approaches the cavity mode. At the degeneracy point
(I ≡ 0 mA) where the Kittel-mode frequency coincides
with the cavity frequency, we see the normal-mode splitting
of nearly 100 MHz, orders of magnitude wider than
the linewidths. At this point, the Kittel and cavity modes
form “magnon-polariton” modes, i.e., hybridized modes
between the collective spin excitation and the cavity
excitation.
We now evaluate the coupling strength and the cavity

and magnon linewidths by fitting the transmission coef-
ficient S21ðωÞ with an equation derived from the input-
output theory. The transmission coefficient of the hybrid
system is written as

S21ðωÞ ¼
ffiffiffiffiffiffiffiffiffi
κ1κ2

p

iðω − ωcÞ − κ1þκ2þκint
2 þ jgmj2

iðω−ωFMRÞ−γm=2

; ð1Þ

where gm is the coupling strength of the Kittel mode to the
cavity, and ωFMR and γm are the frequency and the line-
width of the Kittel mode, respectively. The input and output
port couplings of the cavity are determined separately by
measuring additionally the reflection of the cavity output.
As depicted by the dashed white lines in Fig. 2(b), the
spectra are well fitted with Eq. (1). The coupling strength of
the Kittel mode to the cavity gm=2π, the total cavity
linewidth κ=2π ¼ ðκ1 þ κ2 þ κintÞ=2π, and the Kittel-mode
linewidth γm=2π are determined as 47 MHz, 2.7 MHz, and
1.1 MHz, respectively. From the parameters, the hybrid
system turns out to be deep in the strong coupling regime
where gm ≫ γm, κ, even at the lowest temperature and with
the weakest probe power. A dimensionless measure which
indicates how well the spins couple to the cavity mode is
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FIG. 1 (color online). Experimental setup. (a) An YIG sphere
mounted in a rectangular cavity made of oxygen free copper. The
sphere is glued to an alumina (aluminum-oxide) rod oriented to
the crystal axis h110i. The inset is a magnified picture of a sphere
with a diameter of 1.0 mm. The cavity has two connector ports for
transmission spectroscopy and dimensions of 22 × 18 × 3 mm
that give the fundamental-mode (TE101) resonant frequency
ωc=2π of 10.565 GHz. (b) Measurement apparatus. The YIG
sphere, cavity, and magnet are cooled to 10 mK using a dilution
refrigerator. A series of attenuators and isolators prevent thermal
noise from reaching the sample space. The total attenuation of the
input port is 48 dB at 10 GHz. The output signal is amplified by
two low-noise amplifiers at 4 K and the room temperature. We
use a vector network analyzer (VNA) for transmission and
reflection spectroscopy. A static magnetic field perpendicular
to the microwave magnetic field and parallel to the crystal axis
h100i is applied by using permanent neodymium magnets and a
magnetic yoke made of pure iron. We use a superconducting coil
for fine tuning of the static field.
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is applied perpendicular to the plane of the WGM orbits.
A loop coil near the YIG sphere generates an ac magnetic
field perpendicular to the dc field and drives FMR. The
magnetization then acquires its horizontal component
rotating at the angular frequency of the Kittel mode.
Because of the finite loss, the microwave reflection picked
up by the loop coil shows a dip at the resonant frequency.
The resonant frequency and the quality factor are found to
be ωmag=2π ¼ 6.81 GHz and Q ∼ 3000, respectively.
Laser light with a wavelength of 1.5 μm from an ECDL

is introduced through a FPC and then coupled to the WGM
resonator via a tapered silica optical nanofiber, with a waist
diameter of about 700 nm and a waist length of around
4 mm. Figure 1(b) shows the transmission spectra for the
transverse-electric (TE) modes and the transverse-magnetic
(TM) modes. The rich structures in the spectra indicate that
there are various spatial modes within the FSR of 62.1 GHz.
For WGMs in the large sphere limit, frequencies of the TM
modes are known to be higher than those of the TE modes
with the same mode indices because of the geometrical
birefringence [22–24]. For the 750-μm-diameter sphere we

use, the difference is estimated to be 51.8 GHz, which is
consistent with the observed spectra in Fig. 1(b) [25]. The
intrinsic quality factors of the WGMs are found to be
around 1 × 105 when they are measured in the under-
coupled regime.
When the light propagates in the direction of the mean

magnetization in ferromagnets, the well-known Faraday
effect occurs. When, on the other hand, the mean mag-
netization is perpendicular to the direction of light propa-
gation, magnon-induced Brillouin scattering takes place
[26–28]. In the presence of magnons in the Kittel mode,
photons in the WGM undergo Brillouin scattering to create
sideband photons with the frequency shifted by "ωmag=2π.
A HWP and a PBS make the scattered sideband photons
and the unscattered input photons interfere to generate a
beat signal at ωmag=2π. The signal is amplified and
measured with a vector network analyzer.
The orange (light blue) plot in Fig. 2 shows the observed

spectrum of the beat signal for the input laser being the TM
mode and coupled to the anticlockwise (clockwise) orbit of
the WGM resonator. The frequency of the input photons is
tuned to be ω=2π ¼ 193130 GHz where the beat signal
associated with the anticlockwise orbit is maximized.
While both peaks in Fig. 2 have the same linewidth as
the FMR signal, there is a large difference in their signal
strengths of almost 20 dB.
The nonreciprocity of the magnon-induced Brillouin

scattering can be explained by considering the conservation
of energy, momentum, and angular momentum under the
situation in which the spin-orbit coupling of the photons
and the geometrical birefringence associated with the
WGM resonator are blended with the time-reversal sym-
metry breaking in the magnon dynamics.
Suppose that the input laser polarization is adjusted to

couple to the TM mode of the anticlockwise WGM orbit
(orange orbit in Fig. 2). The light in the resonator is then σþ

polarized due to the spin-orbit coupling [see Fig. 3(a)]. To
see why the Brillouin scattering is more noticeable in this
situation, we consider the following three points. (i) The

FIG. 1. Transmission through WGMs in a YIG sphere.
(a) Experimental setup. WGMs of the YIG sphere are addressed
with an optical nanofiber. Microwave radiation from a vector
network analyzer excites magnons, and ac and dc components of
the light intensity are monitored with a high-speed photodetector
(PD). The polarization of the light from an external-cavity diode
laser (ECDL) is adjusted by a fiber polarization controller (FPC).
A half-wave plate (HWP) and a polarization beam splitter (PBS)
are placed before the PD. The inset shows a picture of the YIG
sphere and the nanofiber. (b) Observed WGM spectra for the
750-μm-diameter YIG sphere. Red and blue lines correspond to
the TM and TE modes, respectively. The transmission signals are
normalized by their maximal values. The free spectral range
(FSR) and the estimated spectral shift due to the geometrical
birefringence (GB) are indicated.
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FIG. 2. Nonreciprocal Brillouin scattering. The orange (light
blue) plot is the observed spectrum of the beat signal for the input
laser being TM mode from port 1 (2). The right inset shows an
expanded plot of the light blue curve. The left inset depicts the
input ports and the direction of the dc magnetic field.
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â†â (â† photon creation operator, G optomagnonic coupling). In our recent work we developed

the theory for cavity optomagnonics starting from the Faraday effect [10]. We showed that G scales in-

versely with the magnon mode volume and can be remarkably large for samples near the diffraction limit

⇠ (1µm)3, giving a coupling per magnon g0 ⇠ 0.1MHz in YIG [the current state of the art is ⇠ (1mm)3,

with g0 ⇠ 10Hz]. We derived the optically induced classical nonlinear dynamics for the Kittel mode,

and showed the possibility of magnetic switching and self-oscillations, as well as chaos (see Fig. 2).
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Figure 2: Example of nonlinear spin dynamics in cavity
optomagnonics. Bifurcation diagram from Ref. [10].

This is a very new field and several possi-

bilities are open for future research. i) Linear

regime. For small oscillations, a spin can be ap-

proximated by a harmonic oscillator and concepts

of optomechanics can be borrowed. Achievable

regimes will be however different (e.g. strong co-

operativity limit). ii) Quantum nonlinear regime.

Here one has to retain the spin algebra. This is

distinct from optomechanics and will have conse-

quences on quantum noise and quantum measure-

ment protocols. iii) Dissipation processes. From

FMR it is known that pumping the Kittel mode

can lead to instabilities due to three- and four-magnon processes. These are known as Suhl instabilities

and depend on the geometry of the sample. Study of the interplay between optically induced dissipation

(which can be negative for a driven system [10]) and these processes could improve magnon lifetimes.

While for simple geometries analytical progress can be made, more complicated structures will require

micromagnetic simulations. iv) Magnetic textures. This is theoretically challenging in the nonlinear

regime since Ŝ(r) cannot be written in a linear bosonic basis. It opens however a completely novel

regime with no analogue in optomechanics, and could lead to coherent manipulation of magnetic tex-

tures with light. Experimentally, it was shown recently that skyrmions in doped YIG can be imaged by

circularly polarized light. v) Photonic/magnonic crystals. Structures to optimize the coupling between

photon and magnon modes could be in principle designed. The rationale follows the success of photonic

crystals in optomechanics, with the added richness (and challenge) in this case of magnetic textures.

Magnonic crystals in thin films have been experimentally demonstrated. vi) Hybrid systems. Study of

the coupling of optomagnonic systems to mechanical or electronic degrees of freedom.
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(Nakamura’s group, Tokyo) 
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(Hong Tang’s group, Yale) 

the spectral lines at the anticrossing; (iii) the limited
filtering in the microwave measurement setup allowed
thermal excitations of magnons and photons in the sample.
The present work resolves all these issues as discussed
below. A nearly uniform microwave field in the large cavity
volume, combined with the selection of a spherical sample,
suppresses the coupling to other magnetostatic modes
because of their symmetry. Meanwhile, the high spin
density of YIG and the large volume of the sphere lead
to an enormous magnetic-dipole coupling strength between
the Kittel mode and the cavity mode, namely, two harmonic
oscillators. Normal-mode splitting with the cavity mode is
clearly observed even in the quantum regime where both
the average numbers of thermally excited magnons and
photons are nearly zero and that of the probe microwave
photons in the cavity is less than one.
Our experimental setup is shown in Fig. 1. The cavity

made of oxygen free copper has the fundamental-mode
(TE101) frequency ωc=2π of 10.565 GHz, and its internal
cavity loss κint=2π is about 1.0 MHz at low temperature.
This cavity has two connector ports for the transmission
spectroscopy; an asymmetric port configuration is used
where input and output ports have different coupling
strengths κ1=2π and κ2=2π of 0.13 and 1.5 MHz, respec-
tively. An YIG sphere made by Ferrisphere Inc. [20] is

mounted in the cavity at the magnetic antinode of the
fundamental mode. We apply a static magnetic field of
approximately 370 mT along the crystal axis h100i which
is the hard magnetization axis for YIG. The sample is
supposed to be uniformly magnetized and saturated.
We first measure the transmission spectrum of the cavity

loaded by an YIG sphere with a diameter of 0.5 mm.
Figure 2(a) shows the transmission coefficient ReðS21Þ as a
function of the frequency and the magnetic field tuned by
the bias current I in the coil. A pronounced normal-mode
splitting is observed, indicating strong coupling between a
collective excitation mode in the YIG sphere and the cavity
mode. We assign the mode in the sphere to the Kittel mode;
it gives the maximum coupling strength to the nearly
uniform cavity field and the frequency which is linearly
dependent on the static field. Although it is difficult to
recognize in Fig. 2(a), we also see a few hints of other tiny
anticrossings, for example, at I ¼ −1.6, 2.3, and 3.3 mA.
These are due to weak coupling of the cavity mode with
other magnetostatic modes in the YIG sphere, induced by
the small inhomogeneity of the magnetic fields. Several
cross sections of the 2D color plot are depicted in Fig. 2(b).
As a function of the magnetic field, the Kittel mode
approaches the cavity mode. At the degeneracy point
(I ≡ 0 mA) where the Kittel-mode frequency coincides
with the cavity frequency, we see the normal-mode splitting
of nearly 100 MHz, orders of magnitude wider than
the linewidths. At this point, the Kittel and cavity modes
form “magnon-polariton” modes, i.e., hybridized modes
between the collective spin excitation and the cavity
excitation.
We now evaluate the coupling strength and the cavity

and magnon linewidths by fitting the transmission coef-
ficient S21ðωÞ with an equation derived from the input-
output theory. The transmission coefficient of the hybrid
system is written as

S21ðωÞ ¼
ffiffiffiffiffiffiffiffiffi
κ1κ2

p

iðω − ωcÞ − κ1þκ2þκint
2 þ jgmj2

iðω−ωFMRÞ−γm=2

; ð1Þ

where gm is the coupling strength of the Kittel mode to the
cavity, and ωFMR and γm are the frequency and the line-
width of the Kittel mode, respectively. The input and output
port couplings of the cavity are determined separately by
measuring additionally the reflection of the cavity output.
As depicted by the dashed white lines in Fig. 2(b), the
spectra are well fitted with Eq. (1). The coupling strength of
the Kittel mode to the cavity gm=2π, the total cavity
linewidth κ=2π ¼ ðκ1 þ κ2 þ κintÞ=2π, and the Kittel-mode
linewidth γm=2π are determined as 47 MHz, 2.7 MHz, and
1.1 MHz, respectively. From the parameters, the hybrid
system turns out to be deep in the strong coupling regime
where gm ≫ γm, κ, even at the lowest temperature and with
the weakest probe power. A dimensionless measure which
indicates how well the spins couple to the cavity mode is
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FIG. 1 (color online). Experimental setup. (a) An YIG sphere
mounted in a rectangular cavity made of oxygen free copper. The
sphere is glued to an alumina (aluminum-oxide) rod oriented to
the crystal axis h110i. The inset is a magnified picture of a sphere
with a diameter of 1.0 mm. The cavity has two connector ports for
transmission spectroscopy and dimensions of 22 × 18 × 3 mm
that give the fundamental-mode (TE101) resonant frequency
ωc=2π of 10.565 GHz. (b) Measurement apparatus. The YIG
sphere, cavity, and magnet are cooled to 10 mK using a dilution
refrigerator. A series of attenuators and isolators prevent thermal
noise from reaching the sample space. The total attenuation of the
input port is 48 dB at 10 GHz. The output signal is amplified by
two low-noise amplifiers at 4 K and the room temperature. We
use a vector network analyzer (VNA) for transmission and
reflection spectroscopy. A static magnetic field perpendicular
to the microwave magnetic field and parallel to the crystal axis
h100i is applied by using permanent neodymium magnets and a
magnetic yoke made of pure iron. We use a superconducting coil
for fine tuning of the static field.
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Picture form Tabuchi et al, PRL 113, 083603 (2014)

YIG

Yttrium Iron Garnet 
Y3 Fe5 O12

• ferrimagnetic 
• insulator 
• transparent in the infrared
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the spectral lines at the anticrossing; (iii) the limited
filtering in the microwave measurement setup allowed
thermal excitations of magnons and photons in the sample.
The present work resolves all these issues as discussed
below. A nearly uniform microwave field in the large cavity
volume, combined with the selection of a spherical sample,
suppresses the coupling to other magnetostatic modes
because of their symmetry. Meanwhile, the high spin
density of YIG and the large volume of the sphere lead
to an enormous magnetic-dipole coupling strength between
the Kittel mode and the cavity mode, namely, two harmonic
oscillators. Normal-mode splitting with the cavity mode is
clearly observed even in the quantum regime where both
the average numbers of thermally excited magnons and
photons are nearly zero and that of the probe microwave
photons in the cavity is less than one.
Our experimental setup is shown in Fig. 1. The cavity

made of oxygen free copper has the fundamental-mode
(TE101) frequency ωc=2π of 10.565 GHz, and its internal
cavity loss κint=2π is about 1.0 MHz at low temperature.
This cavity has two connector ports for the transmission
spectroscopy; an asymmetric port configuration is used
where input and output ports have different coupling
strengths κ1=2π and κ2=2π of 0.13 and 1.5 MHz, respec-
tively. An YIG sphere made by Ferrisphere Inc. [20] is

mounted in the cavity at the magnetic antinode of the
fundamental mode. We apply a static magnetic field of
approximately 370 mT along the crystal axis h100i which
is the hard magnetization axis for YIG. The sample is
supposed to be uniformly magnetized and saturated.
We first measure the transmission spectrum of the cavity

loaded by an YIG sphere with a diameter of 0.5 mm.
Figure 2(a) shows the transmission coefficient ReðS21Þ as a
function of the frequency and the magnetic field tuned by
the bias current I in the coil. A pronounced normal-mode
splitting is observed, indicating strong coupling between a
collective excitation mode in the YIG sphere and the cavity
mode. We assign the mode in the sphere to the Kittel mode;
it gives the maximum coupling strength to the nearly
uniform cavity field and the frequency which is linearly
dependent on the static field. Although it is difficult to
recognize in Fig. 2(a), we also see a few hints of other tiny
anticrossings, for example, at I ¼ −1.6, 2.3, and 3.3 mA.
These are due to weak coupling of the cavity mode with
other magnetostatic modes in the YIG sphere, induced by
the small inhomogeneity of the magnetic fields. Several
cross sections of the 2D color plot are depicted in Fig. 2(b).
As a function of the magnetic field, the Kittel mode
approaches the cavity mode. At the degeneracy point
(I ≡ 0 mA) where the Kittel-mode frequency coincides
with the cavity frequency, we see the normal-mode splitting
of nearly 100 MHz, orders of magnitude wider than
the linewidths. At this point, the Kittel and cavity modes
form “magnon-polariton” modes, i.e., hybridized modes
between the collective spin excitation and the cavity
excitation.
We now evaluate the coupling strength and the cavity

and magnon linewidths by fitting the transmission coef-
ficient S21ðωÞ with an equation derived from the input-
output theory. The transmission coefficient of the hybrid
system is written as

S21ðωÞ ¼
ffiffiffiffiffiffiffiffiffi
κ1κ2

p

iðω − ωcÞ − κ1þκ2þκint
2 þ jgmj2

iðω−ωFMRÞ−γm=2

; ð1Þ

where gm is the coupling strength of the Kittel mode to the
cavity, and ωFMR and γm are the frequency and the line-
width of the Kittel mode, respectively. The input and output
port couplings of the cavity are determined separately by
measuring additionally the reflection of the cavity output.
As depicted by the dashed white lines in Fig. 2(b), the
spectra are well fitted with Eq. (1). The coupling strength of
the Kittel mode to the cavity gm=2π, the total cavity
linewidth κ=2π ¼ ðκ1 þ κ2 þ κintÞ=2π, and the Kittel-mode
linewidth γm=2π are determined as 47 MHz, 2.7 MHz, and
1.1 MHz, respectively. From the parameters, the hybrid
system turns out to be deep in the strong coupling regime
where gm ≫ γm, κ, even at the lowest temperature and with
the weakest probe power. A dimensionless measure which
indicates how well the spins couple to the cavity mode is
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FIG. 1 (color online). Experimental setup. (a) An YIG sphere
mounted in a rectangular cavity made of oxygen free copper. The
sphere is glued to an alumina (aluminum-oxide) rod oriented to
the crystal axis h110i. The inset is a magnified picture of a sphere
with a diameter of 1.0 mm. The cavity has two connector ports for
transmission spectroscopy and dimensions of 22 × 18 × 3 mm
that give the fundamental-mode (TE101) resonant frequency
ωc=2π of 10.565 GHz. (b) Measurement apparatus. The YIG
sphere, cavity, and magnet are cooled to 10 mK using a dilution
refrigerator. A series of attenuators and isolators prevent thermal
noise from reaching the sample space. The total attenuation of the
input port is 48 dB at 10 GHz. The output signal is amplified by
two low-noise amplifiers at 4 K and the room temperature. We
use a vector network analyzer (VNA) for transmission and
reflection spectroscopy. A static magnetic field perpendicular
to the microwave magnetic field and parallel to the crystal axis
h100i is applied by using permanent neodymium magnets and a
magnetic yoke made of pure iron. We use a superconducting coil
for fine tuning of the static field.
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the cooperativity defined as C ¼ 4g2m=κγm. The obtained
cooperativity is C ¼ 3.0 × 103, which is extremely large
compared to the numbers achieved with paramagnetic spin
ensembles.
We also check dependence of the coupling strength on

the sphere diameter. Provided that all the net spins in the
ferrimagnetic YIG sphere are precessing in phase, the
coupling strength gm of the Kittel mode to the cavity mode
is expected to be proportional to the square root of the
number of the net spins N, i.e., gm ¼ g0

ffiffiffiffi
N

p
where g0 is the

coupling strength of a single Bohr magneton to the cavity.
The single-spin coupling strength is calculated to be
g0=2π ¼ γe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0ℏωc=Vc

p
=2π ¼ 38 mHz for TE101 mode,

where γe is the electron gyromagnetic ratio of
2π × 28.0 GHz=T, μ0 is the permeability of vacuum, and
Vc is the volume of the cavity. The enhancement by the
factor of

ffiffiffiffi
N

p
is due to a magnon excitation in the Kittel

mode, i.e., constructive interference of all possible proc-
esses in which a cavity photon flips one of the spins in the
sphere. The factor

ffiffiffiffi
N

p
naturally appears as the Clebsch-

Gordan coefficient when the raising operator of the total
spin is applied to a fully polarized N-spin system [21]. The
red dots in Fig. 3 show the obtained coupling strength as a
function of the sphere diameter. It clearly demonstrates that
the coupling strength is proportional to the square root of
the number of spins. We evaluate the single-spin coupling
strength g0=2π to be 39 mHz from the fitting. The good
agreement with theory indicates that the design of our
hybrid system is reliable and robust.
We further observe a peculiar temperature dependence of

the Kittel-mode linewidth below 1 K; little has been known
about the dependence in this temperature range [22]. The

red dots in Fig. 4 show the Kittel-mode linewidth as a
function of the temperature. As seen also in Refs. [23] and
[24], in the temperature range from 10 K to 1 K, the
linewidth monotonically decreases. The dominant mecha-
nisms of the relaxation here are known to be the so-called
slow relaxation due to impurity ions [25] and magnon-
phonon scattering [26]. The observed linewidth below 1 K,
however, increases as temperature decreases. Such behav-
ior has been predicted to be a signature of the transverse
relaxation due to two-level systems (TLSs) [27], but has
never been observed in FMR. Note that an analogous
behavior has been seen, for example, in superconducting
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FIG. 2 (color online). Normal-mode splitting between the Kittel mode and the cavity mode TE101. (a) Amplitude of the transmission
ReðS21Þ through the cavity as a function of the probe microwave frequency and the static magnetic field presented in the current I
through the superconducting coil. The field-to-current conversion ratio obtained by fitting the FMR frequency is 1.42 mT=mA. The
phase offset in S21 is adjusted so that the peak has a pure absorption spectrum. The horizontal dashed line shows the cavity resonant
frequency, while the diagonal dashed line shows the Kittel-mode frequency, both obtained from the fitting based on the input-output
theory. We used a probe microwave power of −123 dBm, which corresponds to the average photon number of 0.9 in the cavity. (b) Cross
sections at static magnetic fields corresponding to I ¼ −3.5, −2.3, −1.1, and 0 mA. Solid curves are experimental data with vertical
offset for clarity, and dashed white lines are the fitting curves.
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tively. The dashed line is a linear fit. The slope of the line gives
the single-spin coupling strength g0=2π to the cavity mode, which
is estimated to be 39 mHz.
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the spectral lines at the anticrossing; (iii) the limited
filtering in the microwave measurement setup allowed
thermal excitations of magnons and photons in the sample.
The present work resolves all these issues as discussed
below. A nearly uniform microwave field in the large cavity
volume, combined with the selection of a spherical sample,
suppresses the coupling to other magnetostatic modes
because of their symmetry. Meanwhile, the high spin
density of YIG and the large volume of the sphere lead
to an enormous magnetic-dipole coupling strength between
the Kittel mode and the cavity mode, namely, two harmonic
oscillators. Normal-mode splitting with the cavity mode is
clearly observed even in the quantum regime where both
the average numbers of thermally excited magnons and
photons are nearly zero and that of the probe microwave
photons in the cavity is less than one.
Our experimental setup is shown in Fig. 1. The cavity

made of oxygen free copper has the fundamental-mode
(TE101) frequency ωc=2π of 10.565 GHz, and its internal
cavity loss κint=2π is about 1.0 MHz at low temperature.
This cavity has two connector ports for the transmission
spectroscopy; an asymmetric port configuration is used
where input and output ports have different coupling
strengths κ1=2π and κ2=2π of 0.13 and 1.5 MHz, respec-
tively. An YIG sphere made by Ferrisphere Inc. [20] is

mounted in the cavity at the magnetic antinode of the
fundamental mode. We apply a static magnetic field of
approximately 370 mT along the crystal axis h100i which
is the hard magnetization axis for YIG. The sample is
supposed to be uniformly magnetized and saturated.
We first measure the transmission spectrum of the cavity

loaded by an YIG sphere with a diameter of 0.5 mm.
Figure 2(a) shows the transmission coefficient ReðS21Þ as a
function of the frequency and the magnetic field tuned by
the bias current I in the coil. A pronounced normal-mode
splitting is observed, indicating strong coupling between a
collective excitation mode in the YIG sphere and the cavity
mode. We assign the mode in the sphere to the Kittel mode;
it gives the maximum coupling strength to the nearly
uniform cavity field and the frequency which is linearly
dependent on the static field. Although it is difficult to
recognize in Fig. 2(a), we also see a few hints of other tiny
anticrossings, for example, at I ¼ −1.6, 2.3, and 3.3 mA.
These are due to weak coupling of the cavity mode with
other magnetostatic modes in the YIG sphere, induced by
the small inhomogeneity of the magnetic fields. Several
cross sections of the 2D color plot are depicted in Fig. 2(b).
As a function of the magnetic field, the Kittel mode
approaches the cavity mode. At the degeneracy point
(I ≡ 0 mA) where the Kittel-mode frequency coincides
with the cavity frequency, we see the normal-mode splitting
of nearly 100 MHz, orders of magnitude wider than
the linewidths. At this point, the Kittel and cavity modes
form “magnon-polariton” modes, i.e., hybridized modes
between the collective spin excitation and the cavity
excitation.
We now evaluate the coupling strength and the cavity

and magnon linewidths by fitting the transmission coef-
ficient S21ðωÞ with an equation derived from the input-
output theory. The transmission coefficient of the hybrid
system is written as

S21ðωÞ ¼
ffiffiffiffiffiffiffiffiffi
κ1κ2

p

iðω − ωcÞ − κ1þκ2þκint
2 þ jgmj2

iðω−ωFMRÞ−γm=2

; ð1Þ

where gm is the coupling strength of the Kittel mode to the
cavity, and ωFMR and γm are the frequency and the line-
width of the Kittel mode, respectively. The input and output
port couplings of the cavity are determined separately by
measuring additionally the reflection of the cavity output.
As depicted by the dashed white lines in Fig. 2(b), the
spectra are well fitted with Eq. (1). The coupling strength of
the Kittel mode to the cavity gm=2π, the total cavity
linewidth κ=2π ¼ ðκ1 þ κ2 þ κintÞ=2π, and the Kittel-mode
linewidth γm=2π are determined as 47 MHz, 2.7 MHz, and
1.1 MHz, respectively. From the parameters, the hybrid
system turns out to be deep in the strong coupling regime
where gm ≫ γm, κ, even at the lowest temperature and with
the weakest probe power. A dimensionless measure which
indicates how well the spins couple to the cavity mode is
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FIG. 1 (color online). Experimental setup. (a) An YIG sphere
mounted in a rectangular cavity made of oxygen free copper. The
sphere is glued to an alumina (aluminum-oxide) rod oriented to
the crystal axis h110i. The inset is a magnified picture of a sphere
with a diameter of 1.0 mm. The cavity has two connector ports for
transmission spectroscopy and dimensions of 22 × 18 × 3 mm
that give the fundamental-mode (TE101) resonant frequency
ωc=2π of 10.565 GHz. (b) Measurement apparatus. The YIG
sphere, cavity, and magnet are cooled to 10 mK using a dilution
refrigerator. A series of attenuators and isolators prevent thermal
noise from reaching the sample space. The total attenuation of the
input port is 48 dB at 10 GHz. The output signal is amplified by
two low-noise amplifiers at 4 K and the room temperature. We
use a vector network analyzer (VNA) for transmission and
reflection spectroscopy. A static magnetic field perpendicular
to the microwave magnetic field and parallel to the crystal axis
h100i is applied by using permanent neodymium magnets and a
magnetic yoke made of pure iron. We use a superconducting coil
for fine tuning of the static field.
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the cooperativity defined as C ¼ 4g2m=κγm. The obtained
cooperativity is C ¼ 3.0 × 103, which is extremely large
compared to the numbers achieved with paramagnetic spin
ensembles.
We also check dependence of the coupling strength on

the sphere diameter. Provided that all the net spins in the
ferrimagnetic YIG sphere are precessing in phase, the
coupling strength gm of the Kittel mode to the cavity mode
is expected to be proportional to the square root of the
number of the net spins N, i.e., gm ¼ g0

ffiffiffiffi
N

p
where g0 is the

coupling strength of a single Bohr magneton to the cavity.
The single-spin coupling strength is calculated to be
g0=2π ¼ γe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0ℏωc=Vc

p
=2π ¼ 38 mHz for TE101 mode,

where γe is the electron gyromagnetic ratio of
2π × 28.0 GHz=T, μ0 is the permeability of vacuum, and
Vc is the volume of the cavity. The enhancement by the
factor of

ffiffiffiffi
N

p
is due to a magnon excitation in the Kittel

mode, i.e., constructive interference of all possible proc-
esses in which a cavity photon flips one of the spins in the
sphere. The factor

ffiffiffiffi
N

p
naturally appears as the Clebsch-

Gordan coefficient when the raising operator of the total
spin is applied to a fully polarized N-spin system [21]. The
red dots in Fig. 3 show the obtained coupling strength as a
function of the sphere diameter. It clearly demonstrates that
the coupling strength is proportional to the square root of
the number of spins. We evaluate the single-spin coupling
strength g0=2π to be 39 mHz from the fitting. The good
agreement with theory indicates that the design of our
hybrid system is reliable and robust.
We further observe a peculiar temperature dependence of

the Kittel-mode linewidth below 1 K; little has been known
about the dependence in this temperature range [22]. The

red dots in Fig. 4 show the Kittel-mode linewidth as a
function of the temperature. As seen also in Refs. [23] and
[24], in the temperature range from 10 K to 1 K, the
linewidth monotonically decreases. The dominant mecha-
nisms of the relaxation here are known to be the so-called
slow relaxation due to impurity ions [25] and magnon-
phonon scattering [26]. The observed linewidth below 1 K,
however, increases as temperature decreases. Such behav-
ior has been predicted to be a signature of the transverse
relaxation due to two-level systems (TLSs) [27], but has
never been observed in FMR. Note that an analogous
behavior has been seen, for example, in superconducting
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FIG. 2 (color online). Normal-mode splitting between the Kittel mode and the cavity mode TE101. (a) Amplitude of the transmission
ReðS21Þ through the cavity as a function of the probe microwave frequency and the static magnetic field presented in the current I
through the superconducting coil. The field-to-current conversion ratio obtained by fitting the FMR frequency is 1.42 mT=mA. The
phase offset in S21 is adjusted so that the peak has a pure absorption spectrum. The horizontal dashed line shows the cavity resonant
frequency, while the diagonal dashed line shows the Kittel-mode frequency, both obtained from the fitting based on the input-output
theory. We used a probe microwave power of −123 dBm, which corresponds to the average photon number of 0.9 in the cavity. (b) Cross
sections at static magnetic fields corresponding to I ¼ −3.5, −2.3, −1.1, and 0 mA. Solid curves are experimental data with vertical
offset for clarity, and dashed white lines are the fitting curves.
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FIG. 3 (color online). Coupling strength of the Kittel mode to
the microwave cavity mode as a function of the sample diameter
d. The bottom and top horizontal axes show the square root of the
sphere volume and the corresponding net spin numbers, respec-
tively. The dashed line is a linear fit. The slope of the line gives
the single-spin coupling strength g0=2π to the cavity mode, which
is estimated to be 39 mHz.
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QUANTUM INFORMATION

Coherent coupling between a
ferromagnetic magnon and a
superconducting qubit
Yutaka Tabuchi,1* Seiichiro Ishino,1 Atsushi Noguchi,1 Toyofumi Ishikawa,1

Rekishu Yamazaki,1 Koji Usami,1 Yasunobu Nakamura1,2

Rigidity of an ordered phase in condensed matter results in collective excitation modes
spatially extending to macroscopic dimensions. A magnon is a quantum of such collective
excitation modes in ordered spin systems. Here, we demonstrate the coherent coupling
between a single-magnon excitation in a millimeter-sized ferromagnetic sphere and a
superconducting qubit, with the interaction mediated by the virtual photon excitation in a
microwave cavity. We obtain the coupling strength far exceeding the damping rates, thus
bringing the hybrid system into the strong coupling regime. Furthermore, we use a
parametric drive to realize a tunable magnon-qubit coupling scheme. Our approach
provides a versatile tool for quantum control and measurement of the magnon excitations
and may lead to advances in quantum information processing.

L
ow-dissipative magnon dynamics in ferro-
magnetic insulators have been extensively
studied in the contexts of ferromagnetic
resonance (1, 2), Bose-Einstein condensa-
tion (3), and spintronics (4, 5). Moreover,

the coupling of magnons and microwave pho-
tons in a resonator has been investigated (6–9)
with the aim of realizing hybrid quantum systems
for quantum memories and transducers. How-
ever, coherent manipulation of a magnon at the
single-quantum level has remained elusive be-
cause of the lack of anharmonicity in the system.
Single-electron spins, being a natural and

genuine two-level system, play crucial roles in
numerous applications in quantum information
processing. However, they have intrinsic draw-
backs, such as a small magneticmoment equal to
mB (the Bohr magneton) and the limited spatial
extension of the electron wave function, making
coherent coupling with an electromagnetic field
rather weak. To circumvent these problems, para-
magnetic spin ensembles such as atoms (10),
nitrogen vacancy centers (11, 12), and rare-earth
ions in a crystal (13, 14) have been studied. Gen-
erally, the coupling strength is enhanced by the
square root of the number of the spins involved.
At the same time, a collective spin excitation
mode, whichmatches the input electromagnetic-
field mode, is spanned among the spatially and
spectrally extended spin ensemble. However, with
an increased spin density needed for a stronger
coupling, the spin-spin interactions within the
ensemble drastically degrade the coherence of
the system, leading to a trade-off.
Here we take a different approach by intro-

ducing, counterintuitively, a strong exchange in-
teraction between neighboring spins to make

them fully ordered in the ferromagnetic state.
Even though they typically have a spin density
several orders of magnitude higher than those
of paramagnetic spin crystals mentioned above,
the strong exchange and dipolar interactions
among the spins dominate their dynamics, lead-
ing to narrow-linewidth magnetostatic modes.
The simplest mode, called the Kittel mode, has
uniform spin precessions in the whole volume.
In this Report, we demonstrate a hybrid quan-

tum system that combines two heterogeneous
collective-excitation modes: i.e., the Kittel mode
in a ferromagnetic crystal and a superconducting
qubit. In the latter system, the nonlinearity of
Josephson junctions plays a crucial role for the
realization of the qubit: i.e., an effective two-level
system. The progress in the past decade has
made these qubits and their integrated circuits
one of the most advanced technologies for quan-
tum information processing (15–17). In the set-
ups of circuit quantum electrodynamics, a qubit
as an artificial atom is coupled strongly to a mi-
crowave resonator (18) or a waveguide (19). These
setups allow precise control and readout of the
qubit states, as well as synthesis and character-
ization of arbitrary quantum states in the mi-
crowave modes (20); these techniques can readily
be applied to quantum engineering with magnon
excitations. The anharmonicity contributed by the
superconducting qubit is the critical element.
In our experimental setup (Fig. 1), a transmon-

type superconducting qubit and a single-crystalline
yttrium iron garnet (YIG) sphere are mounted in
a microwave cavity. The qubit with a 0.7-mm-
long dipole antenna has a resonant frequency
wq=2p of 8:136 GHz. It strongly couples to the
electric fields of the cavity modes; e.g., the cou-
pling strength gq=2p between the qubit and the
TE102 (transverse electric) mode at w102=2p ¼
8:488 GHz is 121 MHz (21). The YIG sphere
with a diameter of 0:5 mm is glued to an
aluminum oxide rod andmounted near the anti-

node of the magnetic field of the TE102 mode.
We also apply a local static field Bstatic e 0:29 T,
which makes the YIG sphere a single-domain
ferromagnet (fig. S1). The sphere now has an
enormous magnetic dipole moment NmB, which
couples strongly to the magnetic field of the
cavity mode. The large enhancement factor
N ¼ 1:4" 1018 is the number of the net electron
spins in the sphere; we take advantage of the
high spin density compared to that of previously
studied paramagnetic systems. We perform a
series of spectroscopic measurements in a dilu-
tion refrigerator at T = 10 mK. All the data are
taken in the quantum regime, where very few
thermally excited photons and magnons exist.
The average probe-photon number in the cavity
is also kept below one. To characterize the cou-
pling between the magnon and the photon, we
perform spectroscopy with the qubit frequency
far detuned. Figure 1B shows the normal-mode
splitting between the TE102 mode and the Kittel
mode in the YIG sphere. The pronounced anti-
crossing indicates the strong coupling between
the two systems (7). We obtain the coupling
strength, gm=2p = 21.0 MHz, and the linewidths
of the TE102 and Kittel modes, k102=2p = 2.5 MHz
and gm=2p = 1.4 MHz, from the fit. The addi-
tional splitting seen in the upper branch origi-
nates from another magnetostatic mode, which
is detuned from the Kittel mode.
Whereas the qubit and the magnon electri-

cally and magnetically couple to the cavity mode,
respectively, they have a negligibly small direct
interaction in between. Therefore, we first es-
tablish a static coupling scheme between the
magnon and the qubit by using the presence
of the cavity mode (Fig. 2A) (22). We tune the
qubit and the magnon frequencies, wq and wFMR,
while both are far detuned from the cavity fre-
quency wcð≡w102). When wq ≃ wFMR, coherent
exchange of the qubit excitation and a magnon
is mediated by the virtual-photon excitation in
the cavity mode. The interaction is described by
a Jaynes-Cummings-type Hamiltonian, which is
written as

Hqm;s=ℏ ¼ gqm;s s

ˇ

þc

ˇ

þ g%qm;ss

ˇ

−c

ˇ

† ð1Þ

where gqm;s ¼ gqgm=D is the effective qubit-
magnon coupling strength, and s

ˇ

−½¼ ðs

ˇ

þÞ†( and
c

ˇ

are annihilation operators of the qubit ex-
citation and the magnon, respectively. The de-
tuning D is the difference between the bare
frequencies of the qubit and the cavity mode
(21). The first and the second excited states of
the hybridized system are bonding and anti-
bonding states between the qubit and the mag-
non excitation.
To demonstrate the qubit-magnon coupling,

we performqubit excitation spectroscopy by using
the qubit readout through the cavity TE103 mode.
Despite the large detuning, the TE103 mode at
w103=2p ¼ 10:461 GHz is subject to a dispersive
frequency shift: The change in the cavity reflec-
tion coefficient, Re(Dr), at w103 reflects the qubit
state. Figure 2B shows Re(Dr) as a function of the
excitation microwave frequency and the static
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Optomagnonics

is applied perpendicular to the plane of the WGM orbits.
A loop coil near the YIG sphere generates an ac magnetic
field perpendicular to the dc field and drives FMR. The
magnetization then acquires its horizontal component
rotating at the angular frequency of the Kittel mode.
Because of the finite loss, the microwave reflection picked
up by the loop coil shows a dip at the resonant frequency.
The resonant frequency and the quality factor are found to
be ωmag=2π ¼ 6.81 GHz and Q ∼ 3000, respectively.
Laser light with a wavelength of 1.5 μm from an ECDL

is introduced through a FPC and then coupled to the WGM
resonator via a tapered silica optical nanofiber, with a waist
diameter of about 700 nm and a waist length of around
4 mm. Figure 1(b) shows the transmission spectra for the
transverse-electric (TE) modes and the transverse-magnetic
(TM) modes. The rich structures in the spectra indicate that
there are various spatial modes within the FSR of 62.1 GHz.
For WGMs in the large sphere limit, frequencies of the TM
modes are known to be higher than those of the TE modes
with the same mode indices because of the geometrical
birefringence [22–24]. For the 750-μm-diameter sphere we

use, the difference is estimated to be 51.8 GHz, which is
consistent with the observed spectra in Fig. 1(b) [25]. The
intrinsic quality factors of the WGMs are found to be
around 1 × 105 when they are measured in the under-
coupled regime.
When the light propagates in the direction of the mean

magnetization in ferromagnets, the well-known Faraday
effect occurs. When, on the other hand, the mean mag-
netization is perpendicular to the direction of light propa-
gation, magnon-induced Brillouin scattering takes place
[26–28]. In the presence of magnons in the Kittel mode,
photons in the WGM undergo Brillouin scattering to create
sideband photons with the frequency shifted by "ωmag=2π.
A HWP and a PBS make the scattered sideband photons
and the unscattered input photons interfere to generate a
beat signal at ωmag=2π. The signal is amplified and
measured with a vector network analyzer.
The orange (light blue) plot in Fig. 2 shows the observed

spectrum of the beat signal for the input laser being the TM
mode and coupled to the anticlockwise (clockwise) orbit of
the WGM resonator. The frequency of the input photons is
tuned to be ω=2π ¼ 193130 GHz where the beat signal
associated with the anticlockwise orbit is maximized.
While both peaks in Fig. 2 have the same linewidth as
the FMR signal, there is a large difference in their signal
strengths of almost 20 dB.
The nonreciprocity of the magnon-induced Brillouin

scattering can be explained by considering the conservation
of energy, momentum, and angular momentum under the
situation in which the spin-orbit coupling of the photons
and the geometrical birefringence associated with the
WGM resonator are blended with the time-reversal sym-
metry breaking in the magnon dynamics.
Suppose that the input laser polarization is adjusted to

couple to the TM mode of the anticlockwise WGM orbit
(orange orbit in Fig. 2). The light in the resonator is then σþ

polarized due to the spin-orbit coupling [see Fig. 3(a)]. To
see why the Brillouin scattering is more noticeable in this
situation, we consider the following three points. (i) The

FIG. 1. Transmission through WGMs in a YIG sphere.
(a) Experimental setup. WGMs of the YIG sphere are addressed
with an optical nanofiber. Microwave radiation from a vector
network analyzer excites magnons, and ac and dc components of
the light intensity are monitored with a high-speed photodetector
(PD). The polarization of the light from an external-cavity diode
laser (ECDL) is adjusted by a fiber polarization controller (FPC).
A half-wave plate (HWP) and a polarization beam splitter (PBS)
are placed before the PD. The inset shows a picture of the YIG
sphere and the nanofiber. (b) Observed WGM spectra for the
750-μm-diameter YIG sphere. Red and blue lines correspond to
the TM and TE modes, respectively. The transmission signals are
normalized by their maximal values. The free spectral range
(FSR) and the estimated spectral shift due to the geometrical
birefringence (GB) are indicated.
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FIG. 2. Nonreciprocal Brillouin scattering. The orange (light
blue) plot is the observed spectrum of the beat signal for the input
laser being TM mode from port 1 (2). The right inset shows an
expanded plot of the light blue curve. The left inset depicts the
input ports and the direction of the dc magnetic field.
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Optically induced spin dynamics 
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â†â (â† photon creation operator, G optomagnonic coupling). In our recent work we developed

the theory for cavity optomagnonics starting from the Faraday effect [10]. We showed that G scales in-

versely with the magnon mode volume and can be remarkably large for samples near the diffraction limit

⇠ (1µm)3, giving a coupling per magnon g0 ⇠ 0.1MHz in YIG [the current state of the art is ⇠ (1mm)3,

with g0 ⇠ 10Hz]. We derived the optically induced classical nonlinear dynamics for the Kittel mode,

and showed the possibility of magnetic switching and self-oscillations, as well as chaos (see Fig. 2).
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Figure 2: Example of nonlinear spin dynamics in cavity
optomagnonics. Bifurcation diagram from Ref. [10].

This is a very new field and several possi-

bilities are open for future research. i) Linear

regime. For small oscillations, a spin can be ap-

proximated by a harmonic oscillator and concepts

of optomechanics can be borrowed. Achievable

regimes will be however different (e.g. strong co-

operativity limit). ii) Quantum nonlinear regime.

Here one has to retain the spin algebra. This is

distinct from optomechanics and will have conse-

quences on quantum noise and quantum measure-

ment protocols. iii) Dissipation processes. From

FMR it is known that pumping the Kittel mode

can lead to instabilities due to three- and four-magnon processes. These are known as Suhl instabilities

and depend on the geometry of the sample. Study of the interplay between optically induced dissipation

(which can be negative for a driven system [10]) and these processes could improve magnon lifetimes.

While for simple geometries analytical progress can be made, more complicated structures will require

micromagnetic simulations. iv) Magnetic textures. This is theoretically challenging in the nonlinear

regime since Ŝ(r) cannot be written in a linear bosonic basis. It opens however a completely novel

regime with no analogue in optomechanics, and could lead to coherent manipulation of magnetic tex-

tures with light. Experimentally, it was shown recently that skyrmions in doped YIG can be imaged by

circularly polarized light. v) Photonic/magnonic crystals. Structures to optimize the coupling between

photon and magnon modes could be in principle designed. The rationale follows the success of photonic

crystals in optomechanics, with the added richness (and challenge) in this case of magnetic textures.

Magnonic crystals in thin films have been experimentally demonstrated. vi) Hybrid systems. Study of

the coupling of optomagnonic systems to mechanical or electronic degrees of freedom.

2

the spectral lines at the anticrossing; (iii) the limited
filtering in the microwave measurement setup allowed
thermal excitations of magnons and photons in the sample.
The present work resolves all these issues as discussed
below. A nearly uniform microwave field in the large cavity
volume, combined with the selection of a spherical sample,
suppresses the coupling to other magnetostatic modes
because of their symmetry. Meanwhile, the high spin
density of YIG and the large volume of the sphere lead
to an enormous magnetic-dipole coupling strength between
the Kittel mode and the cavity mode, namely, two harmonic
oscillators. Normal-mode splitting with the cavity mode is
clearly observed even in the quantum regime where both
the average numbers of thermally excited magnons and
photons are nearly zero and that of the probe microwave
photons in the cavity is less than one.
Our experimental setup is shown in Fig. 1. The cavity

made of oxygen free copper has the fundamental-mode
(TE101) frequency ωc=2π of 10.565 GHz, and its internal
cavity loss κint=2π is about 1.0 MHz at low temperature.
This cavity has two connector ports for the transmission
spectroscopy; an asymmetric port configuration is used
where input and output ports have different coupling
strengths κ1=2π and κ2=2π of 0.13 and 1.5 MHz, respec-
tively. An YIG sphere made by Ferrisphere Inc. [20] is

mounted in the cavity at the magnetic antinode of the
fundamental mode. We apply a static magnetic field of
approximately 370 mT along the crystal axis h100i which
is the hard magnetization axis for YIG. The sample is
supposed to be uniformly magnetized and saturated.
We first measure the transmission spectrum of the cavity

loaded by an YIG sphere with a diameter of 0.5 mm.
Figure 2(a) shows the transmission coefficient ReðS21Þ as a
function of the frequency and the magnetic field tuned by
the bias current I in the coil. A pronounced normal-mode
splitting is observed, indicating strong coupling between a
collective excitation mode in the YIG sphere and the cavity
mode. We assign the mode in the sphere to the Kittel mode;
it gives the maximum coupling strength to the nearly
uniform cavity field and the frequency which is linearly
dependent on the static field. Although it is difficult to
recognize in Fig. 2(a), we also see a few hints of other tiny
anticrossings, for example, at I ¼ −1.6, 2.3, and 3.3 mA.
These are due to weak coupling of the cavity mode with
other magnetostatic modes in the YIG sphere, induced by
the small inhomogeneity of the magnetic fields. Several
cross sections of the 2D color plot are depicted in Fig. 2(b).
As a function of the magnetic field, the Kittel mode
approaches the cavity mode. At the degeneracy point
(I ≡ 0 mA) where the Kittel-mode frequency coincides
with the cavity frequency, we see the normal-mode splitting
of nearly 100 MHz, orders of magnitude wider than
the linewidths. At this point, the Kittel and cavity modes
form “magnon-polariton” modes, i.e., hybridized modes
between the collective spin excitation and the cavity
excitation.
We now evaluate the coupling strength and the cavity

and magnon linewidths by fitting the transmission coef-
ficient S21ðωÞ with an equation derived from the input-
output theory. The transmission coefficient of the hybrid
system is written as

S21ðωÞ ¼
ffiffiffiffiffiffiffiffiffi
κ1κ2

p

iðω − ωcÞ − κ1þκ2þκint
2 þ jgmj2

iðω−ωFMRÞ−γm=2

; ð1Þ

where gm is the coupling strength of the Kittel mode to the
cavity, and ωFMR and γm are the frequency and the line-
width of the Kittel mode, respectively. The input and output
port couplings of the cavity are determined separately by
measuring additionally the reflection of the cavity output.
As depicted by the dashed white lines in Fig. 2(b), the
spectra are well fitted with Eq. (1). The coupling strength of
the Kittel mode to the cavity gm=2π, the total cavity
linewidth κ=2π ¼ ðκ1 þ κ2 þ κintÞ=2π, and the Kittel-mode
linewidth γm=2π are determined as 47 MHz, 2.7 MHz, and
1.1 MHz, respectively. From the parameters, the hybrid
system turns out to be deep in the strong coupling regime
where gm ≫ γm, κ, even at the lowest temperature and with
the weakest probe power. A dimensionless measure which
indicates how well the spins couple to the cavity mode is
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FIG. 1 (color online). Experimental setup. (a) An YIG sphere
mounted in a rectangular cavity made of oxygen free copper. The
sphere is glued to an alumina (aluminum-oxide) rod oriented to
the crystal axis h110i. The inset is a magnified picture of a sphere
with a diameter of 1.0 mm. The cavity has two connector ports for
transmission spectroscopy and dimensions of 22 × 18 × 3 mm
that give the fundamental-mode (TE101) resonant frequency
ωc=2π of 10.565 GHz. (b) Measurement apparatus. The YIG
sphere, cavity, and magnet are cooled to 10 mK using a dilution
refrigerator. A series of attenuators and isolators prevent thermal
noise from reaching the sample space. The total attenuation of the
input port is 48 dB at 10 GHz. The output signal is amplified by
two low-noise amplifiers at 4 K and the room temperature. We
use a vector network analyzer (VNA) for transmission and
reflection spectroscopy. A static magnetic field perpendicular
to the microwave magnetic field and parallel to the crystal axis
h100i is applied by using permanent neodymium magnets and a
magnetic yoke made of pure iron. We use a superconducting coil
for fine tuning of the static field.
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ŪMO = ✓F

r
"

"0

Z
dr

M(r)

Ms
· "0
2i!

[E⇤(r)⇥E(r)]

Optomagnonic Hamiltonian

optical 
spin density

magnetization 
density

Faraday
rotation



ŪMO = ✓F

r
"

"0

Z
dr

M(r)

Ms
· "0
2i!

[E⇤(r)⇥E(r)]

Quantize: âŜ â†
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â

G

Parametric 
coupling

S. Viola Kusminskiy, H. X. Tang, and F. Marquardt, PRA 94, 033821 (2016) 
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� â�

Gj
�� = �i

"0f Ms

4~S ✏jmn

Z
drE⇤

�m(r)E�n(r)�i
✓F�

2⇡~S
"0"

2

Optomagnonic Hamiltonian

Microscopic Hamiltonian

Optomagnonic coupling
Ŝ
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is applied perpendicular to the plane of the WGM orbits.
A loop coil near the YIG sphere generates an ac magnetic
field perpendicular to the dc field and drives FMR. The
magnetization then acquires its horizontal component
rotating at the angular frequency of the Kittel mode.
Because of the finite loss, the microwave reflection picked
up by the loop coil shows a dip at the resonant frequency.
The resonant frequency and the quality factor are found to
be ωmag=2π ¼ 6.81 GHz and Q ∼ 3000, respectively.
Laser light with a wavelength of 1.5 μm from an ECDL

is introduced through a FPC and then coupled to the WGM
resonator via a tapered silica optical nanofiber, with a waist
diameter of about 700 nm and a waist length of around
4 mm. Figure 1(b) shows the transmission spectra for the
transverse-electric (TE) modes and the transverse-magnetic
(TM) modes. The rich structures in the spectra indicate that
there are various spatial modes within the FSR of 62.1 GHz.
For WGMs in the large sphere limit, frequencies of the TM
modes are known to be higher than those of the TE modes
with the same mode indices because of the geometrical
birefringence [22–24]. For the 750-μm-diameter sphere we

use, the difference is estimated to be 51.8 GHz, which is
consistent with the observed spectra in Fig. 1(b) [25]. The
intrinsic quality factors of the WGMs are found to be
around 1 × 105 when they are measured in the under-
coupled regime.
When the light propagates in the direction of the mean

magnetization in ferromagnets, the well-known Faraday
effect occurs. When, on the other hand, the mean mag-
netization is perpendicular to the direction of light propa-
gation, magnon-induced Brillouin scattering takes place
[26–28]. In the presence of magnons in the Kittel mode,
photons in the WGM undergo Brillouin scattering to create
sideband photons with the frequency shifted by "ωmag=2π.
A HWP and a PBS make the scattered sideband photons
and the unscattered input photons interfere to generate a
beat signal at ωmag=2π. The signal is amplified and
measured with a vector network analyzer.
The orange (light blue) plot in Fig. 2 shows the observed

spectrum of the beat signal for the input laser being the TM
mode and coupled to the anticlockwise (clockwise) orbit of
the WGM resonator. The frequency of the input photons is
tuned to be ω=2π ¼ 193130 GHz where the beat signal
associated with the anticlockwise orbit is maximized.
While both peaks in Fig. 2 have the same linewidth as
the FMR signal, there is a large difference in their signal
strengths of almost 20 dB.
The nonreciprocity of the magnon-induced Brillouin

scattering can be explained by considering the conservation
of energy, momentum, and angular momentum under the
situation in which the spin-orbit coupling of the photons
and the geometrical birefringence associated with the
WGM resonator are blended with the time-reversal sym-
metry breaking in the magnon dynamics.
Suppose that the input laser polarization is adjusted to

couple to the TM mode of the anticlockwise WGM orbit
(orange orbit in Fig. 2). The light in the resonator is then σþ

polarized due to the spin-orbit coupling [see Fig. 3(a)]. To
see why the Brillouin scattering is more noticeable in this
situation, we consider the following three points. (i) The

FIG. 1. Transmission through WGMs in a YIG sphere.
(a) Experimental setup. WGMs of the YIG sphere are addressed
with an optical nanofiber. Microwave radiation from a vector
network analyzer excites magnons, and ac and dc components of
the light intensity are monitored with a high-speed photodetector
(PD). The polarization of the light from an external-cavity diode
laser (ECDL) is adjusted by a fiber polarization controller (FPC).
A half-wave plate (HWP) and a polarization beam splitter (PBS)
are placed before the PD. The inset shows a picture of the YIG
sphere and the nanofiber. (b) Observed WGM spectra for the
750-μm-diameter YIG sphere. Red and blue lines correspond to
the TM and TE modes, respectively. The transmission signals are
normalized by their maximal values. The free spectral range
(FSR) and the estimated spectral shift due to the geometrical
birefringence (GB) are indicated.
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FIG. 2. Nonreciprocal Brillouin scattering. The orange (light
blue) plot is the observed spectrum of the beat signal for the input
laser being TM mode from port 1 (2). The right inset shows an
expanded plot of the light blue curve. The left inset depicts the
input ports and the direction of the dc magnetic field.
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Cavity Optomagnonics
is applied perpendicular to the plane of the WGM orbits.
A loop coil near the YIG sphere generates an ac magnetic
field perpendicular to the dc field and drives FMR. The
magnetization then acquires its horizontal component
rotating at the angular frequency of the Kittel mode.
Because of the finite loss, the microwave reflection picked
up by the loop coil shows a dip at the resonant frequency.
The resonant frequency and the quality factor are found to
be ωmag=2π ¼ 6.81 GHz and Q ∼ 3000, respectively.
Laser light with a wavelength of 1.5 μm from an ECDL

is introduced through a FPC and then coupled to the WGM
resonator via a tapered silica optical nanofiber, with a waist
diameter of about 700 nm and a waist length of around
4 mm. Figure 1(b) shows the transmission spectra for the
transverse-electric (TE) modes and the transverse-magnetic
(TM) modes. The rich structures in the spectra indicate that
there are various spatial modes within the FSR of 62.1 GHz.
For WGMs in the large sphere limit, frequencies of the TM
modes are known to be higher than those of the TE modes
with the same mode indices because of the geometrical
birefringence [22–24]. For the 750-μm-diameter sphere we

use, the difference is estimated to be 51.8 GHz, which is
consistent with the observed spectra in Fig. 1(b) [25]. The
intrinsic quality factors of the WGMs are found to be
around 1 × 105 when they are measured in the under-
coupled regime.
When the light propagates in the direction of the mean

magnetization in ferromagnets, the well-known Faraday
effect occurs. When, on the other hand, the mean mag-
netization is perpendicular to the direction of light propa-
gation, magnon-induced Brillouin scattering takes place
[26–28]. In the presence of magnons in the Kittel mode,
photons in the WGM undergo Brillouin scattering to create
sideband photons with the frequency shifted by "ωmag=2π.
A HWP and a PBS make the scattered sideband photons
and the unscattered input photons interfere to generate a
beat signal at ωmag=2π. The signal is amplified and
measured with a vector network analyzer.
The orange (light blue) plot in Fig. 2 shows the observed

spectrum of the beat signal for the input laser being the TM
mode and coupled to the anticlockwise (clockwise) orbit of
the WGM resonator. The frequency of the input photons is
tuned to be ω=2π ¼ 193130 GHz where the beat signal
associated with the anticlockwise orbit is maximized.
While both peaks in Fig. 2 have the same linewidth as
the FMR signal, there is a large difference in their signal
strengths of almost 20 dB.
The nonreciprocity of the magnon-induced Brillouin

scattering can be explained by considering the conservation
of energy, momentum, and angular momentum under the
situation in which the spin-orbit coupling of the photons
and the geometrical birefringence associated with the
WGM resonator are blended with the time-reversal sym-
metry breaking in the magnon dynamics.
Suppose that the input laser polarization is adjusted to

couple to the TM mode of the anticlockwise WGM orbit
(orange orbit in Fig. 2). The light in the resonator is then σþ

polarized due to the spin-orbit coupling [see Fig. 3(a)]. To
see why the Brillouin scattering is more noticeable in this
situation, we consider the following three points. (i) The

FIG. 1. Transmission through WGMs in a YIG sphere.
(a) Experimental setup. WGMs of the YIG sphere are addressed
with an optical nanofiber. Microwave radiation from a vector
network analyzer excites magnons, and ac and dc components of
the light intensity are monitored with a high-speed photodetector
(PD). The polarization of the light from an external-cavity diode
laser (ECDL) is adjusted by a fiber polarization controller (FPC).
A half-wave plate (HWP) and a polarization beam splitter (PBS)
are placed before the PD. The inset shows a picture of the YIG
sphere and the nanofiber. (b) Observed WGM spectra for the
750-μm-diameter YIG sphere. Red and blue lines correspond to
the TM and TE modes, respectively. The transmission signals are
normalized by their maximal values. The free spectral range
(FSR) and the estimated spectral shift due to the geometrical
birefringence (GB) are indicated.
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FIG. 2. Nonreciprocal Brillouin scattering. The orange (light
blue) plot is the observed spectrum of the beat signal for the input
laser being TM mode from port 1 (2). The right inset shows an
expanded plot of the light blue curve. The left inset depicts the
input ports and the direction of the dc magnetic field.
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Optomagnonics

is applied perpendicular to the plane of the WGM orbits.
A loop coil near the YIG sphere generates an ac magnetic
field perpendicular to the dc field and drives FMR. The
magnetization then acquires its horizontal component
rotating at the angular frequency of the Kittel mode.
Because of the finite loss, the microwave reflection picked
up by the loop coil shows a dip at the resonant frequency.
The resonant frequency and the quality factor are found to
be ωmag=2π ¼ 6.81 GHz and Q ∼ 3000, respectively.
Laser light with a wavelength of 1.5 μm from an ECDL

is introduced through a FPC and then coupled to the WGM
resonator via a tapered silica optical nanofiber, with a waist
diameter of about 700 nm and a waist length of around
4 mm. Figure 1(b) shows the transmission spectra for the
transverse-electric (TE) modes and the transverse-magnetic
(TM) modes. The rich structures in the spectra indicate that
there are various spatial modes within the FSR of 62.1 GHz.
For WGMs in the large sphere limit, frequencies of the TM
modes are known to be higher than those of the TE modes
with the same mode indices because of the geometrical
birefringence [22–24]. For the 750-μm-diameter sphere we

use, the difference is estimated to be 51.8 GHz, which is
consistent with the observed spectra in Fig. 1(b) [25]. The
intrinsic quality factors of the WGMs are found to be
around 1 × 105 when they are measured in the under-
coupled regime.
When the light propagates in the direction of the mean

magnetization in ferromagnets, the well-known Faraday
effect occurs. When, on the other hand, the mean mag-
netization is perpendicular to the direction of light propa-
gation, magnon-induced Brillouin scattering takes place
[26–28]. In the presence of magnons in the Kittel mode,
photons in the WGM undergo Brillouin scattering to create
sideband photons with the frequency shifted by "ωmag=2π.
A HWP and a PBS make the scattered sideband photons
and the unscattered input photons interfere to generate a
beat signal at ωmag=2π. The signal is amplified and
measured with a vector network analyzer.
The orange (light blue) plot in Fig. 2 shows the observed

spectrum of the beat signal for the input laser being the TM
mode and coupled to the anticlockwise (clockwise) orbit of
the WGM resonator. The frequency of the input photons is
tuned to be ω=2π ¼ 193130 GHz where the beat signal
associated with the anticlockwise orbit is maximized.
While both peaks in Fig. 2 have the same linewidth as
the FMR signal, there is a large difference in their signal
strengths of almost 20 dB.
The nonreciprocity of the magnon-induced Brillouin

scattering can be explained by considering the conservation
of energy, momentum, and angular momentum under the
situation in which the spin-orbit coupling of the photons
and the geometrical birefringence associated with the
WGM resonator are blended with the time-reversal sym-
metry breaking in the magnon dynamics.
Suppose that the input laser polarization is adjusted to

couple to the TM mode of the anticlockwise WGM orbit
(orange orbit in Fig. 2). The light in the resonator is then σþ

polarized due to the spin-orbit coupling [see Fig. 3(a)]. To
see why the Brillouin scattering is more noticeable in this
situation, we consider the following three points. (i) The

FIG. 1. Transmission through WGMs in a YIG sphere.
(a) Experimental setup. WGMs of the YIG sphere are addressed
with an optical nanofiber. Microwave radiation from a vector
network analyzer excites magnons, and ac and dc components of
the light intensity are monitored with a high-speed photodetector
(PD). The polarization of the light from an external-cavity diode
laser (ECDL) is adjusted by a fiber polarization controller (FPC).
A half-wave plate (HWP) and a polarization beam splitter (PBS)
are placed before the PD. The inset shows a picture of the YIG
sphere and the nanofiber. (b) Observed WGM spectra for the
750-μm-diameter YIG sphere. Red and blue lines correspond to
the TM and TE modes, respectively. The transmission signals are
normalized by their maximal values. The free spectral range
(FSR) and the estimated spectral shift due to the geometrical
birefringence (GB) are indicated.
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FIG. 2. Nonreciprocal Brillouin scattering. The orange (light
blue) plot is the observed spectrum of the beat signal for the input
laser being TM mode from port 1 (2). The right inset shows an
expanded plot of the light blue curve. The left inset depicts the
input ports and the direction of the dc magnetic field.
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â†â (â† photon creation operator, G optomagnonic coupling). In our recent work we developed

the theory for cavity optomagnonics starting from the Faraday effect [10]. We showed that G scales in-

versely with the magnon mode volume and can be remarkably large for samples near the diffraction limit

⇠ (1µm)3, giving a coupling per magnon g0 ⇠ 0.1MHz in YIG [the current state of the art is ⇠ (1mm)3,

with g0 ⇠ 10Hz]. We derived the optically induced classical nonlinear dynamics for the Kittel mode,

and showed the possibility of magnetic switching and self-oscillations, as well as chaos (see Fig. 2).
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Figure 2: Example of nonlinear spin dynamics in cavity
optomagnonics. Bifurcation diagram from Ref. [10].

This is a very new field and several possi-

bilities are open for future research. i) Linear

regime. For small oscillations, a spin can be ap-

proximated by a harmonic oscillator and concepts

of optomechanics can be borrowed. Achievable

regimes will be however different (e.g. strong co-

operativity limit). ii) Quantum nonlinear regime.

Here one has to retain the spin algebra. This is

distinct from optomechanics and will have conse-

quences on quantum noise and quantum measure-

ment protocols. iii) Dissipation processes. From

FMR it is known that pumping the Kittel mode

can lead to instabilities due to three- and four-magnon processes. These are known as Suhl instabilities

and depend on the geometry of the sample. Study of the interplay between optically induced dissipation

(which can be negative for a driven system [10]) and these processes could improve magnon lifetimes.

While for simple geometries analytical progress can be made, more complicated structures will require

micromagnetic simulations. iv) Magnetic textures. This is theoretically challenging in the nonlinear

regime since Ŝ(r) cannot be written in a linear bosonic basis. It opens however a completely novel

regime with no analogue in optomechanics, and could lead to coherent manipulation of magnetic tex-

tures with light. Experimentally, it was shown recently that skyrmions in doped YIG can be imaged by

circularly polarized light. v) Photonic/magnonic crystals. Structures to optimize the coupling between

photon and magnon modes could be in principle designed. The rationale follows the success of photonic

crystals in optomechanics, with the added richness (and challenge) in this case of magnetic textures.

Magnonic crystals in thin films have been experimentally demonstrated. vi) Hybrid systems. Study of

the coupling of optomagnonic systems to mechanical or electronic degrees of freedom.
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the spectral lines at the anticrossing; (iii) the limited
filtering in the microwave measurement setup allowed
thermal excitations of magnons and photons in the sample.
The present work resolves all these issues as discussed
below. A nearly uniform microwave field in the large cavity
volume, combined with the selection of a spherical sample,
suppresses the coupling to other magnetostatic modes
because of their symmetry. Meanwhile, the high spin
density of YIG and the large volume of the sphere lead
to an enormous magnetic-dipole coupling strength between
the Kittel mode and the cavity mode, namely, two harmonic
oscillators. Normal-mode splitting with the cavity mode is
clearly observed even in the quantum regime where both
the average numbers of thermally excited magnons and
photons are nearly zero and that of the probe microwave
photons in the cavity is less than one.
Our experimental setup is shown in Fig. 1. The cavity

made of oxygen free copper has the fundamental-mode
(TE101) frequency ωc=2π of 10.565 GHz, and its internal
cavity loss κint=2π is about 1.0 MHz at low temperature.
This cavity has two connector ports for the transmission
spectroscopy; an asymmetric port configuration is used
where input and output ports have different coupling
strengths κ1=2π and κ2=2π of 0.13 and 1.5 MHz, respec-
tively. An YIG sphere made by Ferrisphere Inc. [20] is

mounted in the cavity at the magnetic antinode of the
fundamental mode. We apply a static magnetic field of
approximately 370 mT along the crystal axis h100i which
is the hard magnetization axis for YIG. The sample is
supposed to be uniformly magnetized and saturated.
We first measure the transmission spectrum of the cavity

loaded by an YIG sphere with a diameter of 0.5 mm.
Figure 2(a) shows the transmission coefficient ReðS21Þ as a
function of the frequency and the magnetic field tuned by
the bias current I in the coil. A pronounced normal-mode
splitting is observed, indicating strong coupling between a
collective excitation mode in the YIG sphere and the cavity
mode. We assign the mode in the sphere to the Kittel mode;
it gives the maximum coupling strength to the nearly
uniform cavity field and the frequency which is linearly
dependent on the static field. Although it is difficult to
recognize in Fig. 2(a), we also see a few hints of other tiny
anticrossings, for example, at I ¼ −1.6, 2.3, and 3.3 mA.
These are due to weak coupling of the cavity mode with
other magnetostatic modes in the YIG sphere, induced by
the small inhomogeneity of the magnetic fields. Several
cross sections of the 2D color plot are depicted in Fig. 2(b).
As a function of the magnetic field, the Kittel mode
approaches the cavity mode. At the degeneracy point
(I ≡ 0 mA) where the Kittel-mode frequency coincides
with the cavity frequency, we see the normal-mode splitting
of nearly 100 MHz, orders of magnitude wider than
the linewidths. At this point, the Kittel and cavity modes
form “magnon-polariton” modes, i.e., hybridized modes
between the collective spin excitation and the cavity
excitation.
We now evaluate the coupling strength and the cavity

and magnon linewidths by fitting the transmission coef-
ficient S21ðωÞ with an equation derived from the input-
output theory. The transmission coefficient of the hybrid
system is written as

S21ðωÞ ¼
ffiffiffiffiffiffiffiffiffi
κ1κ2

p

iðω − ωcÞ − κ1þκ2þκint
2 þ jgmj2

iðω−ωFMRÞ−γm=2

; ð1Þ

where gm is the coupling strength of the Kittel mode to the
cavity, and ωFMR and γm are the frequency and the line-
width of the Kittel mode, respectively. The input and output
port couplings of the cavity are determined separately by
measuring additionally the reflection of the cavity output.
As depicted by the dashed white lines in Fig. 2(b), the
spectra are well fitted with Eq. (1). The coupling strength of
the Kittel mode to the cavity gm=2π, the total cavity
linewidth κ=2π ¼ ðκ1 þ κ2 þ κintÞ=2π, and the Kittel-mode
linewidth γm=2π are determined as 47 MHz, 2.7 MHz, and
1.1 MHz, respectively. From the parameters, the hybrid
system turns out to be deep in the strong coupling regime
where gm ≫ γm, κ, even at the lowest temperature and with
the weakest probe power. A dimensionless measure which
indicates how well the spins couple to the cavity mode is
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FIG. 1 (color online). Experimental setup. (a) An YIG sphere
mounted in a rectangular cavity made of oxygen free copper. The
sphere is glued to an alumina (aluminum-oxide) rod oriented to
the crystal axis h110i. The inset is a magnified picture of a sphere
with a diameter of 1.0 mm. The cavity has two connector ports for
transmission spectroscopy and dimensions of 22 × 18 × 3 mm
that give the fundamental-mode (TE101) resonant frequency
ωc=2π of 10.565 GHz. (b) Measurement apparatus. The YIG
sphere, cavity, and magnet are cooled to 10 mK using a dilution
refrigerator. A series of attenuators and isolators prevent thermal
noise from reaching the sample space. The total attenuation of the
input port is 48 dB at 10 GHz. The output signal is amplified by
two low-noise amplifiers at 4 K and the room temperature. We
use a vector network analyzer (VNA) for transmission and
reflection spectroscopy. A static magnetic field perpendicular
to the microwave magnetic field and parallel to the crystal axis
h100i is applied by using permanent neodymium magnets and a
magnetic yoke made of pure iron. We use a superconducting coil
for fine tuning of the static field.

PRL 113, 083603 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

22 AUGUST 2014

083603-2

Microwave regime

Magnons and the Kittel mode  



S. Viola Kusminskiy, H. X. Tang, and F. Marquardt, PRA 94, 033821 (2016) 

⌦

VIOLA KUSMINSKIY, TANG, AND MARQUARDT PHYSICAL REVIEW A 94, 033821 (2016)

and show that the system presents magnetization switching
and self-oscillations. We treat the full (beyond the fast-cavity
limit) optically induced nonlinear dynamics of the macrospin
in Sec. III B and follow the route to chaotic dynamics. In
Sec. IV we sketch a qualitative phase diagram of the system
as a function of coupling and light intensity and discuss the
experimental feasibility of the different regimes. An outlook
and conclusions are found in Sec. V. In the Appendixes we
give details of some of the calculations in the main text,
present more examples of nonlinear dynamics as a function
of different tuning parameters, and compare optomagnonic vs
optomechanic attractors.

II. MODEL

Further below, we derive the optomagnonic Hamiltonian
which forms the basis of our work,

H = −!!â†â − !"Ŝz + !GŜxâ
†â, (1)

where â† (â) is the creation (annihilation) operator for a
cavity mode photon. We work in a frame rotating at the
laser frequency ωlas, and ! = ωlas − ωcav is the detuning with
respect to the optical cavity frequency ωcav. Equation (1)
assumes a magnetically ordered system with (dimensionless)
macrospin S = (Sx,Sy,Sz), with magnetization axis along ẑ,
and a precession frequency ", which can be controlled by an
external magnetic field [32]. The coupling between the optical
field and the spin is given by the last term in Eq. (1), where we
assumed (see below) that light couples only to the x component
of the spin, as shown in Fig. 1. The coefficient G denotes the
parametric optomagnonic coupling. We derive it in terms of
the Faraday rotation, which is a material-dependent constant.
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FIG. 1. Schematic configuration of the model considered. (a)
Optomagnonic cavity with homogeneous magnetization along the
z axis and a localized optical mode with circular polarization in the
y-z plane. (b) The homogeneous magnon mode couples to the optical
mode with strength G. (c) Representation of the magnon mode as a
macroscopic spin on the Bloch sphere, whose dynamics is controlled
by the coupling to the driven optical mode.

A. Relation to optomechanics

Close to the ground state, for deviations such that
δS ≪ S (with S = |S|), we can treat the spin in the usual
way as a harmonic oscillator, Ŝx ≈

√
S/2(b̂ + b̂†), with

[b̂,b̂†] = 1. Then the optomagnonic interaction !GŜxâ
†â ≈

!G
√

S/2â†â(b̂ + b̂†) becomes formally equivalent to the well-
known optomechanical interaction [28], with bare coupling
constant g0 = G

√
S/2. All the phenomena of optomechanics

apply, including the “optical spring” (here, light-induced
changes of the magnon precession frequency) and opto-
magnonic cooling at a rate %opt, and the formulas (as reviewed
in Ref. [28]) can be taken over directly. All these effects depend
on the light-enhanced coupling g = g0α, where α = √

nphot
is the cavity light amplitude. For example, in the sideband-
resolved regime (κ ≪ ", where κ is the optical cavity decay
rate) one would have %opt = 4g2/κ . If g > κ , one enters
the strong-coupling regime, where the magnon mode and
the optical mode hybridize and where coherent-state transfer
is possible. A Hamiltonian of the form of Eq. (1) is also
encountered for light-matter interaction in atomic ensembles
[29], and its explicit connection to optomechanics in this case
was discussed previously in Ref. [30]. In contrast to such
noninteracting spin ensembles, the confined magnon mode
assumed here can be frequency separated from other magnon
modes.

B. Microscopic magneto-optical coupling G

In this section we derive the Hamiltonian presented in
Eq. (1) starting from the microscopic magneto-optical effect in
Faraday-active materials. The Faraday effect is captured by an
effective permittivity tensor that depends on the magnetization
M in the sample. We restrict our analysis to nondispersive
isotropic media and linear response in the magnetization
and relegate magnetic linear birefringence effects which are
quadratic in M (denominated the Cotton-Mouton or Voigt
effect) for future work [5,33]. In this case, the permittivity
tensor acquires an antisymmetric imaginary component and
can be written as εij (M)=ε0(εδij − if

∑
k ϵijkMk), where ε0

(ε) is the vacuum (relative) permittivity, ϵijk the Levi-Civita
tensor, and f a material-dependent constant [33] (here and in
what follows, Latin indices indicate spatial components). The
Faraday rotation per unit length,

θF = ωf Ms

2c
√

ε
, (2)

depends on the frequency ω, the vacuum speed of light c,
and the saturation magnetization Ms . The magneto-optical
coupling is derived from the time-averaged energy Ū =
1
4

∫
dr

∑
ij E∗

i (r,t)εijEj (r,t), using the complex representa-
tion of the electric field, (E + E∗)/2. Note that Ū is real since
εij is Hermitian [5,33]. The magneto-optical contribution is

ŪMO = − i

4
ε0f

∫
dr M(r) · [E∗(r) × E(r)]. (3)

This couples the magnetization to the spin angular momentum
density of the light field. Quantization of this expression
leads to the optomagnonic coupling Hamiltonian. A similar
Hamiltonian is obtained in atomic ensemble systems when
considering the electric dipolar interaction between the light
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and show that the system presents magnetization switching
and self-oscillations. We treat the full (beyond the fast-cavity
limit) optically induced nonlinear dynamics of the macrospin
in Sec. III B and follow the route to chaotic dynamics. In
Sec. IV we sketch a qualitative phase diagram of the system
as a function of coupling and light intensity and discuss the
experimental feasibility of the different regimes. An outlook
and conclusions are found in Sec. V. In the Appendixes we
give details of some of the calculations in the main text,
present more examples of nonlinear dynamics as a function
of different tuning parameters, and compare optomagnonic vs
optomechanic attractors.

II. MODEL

Further below, we derive the optomagnonic Hamiltonian
which forms the basis of our work,

H = −!!â†â − !"Ŝz + !GŜxâ
†â, (1)

where â† (â) is the creation (annihilation) operator for a
cavity mode photon. We work in a frame rotating at the
laser frequency ωlas, and ! = ωlas − ωcav is the detuning with
respect to the optical cavity frequency ωcav. Equation (1)
assumes a magnetically ordered system with (dimensionless)
macrospin S = (Sx,Sy,Sz), with magnetization axis along ẑ,
and a precession frequency ", which can be controlled by an
external magnetic field [32]. The coupling between the optical
field and the spin is given by the last term in Eq. (1), where we
assumed (see below) that light couples only to the x component
of the spin, as shown in Fig. 1. The coefficient G denotes the
parametric optomagnonic coupling. We derive it in terms of
the Faraday rotation, which is a material-dependent constant.
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Ŝ â
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FIG. 1. Schematic configuration of the model considered. (a)
Optomagnonic cavity with homogeneous magnetization along the
z axis and a localized optical mode with circular polarization in the
y-z plane. (b) The homogeneous magnon mode couples to the optical
mode with strength G. (c) Representation of the magnon mode as a
macroscopic spin on the Bloch sphere, whose dynamics is controlled
by the coupling to the driven optical mode.

A. Relation to optomechanics

Close to the ground state, for deviations such that
δS ≪ S (with S = |S|), we can treat the spin in the usual
way as a harmonic oscillator, Ŝx ≈

√
S/2(b̂ + b̂†), with

[b̂,b̂†] = 1. Then the optomagnonic interaction !GŜxâ
†â ≈

!G
√

S/2â†â(b̂ + b̂†) becomes formally equivalent to the well-
known optomechanical interaction [28], with bare coupling
constant g0 = G

√
S/2. All the phenomena of optomechanics

apply, including the “optical spring” (here, light-induced
changes of the magnon precession frequency) and opto-
magnonic cooling at a rate %opt, and the formulas (as reviewed
in Ref. [28]) can be taken over directly. All these effects depend
on the light-enhanced coupling g = g0α, where α = √

nphot
is the cavity light amplitude. For example, in the sideband-
resolved regime (κ ≪ ", where κ is the optical cavity decay
rate) one would have %opt = 4g2/κ . If g > κ , one enters
the strong-coupling regime, where the magnon mode and
the optical mode hybridize and where coherent-state transfer
is possible. A Hamiltonian of the form of Eq. (1) is also
encountered for light-matter interaction in atomic ensembles
[29], and its explicit connection to optomechanics in this case
was discussed previously in Ref. [30]. In contrast to such
noninteracting spin ensembles, the confined magnon mode
assumed here can be frequency separated from other magnon
modes.

B. Microscopic magneto-optical coupling G

In this section we derive the Hamiltonian presented in
Eq. (1) starting from the microscopic magneto-optical effect in
Faraday-active materials. The Faraday effect is captured by an
effective permittivity tensor that depends on the magnetization
M in the sample. We restrict our analysis to nondispersive
isotropic media and linear response in the magnetization
and relegate magnetic linear birefringence effects which are
quadratic in M (denominated the Cotton-Mouton or Voigt
effect) for future work [5,33]. In this case, the permittivity
tensor acquires an antisymmetric imaginary component and
can be written as εij (M)=ε0(εδij − if

∑
k ϵijkMk), where ε0

(ε) is the vacuum (relative) permittivity, ϵijk the Levi-Civita
tensor, and f a material-dependent constant [33] (here and in
what follows, Latin indices indicate spatial components). The
Faraday rotation per unit length,

θF = ωf Ms

2c
√

ε
, (2)

depends on the frequency ω, the vacuum speed of light c,
and the saturation magnetization Ms . The magneto-optical
coupling is derived from the time-averaged energy Ū =
1
4

∫
dr

∑
ij E∗

i (r,t)εijEj (r,t), using the complex representa-
tion of the electric field, (E + E∗)/2. Note that Ū is real since
εij is Hermitian [5,33]. The magneto-optical contribution is

ŪMO = − i

4
ε0f

∫
dr M(r) · [E∗(r) × E(r)]. (3)

This couples the magnetization to the spin angular momentum
density of the light field. Quantization of this expression
leads to the optomagnonic coupling Hamiltonian. A similar
Hamiltonian is obtained in atomic ensemble systems when
considering the electric dipolar interaction between the light
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and show that the system presents magnetization switching
and self-oscillations. We treat the full (beyond the fast-cavity
limit) optically induced nonlinear dynamics of the macrospin
in Sec. III B and follow the route to chaotic dynamics. In
Sec. IV we sketch a qualitative phase diagram of the system
as a function of coupling and light intensity and discuss the
experimental feasibility of the different regimes. An outlook
and conclusions are found in Sec. V. In the Appendixes we
give details of some of the calculations in the main text,
present more examples of nonlinear dynamics as a function
of different tuning parameters, and compare optomagnonic vs
optomechanic attractors.

II. MODEL

Further below, we derive the optomagnonic Hamiltonian
which forms the basis of our work,

H = −!!â†â − !"Ŝz + !GŜxâ
†â, (1)

where â† (â) is the creation (annihilation) operator for a
cavity mode photon. We work in a frame rotating at the
laser frequency ωlas, and ! = ωlas − ωcav is the detuning with
respect to the optical cavity frequency ωcav. Equation (1)
assumes a magnetically ordered system with (dimensionless)
macrospin S = (Sx,Sy,Sz), with magnetization axis along ẑ,
and a precession frequency ", which can be controlled by an
external magnetic field [32]. The coupling between the optical
field and the spin is given by the last term in Eq. (1), where we
assumed (see below) that light couples only to the x component
of the spin, as shown in Fig. 1. The coefficient G denotes the
parametric optomagnonic coupling. We derive it in terms of
the Faraday rotation, which is a material-dependent constant.
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FIG. 1. Schematic configuration of the model considered. (a)
Optomagnonic cavity with homogeneous magnetization along the
z axis and a localized optical mode with circular polarization in the
y-z plane. (b) The homogeneous magnon mode couples to the optical
mode with strength G. (c) Representation of the magnon mode as a
macroscopic spin on the Bloch sphere, whose dynamics is controlled
by the coupling to the driven optical mode.

A. Relation to optomechanics

Close to the ground state, for deviations such that
δS ≪ S (with S = |S|), we can treat the spin in the usual
way as a harmonic oscillator, Ŝx ≈

√
S/2(b̂ + b̂†), with

[b̂,b̂†] = 1. Then the optomagnonic interaction !GŜxâ
†â ≈

!G
√

S/2â†â(b̂ + b̂†) becomes formally equivalent to the well-
known optomechanical interaction [28], with bare coupling
constant g0 = G

√
S/2. All the phenomena of optomechanics

apply, including the “optical spring” (here, light-induced
changes of the magnon precession frequency) and opto-
magnonic cooling at a rate %opt, and the formulas (as reviewed
in Ref. [28]) can be taken over directly. All these effects depend
on the light-enhanced coupling g = g0α, where α = √

nphot
is the cavity light amplitude. For example, in the sideband-
resolved regime (κ ≪ ", where κ is the optical cavity decay
rate) one would have %opt = 4g2/κ . If g > κ , one enters
the strong-coupling regime, where the magnon mode and
the optical mode hybridize and where coherent-state transfer
is possible. A Hamiltonian of the form of Eq. (1) is also
encountered for light-matter interaction in atomic ensembles
[29], and its explicit connection to optomechanics in this case
was discussed previously in Ref. [30]. In contrast to such
noninteracting spin ensembles, the confined magnon mode
assumed here can be frequency separated from other magnon
modes.

B. Microscopic magneto-optical coupling G

In this section we derive the Hamiltonian presented in
Eq. (1) starting from the microscopic magneto-optical effect in
Faraday-active materials. The Faraday effect is captured by an
effective permittivity tensor that depends on the magnetization
M in the sample. We restrict our analysis to nondispersive
isotropic media and linear response in the magnetization
and relegate magnetic linear birefringence effects which are
quadratic in M (denominated the Cotton-Mouton or Voigt
effect) for future work [5,33]. In this case, the permittivity
tensor acquires an antisymmetric imaginary component and
can be written as εij (M)=ε0(εδij − if

∑
k ϵijkMk), where ε0

(ε) is the vacuum (relative) permittivity, ϵijk the Levi-Civita
tensor, and f a material-dependent constant [33] (here and in
what follows, Latin indices indicate spatial components). The
Faraday rotation per unit length,

θF = ωf Ms

2c
√

ε
, (2)

depends on the frequency ω, the vacuum speed of light c,
and the saturation magnetization Ms . The magneto-optical
coupling is derived from the time-averaged energy Ū =
1
4

∫
dr

∑
ij E∗

i (r,t)εijEj (r,t), using the complex representa-
tion of the electric field, (E + E∗)/2. Note that Ū is real since
εij is Hermitian [5,33]. The magneto-optical contribution is

ŪMO = − i

4
ε0f

∫
dr M(r) · [E∗(r) × E(r)]. (3)

This couples the magnetization to the spin angular momentum
density of the light field. Quantization of this expression
leads to the optomagnonic coupling Hamiltonian. A similar
Hamiltonian is obtained in atomic ensemble systems when
considering the electric dipolar interaction between the light
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and show that the system presents magnetization switching
and self-oscillations. We treat the full (beyond the fast-cavity
limit) optically induced nonlinear dynamics of the macrospin
in Sec. III B and follow the route to chaotic dynamics. In
Sec. IV we sketch a qualitative phase diagram of the system
as a function of coupling and light intensity and discuss the
experimental feasibility of the different regimes. An outlook
and conclusions are found in Sec. V. In the Appendixes we
give details of some of the calculations in the main text,
present more examples of nonlinear dynamics as a function
of different tuning parameters, and compare optomagnonic vs
optomechanic attractors.

II. MODEL

Further below, we derive the optomagnonic Hamiltonian
which forms the basis of our work,

H = −!!â†â − !"Ŝz + !GŜxâ
†â, (1)

where â† (â) is the creation (annihilation) operator for a
cavity mode photon. We work in a frame rotating at the
laser frequency ωlas, and ! = ωlas − ωcav is the detuning with
respect to the optical cavity frequency ωcav. Equation (1)
assumes a magnetically ordered system with (dimensionless)
macrospin S = (Sx,Sy,Sz), with magnetization axis along ẑ,
and a precession frequency ", which can be controlled by an
external magnetic field [32]. The coupling between the optical
field and the spin is given by the last term in Eq. (1), where we
assumed (see below) that light couples only to the x component
of the spin, as shown in Fig. 1. The coefficient G denotes the
parametric optomagnonic coupling. We derive it in terms of
the Faraday rotation, which is a material-dependent constant.

z

y

z

x

optical mode

optical shift
∆ GSx0magnon

mode
optical
mode
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Ŝ â

(a)

(b)

(c)

FIG. 1. Schematic configuration of the model considered. (a)
Optomagnonic cavity with homogeneous magnetization along the
z axis and a localized optical mode with circular polarization in the
y-z plane. (b) The homogeneous magnon mode couples to the optical
mode with strength G. (c) Representation of the magnon mode as a
macroscopic spin on the Bloch sphere, whose dynamics is controlled
by the coupling to the driven optical mode.

A. Relation to optomechanics

Close to the ground state, for deviations such that
δS ≪ S (with S = |S|), we can treat the spin in the usual
way as a harmonic oscillator, Ŝx ≈

√
S/2(b̂ + b̂†), with

[b̂,b̂†] = 1. Then the optomagnonic interaction !GŜxâ
†â ≈

!G
√

S/2â†â(b̂ + b̂†) becomes formally equivalent to the well-
known optomechanical interaction [28], with bare coupling
constant g0 = G

√
S/2. All the phenomena of optomechanics

apply, including the “optical spring” (here, light-induced
changes of the magnon precession frequency) and opto-
magnonic cooling at a rate %opt, and the formulas (as reviewed
in Ref. [28]) can be taken over directly. All these effects depend
on the light-enhanced coupling g = g0α, where α = √

nphot
is the cavity light amplitude. For example, in the sideband-
resolved regime (κ ≪ ", where κ is the optical cavity decay
rate) one would have %opt = 4g2/κ . If g > κ , one enters
the strong-coupling regime, where the magnon mode and
the optical mode hybridize and where coherent-state transfer
is possible. A Hamiltonian of the form of Eq. (1) is also
encountered for light-matter interaction in atomic ensembles
[29], and its explicit connection to optomechanics in this case
was discussed previously in Ref. [30]. In contrast to such
noninteracting spin ensembles, the confined magnon mode
assumed here can be frequency separated from other magnon
modes.

B. Microscopic magneto-optical coupling G

In this section we derive the Hamiltonian presented in
Eq. (1) starting from the microscopic magneto-optical effect in
Faraday-active materials. The Faraday effect is captured by an
effective permittivity tensor that depends on the magnetization
M in the sample. We restrict our analysis to nondispersive
isotropic media and linear response in the magnetization
and relegate magnetic linear birefringence effects which are
quadratic in M (denominated the Cotton-Mouton or Voigt
effect) for future work [5,33]. In this case, the permittivity
tensor acquires an antisymmetric imaginary component and
can be written as εij (M)=ε0(εδij − if

∑
k ϵijkMk), where ε0

(ε) is the vacuum (relative) permittivity, ϵijk the Levi-Civita
tensor, and f a material-dependent constant [33] (here and in
what follows, Latin indices indicate spatial components). The
Faraday rotation per unit length,

θF = ωf Ms

2c
√

ε
, (2)

depends on the frequency ω, the vacuum speed of light c,
and the saturation magnetization Ms . The magneto-optical
coupling is derived from the time-averaged energy Ū =
1
4

∫
dr

∑
ij E∗

i (r,t)εijEj (r,t), using the complex representa-
tion of the electric field, (E + E∗)/2. Note that Ū is real since
εij is Hermitian [5,33]. The magneto-optical contribution is

ŪMO = − i

4
ε0f

∫
dr M(r) · [E∗(r) × E(r)]. (3)

This couples the magnetization to the spin angular momentum
density of the light field. Quantization of this expression
leads to the optomagnonic coupling Hamiltonian. A similar
Hamiltonian is obtained in atomic ensemble systems when
considering the electric dipolar interaction between the light
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(Ṡ⇥ S)

Cavity decay rate initial light amplitude

Classical Equation of Motion

Cavity Optomagnonics



Ṡ = B
e↵

⇥ S+
⌘
opt

S

⇣
Ṡ
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with an optical heterodyne detector, with overall cavity
photon detection efficiency ϵ ¼ 0.12.
The spin dynamics imprinted on the cavity output field are

observed in the demodulated heterodyne signal. For exam-
ple, in Fig. 2, we compare the evolution of spins prepared
near either the high- or low-energy poles when the cavity is
driven by a blue-detuned (Δpc > 0) probe. In both cases, the
probe drives the spin toward the high-energy pole. For a spin
prepared initially near the high-energy pole, cavity back-
action coherently damps the Larmor precession amplitude,
analogous to cavity optomechanical cooling. In comparison,
the Larmor precession of a spin prepared near the low-
energy pole is coherently amplified, analogous to regener-
ative optomechanical amplification. At longer times (not
shown in the figure), in the latter case, the ensemble’s spin
nutates past the equator of the Bloch sphere and also damps
back to the high-energy pole. If instead we drive the cavity
with red-detuned probe light (Δpc < 0), we observe similar
behavior, with the collective spin instead driven toward and
stabilized at the low-energy pole.
The light-induced driving of a spin ensemble to either the

low-energy (Δpc < 0) or high-energy (Δpc > 0) pole is
reminiscent of optical pumping [36]. However, unlike
optical pumping, the dynamics in our experiment cannot
spontaneously generate spin polarization. In addition, while
optical pumping uses circularly polarized light to pump

angular momentum into an atomic gas, the asymmetric
fluctuation spectrum of the cavity optical field is used to
pump energy into the atomic system. Indeed, we confirm
that the dynamics are quantitatively the same for both
circular probe polarizations [Figs. 3(a) and 3(b)].
These dynamics may also be described in terms of cavity

superradiance [37–41]. Consider an atomic spin ensemble
initialized in the low-energy spin state. The optically driven
atoms lie in a virtually excited state from which they may
decay by Raman scattering into the cavity mode. When the
cavity is driven at a positive detuning, the cavity Purcell
effect induces Raman emission preferentially on the Stokes
sideband, creating transverse coherence in the ensemble.
Such coherence stimulates Raman scattering at an
enhanced rate, driving the spins exponentially away from
the low-energy pole.
A quantitative treatment for the coherent dynamics near

both poles can be derived classically, as in the theory of

(a)

(b)

FIG. 2. Coherent damping and amplification of Larmor pre-
cession of a spin ensemble with ωL=2π ¼ 1.0 MHz, observed in
the phase modulation of transmitted light, averaged over 30–40
repetitions (blue). Cavity probe light (Δpc=2π ¼ 1.0 MHz, n̄ ¼ 4
average intracavity photons) drives the spin toward the high-
energy pole. (a) Larmor precession of a spin ensemble, displaced
from the high-energy pole by a π=10 rf pulse, coherently damps
back to the pole at a rate Γopt=2π ¼ 4.9" 0.2 kHz. (b) A spin
prepared near the low-energy pole, by application of a near π
pulse, is coherently amplified away at a rate Γopt=2π ¼
−4.6" 0.4 kHz. Exponential rates are extracted by simultaneous
fits (red) of both amplitude and phase quadratures. Insets show
the harmonic nature of the Larmor precession signal and quality
of fit in the highlighted regions. The finite cavity linewidth causes
the observed signal to saturate at around 2000.

(a)

(b)

(c)

FIG. 3. (a) Optical damping rates and (b) frequency shifts of
Larmor precession as a function of probe detuning Δpc, with fixed
intracavity intensity n̄ ¼ 4 and ωL=2π ¼ 1.0 MHz. Diamonds
(blue) label results for an ensemble initially prepared near the
high-energy pole and circles (red) for an ensemble initially near
the low-energy pole. Measurements repeated with either σþ (solid
symbols) or σ− (open symbols) circularly polarized light dem-
onstrate independence of optical helicity. (c) Peak damping rate
as a function of Larmor frequency. Dotted vertical lines mark the
value of the cavity half-linewidth κ. All theory lines are plotted
with no free parameters. Error bars reflect statistical uncertainties
from the fits. Additional systematic errors in the probe frequency
stability and initial spin state preparation predominately affect
data at small probe detuning.
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the theory for cavity optomagnonics starting from the Faraday effect [10]. We showed that G scales in-

versely with the magnon mode volume and can be remarkably large for samples near the diffraction limit

⇠ (1µm)3, giving a coupling per magnon g0 ⇠ 0.1MHz in YIG [the current state of the art is ⇠ (1mm)3,

with g0 ⇠ 10Hz]. We derived the optically induced classical nonlinear dynamics for the Kittel mode,

and showed the possibility of magnetic switching and self-oscillations, as well as chaos (see Fig. 2).
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Figure 2: Example of nonlinear spin dynamics in cavity
optomagnonics. Bifurcation diagram from Ref. [10].

This is a very new field and several possi-

bilities are open for future research. i) Linear

regime. For small oscillations, a spin can be ap-

proximated by a harmonic oscillator and concepts

of optomechanics can be borrowed. Achievable

regimes will be however different (e.g. strong co-

operativity limit). ii) Quantum nonlinear regime.

Here one has to retain the spin algebra. This is

distinct from optomechanics and will have conse-

quences on quantum noise and quantum measure-

ment protocols. iii) Dissipation processes. From

FMR it is known that pumping the Kittel mode

can lead to instabilities due to three- and four-magnon processes. These are known as Suhl instabilities

and depend on the geometry of the sample. Study of the interplay between optically induced dissipation

(which can be negative for a driven system [10]) and these processes could improve magnon lifetimes.

While for simple geometries analytical progress can be made, more complicated structures will require

micromagnetic simulations. iv) Magnetic textures. This is theoretically challenging in the nonlinear

regime since Ŝ(r) cannot be written in a linear bosonic basis. It opens however a completely novel

regime with no analogue in optomechanics, and could lead to coherent manipulation of magnetic tex-

tures with light. Experimentally, it was shown recently that skyrmions in doped YIG can be imaged by

circularly polarized light. v) Photonic/magnonic crystals. Structures to optimize the coupling between

photon and magnon modes could be in principle designed. The rationale follows the success of photonic

crystals in optomechanics, with the added richness (and challenge) in this case of magnetic textures.

Magnonic crystals in thin films have been experimentally demonstrated. vi) Hybrid systems. Study of

the coupling of optomagnonic systems to mechanical or electronic degrees of freedom.
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Optomagnonics

is applied perpendicular to the plane of the WGM orbits.
A loop coil near the YIG sphere generates an ac magnetic
field perpendicular to the dc field and drives FMR. The
magnetization then acquires its horizontal component
rotating at the angular frequency of the Kittel mode.
Because of the finite loss, the microwave reflection picked
up by the loop coil shows a dip at the resonant frequency.
The resonant frequency and the quality factor are found to
be ωmag=2π ¼ 6.81 GHz and Q ∼ 3000, respectively.
Laser light with a wavelength of 1.5 μm from an ECDL

is introduced through a FPC and then coupled to the WGM
resonator via a tapered silica optical nanofiber, with a waist
diameter of about 700 nm and a waist length of around
4 mm. Figure 1(b) shows the transmission spectra for the
transverse-electric (TE) modes and the transverse-magnetic
(TM) modes. The rich structures in the spectra indicate that
there are various spatial modes within the FSR of 62.1 GHz.
For WGMs in the large sphere limit, frequencies of the TM
modes are known to be higher than those of the TE modes
with the same mode indices because of the geometrical
birefringence [22–24]. For the 750-μm-diameter sphere we

use, the difference is estimated to be 51.8 GHz, which is
consistent with the observed spectra in Fig. 1(b) [25]. The
intrinsic quality factors of the WGMs are found to be
around 1 × 105 when they are measured in the under-
coupled regime.
When the light propagates in the direction of the mean

magnetization in ferromagnets, the well-known Faraday
effect occurs. When, on the other hand, the mean mag-
netization is perpendicular to the direction of light propa-
gation, magnon-induced Brillouin scattering takes place
[26–28]. In the presence of magnons in the Kittel mode,
photons in the WGM undergo Brillouin scattering to create
sideband photons with the frequency shifted by "ωmag=2π.
A HWP and a PBS make the scattered sideband photons
and the unscattered input photons interfere to generate a
beat signal at ωmag=2π. The signal is amplified and
measured with a vector network analyzer.
The orange (light blue) plot in Fig. 2 shows the observed

spectrum of the beat signal for the input laser being the TM
mode and coupled to the anticlockwise (clockwise) orbit of
the WGM resonator. The frequency of the input photons is
tuned to be ω=2π ¼ 193130 GHz where the beat signal
associated with the anticlockwise orbit is maximized.
While both peaks in Fig. 2 have the same linewidth as
the FMR signal, there is a large difference in their signal
strengths of almost 20 dB.
The nonreciprocity of the magnon-induced Brillouin

scattering can be explained by considering the conservation
of energy, momentum, and angular momentum under the
situation in which the spin-orbit coupling of the photons
and the geometrical birefringence associated with the
WGM resonator are blended with the time-reversal sym-
metry breaking in the magnon dynamics.
Suppose that the input laser polarization is adjusted to

couple to the TM mode of the anticlockwise WGM orbit
(orange orbit in Fig. 2). The light in the resonator is then σþ

polarized due to the spin-orbit coupling [see Fig. 3(a)]. To
see why the Brillouin scattering is more noticeable in this
situation, we consider the following three points. (i) The

FIG. 1. Transmission through WGMs in a YIG sphere.
(a) Experimental setup. WGMs of the YIG sphere are addressed
with an optical nanofiber. Microwave radiation from a vector
network analyzer excites magnons, and ac and dc components of
the light intensity are monitored with a high-speed photodetector
(PD). The polarization of the light from an external-cavity diode
laser (ECDL) is adjusted by a fiber polarization controller (FPC).
A half-wave plate (HWP) and a polarization beam splitter (PBS)
are placed before the PD. The inset shows a picture of the YIG
sphere and the nanofiber. (b) Observed WGM spectra for the
750-μm-diameter YIG sphere. Red and blue lines correspond to
the TM and TE modes, respectively. The transmission signals are
normalized by their maximal values. The free spectral range
(FSR) and the estimated spectral shift due to the geometrical
birefringence (GB) are indicated.
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FIG. 2. Nonreciprocal Brillouin scattering. The orange (light
blue) plot is the observed spectrum of the beat signal for the input
laser being TM mode from port 1 (2). The right inset shows an
expanded plot of the light blue curve. The left inset depicts the
input ports and the direction of the dc magnetic field.
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â†â (â† photon creation operator, G optomagnonic coupling). In our recent work we developed

the theory for cavity optomagnonics starting from the Faraday effect [10]. We showed that G scales in-
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with g0 ⇠ 10Hz]. We derived the optically induced classical nonlinear dynamics for the Kittel mode,

and showed the possibility of magnetic switching and self-oscillations, as well as chaos (see Fig. 2).
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Figure 2: Example of nonlinear spin dynamics in cavity
optomagnonics. Bifurcation diagram from Ref. [10].

This is a very new field and several possi-

bilities are open for future research. i) Linear

regime. For small oscillations, a spin can be ap-

proximated by a harmonic oscillator and concepts

of optomechanics can be borrowed. Achievable

regimes will be however different (e.g. strong co-

operativity limit). ii) Quantum nonlinear regime.

Here one has to retain the spin algebra. This is

distinct from optomechanics and will have conse-

quences on quantum noise and quantum measure-

ment protocols. iii) Dissipation processes. From

FMR it is known that pumping the Kittel mode

can lead to instabilities due to three- and four-magnon processes. These are known as Suhl instabilities

and depend on the geometry of the sample. Study of the interplay between optically induced dissipation

(which can be negative for a driven system [10]) and these processes could improve magnon lifetimes.

While for simple geometries analytical progress can be made, more complicated structures will require

micromagnetic simulations. iv) Magnetic textures. This is theoretically challenging in the nonlinear

regime since Ŝ(r) cannot be written in a linear bosonic basis. It opens however a completely novel

regime with no analogue in optomechanics, and could lead to coherent manipulation of magnetic tex-

tures with light. Experimentally, it was shown recently that skyrmions in doped YIG can be imaged by

circularly polarized light. v) Photonic/magnonic crystals. Structures to optimize the coupling between

photon and magnon modes could be in principle designed. The rationale follows the success of photonic

crystals in optomechanics, with the added richness (and challenge) in this case of magnetic textures.

Magnonic crystals in thin films have been experimentally demonstrated. vi) Hybrid systems. Study of

the coupling of optomagnonic systems to mechanical or electronic degrees of freedom.
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the spectral lines at the anticrossing; (iii) the limited
filtering in the microwave measurement setup allowed
thermal excitations of magnons and photons in the sample.
The present work resolves all these issues as discussed
below. A nearly uniform microwave field in the large cavity
volume, combined with the selection of a spherical sample,
suppresses the coupling to other magnetostatic modes
because of their symmetry. Meanwhile, the high spin
density of YIG and the large volume of the sphere lead
to an enormous magnetic-dipole coupling strength between
the Kittel mode and the cavity mode, namely, two harmonic
oscillators. Normal-mode splitting with the cavity mode is
clearly observed even in the quantum regime where both
the average numbers of thermally excited magnons and
photons are nearly zero and that of the probe microwave
photons in the cavity is less than one.
Our experimental setup is shown in Fig. 1. The cavity

made of oxygen free copper has the fundamental-mode
(TE101) frequency ωc=2π of 10.565 GHz, and its internal
cavity loss κint=2π is about 1.0 MHz at low temperature.
This cavity has two connector ports for the transmission
spectroscopy; an asymmetric port configuration is used
where input and output ports have different coupling
strengths κ1=2π and κ2=2π of 0.13 and 1.5 MHz, respec-
tively. An YIG sphere made by Ferrisphere Inc. [20] is

mounted in the cavity at the magnetic antinode of the
fundamental mode. We apply a static magnetic field of
approximately 370 mT along the crystal axis h100i which
is the hard magnetization axis for YIG. The sample is
supposed to be uniformly magnetized and saturated.
We first measure the transmission spectrum of the cavity

loaded by an YIG sphere with a diameter of 0.5 mm.
Figure 2(a) shows the transmission coefficient ReðS21Þ as a
function of the frequency and the magnetic field tuned by
the bias current I in the coil. A pronounced normal-mode
splitting is observed, indicating strong coupling between a
collective excitation mode in the YIG sphere and the cavity
mode. We assign the mode in the sphere to the Kittel mode;
it gives the maximum coupling strength to the nearly
uniform cavity field and the frequency which is linearly
dependent on the static field. Although it is difficult to
recognize in Fig. 2(a), we also see a few hints of other tiny
anticrossings, for example, at I ¼ −1.6, 2.3, and 3.3 mA.
These are due to weak coupling of the cavity mode with
other magnetostatic modes in the YIG sphere, induced by
the small inhomogeneity of the magnetic fields. Several
cross sections of the 2D color plot are depicted in Fig. 2(b).
As a function of the magnetic field, the Kittel mode
approaches the cavity mode. At the degeneracy point
(I ≡ 0 mA) where the Kittel-mode frequency coincides
with the cavity frequency, we see the normal-mode splitting
of nearly 100 MHz, orders of magnitude wider than
the linewidths. At this point, the Kittel and cavity modes
form “magnon-polariton” modes, i.e., hybridized modes
between the collective spin excitation and the cavity
excitation.
We now evaluate the coupling strength and the cavity

and magnon linewidths by fitting the transmission coef-
ficient S21ðωÞ with an equation derived from the input-
output theory. The transmission coefficient of the hybrid
system is written as

S21ðωÞ ¼
ffiffiffiffiffiffiffiffiffi
κ1κ2

p

iðω − ωcÞ − κ1þκ2þκint
2 þ jgmj2

iðω−ωFMRÞ−γm=2

; ð1Þ

where gm is the coupling strength of the Kittel mode to the
cavity, and ωFMR and γm are the frequency and the line-
width of the Kittel mode, respectively. The input and output
port couplings of the cavity are determined separately by
measuring additionally the reflection of the cavity output.
As depicted by the dashed white lines in Fig. 2(b), the
spectra are well fitted with Eq. (1). The coupling strength of
the Kittel mode to the cavity gm=2π, the total cavity
linewidth κ=2π ¼ ðκ1 þ κ2 þ κintÞ=2π, and the Kittel-mode
linewidth γm=2π are determined as 47 MHz, 2.7 MHz, and
1.1 MHz, respectively. From the parameters, the hybrid
system turns out to be deep in the strong coupling regime
where gm ≫ γm, κ, even at the lowest temperature and with
the weakest probe power. A dimensionless measure which
indicates how well the spins couple to the cavity mode is
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FIG. 1 (color online). Experimental setup. (a) An YIG sphere
mounted in a rectangular cavity made of oxygen free copper. The
sphere is glued to an alumina (aluminum-oxide) rod oriented to
the crystal axis h110i. The inset is a magnified picture of a sphere
with a diameter of 1.0 mm. The cavity has two connector ports for
transmission spectroscopy and dimensions of 22 × 18 × 3 mm
that give the fundamental-mode (TE101) resonant frequency
ωc=2π of 10.565 GHz. (b) Measurement apparatus. The YIG
sphere, cavity, and magnet are cooled to 10 mK using a dilution
refrigerator. A series of attenuators and isolators prevent thermal
noise from reaching the sample space. The total attenuation of the
input port is 48 dB at 10 GHz. The output signal is amplified by
two low-noise amplifiers at 4 K and the room temperature. We
use a vector network analyzer (VNA) for transmission and
reflection spectroscopy. A static magnetic field perpendicular
to the microwave magnetic field and parallel to the crystal axis
h100i is applied by using permanent neodymium magnets and a
magnetic yoke made of pure iron. We use a superconducting coil
for fine tuning of the static field.
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x
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is applied perpendicular to the plane of the WGM orbits.
A loop coil near the YIG sphere generates an ac magnetic
field perpendicular to the dc field and drives FMR. The
magnetization then acquires its horizontal component
rotating at the angular frequency of the Kittel mode.
Because of the finite loss, the microwave reflection picked
up by the loop coil shows a dip at the resonant frequency.
The resonant frequency and the quality factor are found to
be ωmag=2π ¼ 6.81 GHz and Q ∼ 3000, respectively.
Laser light with a wavelength of 1.5 μm from an ECDL

is introduced through a FPC and then coupled to the WGM
resonator via a tapered silica optical nanofiber, with a waist
diameter of about 700 nm and a waist length of around
4 mm. Figure 1(b) shows the transmission spectra for the
transverse-electric (TE) modes and the transverse-magnetic
(TM) modes. The rich structures in the spectra indicate that
there are various spatial modes within the FSR of 62.1 GHz.
For WGMs in the large sphere limit, frequencies of the TM
modes are known to be higher than those of the TE modes
with the same mode indices because of the geometrical
birefringence [22–24]. For the 750-μm-diameter sphere we

use, the difference is estimated to be 51.8 GHz, which is
consistent with the observed spectra in Fig. 1(b) [25]. The
intrinsic quality factors of the WGMs are found to be
around 1 × 105 when they are measured in the under-
coupled regime.
When the light propagates in the direction of the mean

magnetization in ferromagnets, the well-known Faraday
effect occurs. When, on the other hand, the mean mag-
netization is perpendicular to the direction of light propa-
gation, magnon-induced Brillouin scattering takes place
[26–28]. In the presence of magnons in the Kittel mode,
photons in the WGM undergo Brillouin scattering to create
sideband photons with the frequency shifted by "ωmag=2π.
A HWP and a PBS make the scattered sideband photons
and the unscattered input photons interfere to generate a
beat signal at ωmag=2π. The signal is amplified and
measured with a vector network analyzer.
The orange (light blue) plot in Fig. 2 shows the observed

spectrum of the beat signal for the input laser being the TM
mode and coupled to the anticlockwise (clockwise) orbit of
the WGM resonator. The frequency of the input photons is
tuned to be ω=2π ¼ 193130 GHz where the beat signal
associated with the anticlockwise orbit is maximized.
While both peaks in Fig. 2 have the same linewidth as
the FMR signal, there is a large difference in their signal
strengths of almost 20 dB.
The nonreciprocity of the magnon-induced Brillouin

scattering can be explained by considering the conservation
of energy, momentum, and angular momentum under the
situation in which the spin-orbit coupling of the photons
and the geometrical birefringence associated with the
WGM resonator are blended with the time-reversal sym-
metry breaking in the magnon dynamics.
Suppose that the input laser polarization is adjusted to

couple to the TM mode of the anticlockwise WGM orbit
(orange orbit in Fig. 2). The light in the resonator is then σþ

polarized due to the spin-orbit coupling [see Fig. 3(a)]. To
see why the Brillouin scattering is more noticeable in this
situation, we consider the following three points. (i) The

FIG. 1. Transmission through WGMs in a YIG sphere.
(a) Experimental setup. WGMs of the YIG sphere are addressed
with an optical nanofiber. Microwave radiation from a vector
network analyzer excites magnons, and ac and dc components of
the light intensity are monitored with a high-speed photodetector
(PD). The polarization of the light from an external-cavity diode
laser (ECDL) is adjusted by a fiber polarization controller (FPC).
A half-wave plate (HWP) and a polarization beam splitter (PBS)
are placed before the PD. The inset shows a picture of the YIG
sphere and the nanofiber. (b) Observed WGM spectra for the
750-μm-diameter YIG sphere. Red and blue lines correspond to
the TM and TE modes, respectively. The transmission signals are
normalized by their maximal values. The free spectral range
(FSR) and the estimated spectral shift due to the geometrical
birefringence (GB) are indicated.
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FIG. 2. Nonreciprocal Brillouin scattering. The orange (light
blue) plot is the observed spectrum of the beat signal for the input
laser being TM mode from port 1 (2). The right inset shows an
expanded plot of the light blue curve. The left inset depicts the
input ports and the direction of the dc magnetic field.
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acoustic Bragg reflection, couples via radiation pressure to
both optical resonances.

An illustration of the experimental apparatus used to cool
and measure the OMC nanomechanical oscillator is shown
in Fig. 2. In order to precool the oscillator, the silicon sample
is mounted inside a Helium flow cryostat. For a sample
mount temperature of 6.3K, the thermal bath temperature of
the mechanical mode is measured to be 18 K (thermal
phonon occupation of nb ¼ 94 phonons) through optical
measurements described below. At this temperature the
breathing mode damping rate to the thermal bath is found
to be!i=2" ¼ 43 kHz. The optical resonances of the OMC
cavity aremeasured to have total damping rates of#c=2" ¼
390 MHz and #r=2" ¼ 1:0 GHz for the cooling and read-
out modes, respectively. An optical fiber taper is used to
evanescently couple light to and from the OMC cavity.
Utilizing piezoelectric stages, the taper is positioned to
the side of the nanobeam cavity and placed in contact
with the surface of the silicon microchip surrounding the
suspended nanobeam. In this scheme, the fiber taper runs
approximately parallel to the nanobeam, and can be rigidly
mounted at a prescribed nanoscale gap from the nanobeam.
For the taper-to-nanobeam gap used here (& 200 nm), the
coupling rate to the fiber taper waveguide is approximately
#e;c=2" ¼ 46 MHz for the cooling mode and #e;r=2" ¼
300 MHz for the readout mode.

A Hamiltonian describing the coupled OMC cavity sys-
tem is given by Ĥ ¼ @ð!r þ grx̂=xzpfÞâyâþ @ð!c þ
gcx̂=xzpfÞĉyĉþ @!mb̂

yb̂, where ĉ (ĉy) and â (ây) are the
annihilation (creation) operators for photons in the cooling
and readout modes, respectively, and x̂ % xzpfðb̂y þ b̂Þ is
the displacement operator of the breathing mode with b̂y

(b̂) the phonon creation (annihilation) operator. xzpf , the

mode’s zero-point fluctuation amplitude, is estimated to be
2.7 fm from FEM simulations. The zero-point optome-
chanical coupling rates are determined from measurements
of the optically-induced damping of the mechanical mode
[13] to be gc=2" ¼ 960 kHz and gr=2" ¼ 430 kHz for
the cooling and readout modes, respectively.
As alluded to above, resolved sideband cooling in opto-

mechanical cavities follows physics which is formally
similar to the Raman processes used to cool ions to their
motional ground state [1]. A cooling laser, with frequency
!l ¼ !c &!m, is tuned a mechanical frequency below
that of the cooling cavity resonance of the OMC, giving
rise to an intracavity photon population nc. Motion of the
mechanical oscillator causes scattering of the intracavity
cooling beam laser light into Stokes and anti-Stokes side-
bands at !c & 2!m and !c, respectively. Since the anti-
Stokes sideband is resonant with the cavity at !c, and
#c < !m, the anti-Stokes optical up-conversion
process is greatly enhanced relative to the Stokes
down-conversion process, leading to cooling of the me-
chanical mode. Assuming a deeply resolved sideband
system (#c=!m ' 1), the backaction cooled mechanical
mode occupancy is approximately given by hnic ¼
!inb=ð!i þ !cÞ [16,17].
Optical scattering of the intracavity light field can also

be used to read out the motion of the coupled mechanical

FIG. 2 (color online). Schematic of the experimental set-up.
Two narrowband lasers (linewidth (300 kHz) are used to inde-
pendently cool and readout the motion of the breathing mechani-
cal mode of the OMC cavity. The 1500 nm (readout) and
1400 nm (cooling) laser beams are passed through variable
optical attenuators (VOAs) to set the laser power, and combined
at a wavelength multiplexer ($-MUX) before being sent into the
cryostat through an optical fiber. Transmission of the 1500 nm
readout beam through the OMC cavity, collected at the output
end of the optical fiber, is filtered from the 1400 nm cooling
beam light via a bandpass filter, preamplified by an Erbium-
doped fiber amplifier (EDFA), and detected on a high-speed
photodetector (PD2) connected to a real-time spectrum analyzer
(RSA). An optical wave meter ($-meter) is used to monitor both
the cooling and readout laser frequencies. The optical reflection
from the cavity is used to perform EIT-like spectroscopy [22] on
both the readout and cooling cavity modes. Other components
are: amplitude-modulation (a-m) and phase-modulation (%-m)
electro-optic modulators, fiber polarization controller (FPC),
swept frequency radio-frequency signal generator (rf-sg), lock-
in amplifier (lock-in), and optical switches (SW).

FIG. 1 (color online). (a) A scanning electron micrograph of
the silicon nanobeam optomechanical cavity. Finite-element
method (FEM) numerical simulations of the electric field am-
plitude of the (b) first- and (c) second-order optical modes of the
cavity which are used for cooling and probing the mechanical
motion, respectively. (d) FEM numerical simulation showing the
displacement amplitude of the coupled breathing mechanical
mode.
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acoustic Bragg reflection, couples via radiation pressure to
both optical resonances.

An illustration of the experimental apparatus used to cool
and measure the OMC nanomechanical oscillator is shown
in Fig. 2. In order to precool the oscillator, the silicon sample
is mounted inside a Helium flow cryostat. For a sample
mount temperature of 6.3K, the thermal bath temperature of
the mechanical mode is measured to be 18 K (thermal
phonon occupation of nb ¼ 94 phonons) through optical
measurements described below. At this temperature the
breathing mode damping rate to the thermal bath is found
to be!i=2" ¼ 43 kHz. The optical resonances of the OMC
cavity aremeasured to have total damping rates of#c=2" ¼
390 MHz and #r=2" ¼ 1:0 GHz for the cooling and read-
out modes, respectively. An optical fiber taper is used to
evanescently couple light to and from the OMC cavity.
Utilizing piezoelectric stages, the taper is positioned to
the side of the nanobeam cavity and placed in contact
with the surface of the silicon microchip surrounding the
suspended nanobeam. In this scheme, the fiber taper runs
approximately parallel to the nanobeam, and can be rigidly
mounted at a prescribed nanoscale gap from the nanobeam.
For the taper-to-nanobeam gap used here (& 200 nm), the
coupling rate to the fiber taper waveguide is approximately
#e;c=2" ¼ 46 MHz for the cooling mode and #e;r=2" ¼
300 MHz for the readout mode.

A Hamiltonian describing the coupled OMC cavity sys-
tem is given by Ĥ ¼ @ð!r þ grx̂=xzpfÞâyâþ @ð!c þ
gcx̂=xzpfÞĉyĉþ @!mb̂

yb̂, where ĉ (ĉy) and â (ây) are the
annihilation (creation) operators for photons in the cooling
and readout modes, respectively, and x̂ % xzpfðb̂y þ b̂Þ is
the displacement operator of the breathing mode with b̂y

(b̂) the phonon creation (annihilation) operator. xzpf , the

mode’s zero-point fluctuation amplitude, is estimated to be
2.7 fm from FEM simulations. The zero-point optome-
chanical coupling rates are determined from measurements
of the optically-induced damping of the mechanical mode
[13] to be gc=2" ¼ 960 kHz and gr=2" ¼ 430 kHz for
the cooling and readout modes, respectively.
As alluded to above, resolved sideband cooling in opto-

mechanical cavities follows physics which is formally
similar to the Raman processes used to cool ions to their
motional ground state [1]. A cooling laser, with frequency
!l ¼ !c &!m, is tuned a mechanical frequency below
that of the cooling cavity resonance of the OMC, giving
rise to an intracavity photon population nc. Motion of the
mechanical oscillator causes scattering of the intracavity
cooling beam laser light into Stokes and anti-Stokes side-
bands at !c & 2!m and !c, respectively. Since the anti-
Stokes sideband is resonant with the cavity at !c, and
#c < !m, the anti-Stokes optical up-conversion
process is greatly enhanced relative to the Stokes
down-conversion process, leading to cooling of the me-
chanical mode. Assuming a deeply resolved sideband
system (#c=!m ' 1), the backaction cooled mechanical
mode occupancy is approximately given by hnic ¼
!inb=ð!i þ !cÞ [16,17].
Optical scattering of the intracavity light field can also

be used to read out the motion of the coupled mechanical

FIG. 2 (color online). Schematic of the experimental set-up.
Two narrowband lasers (linewidth (300 kHz) are used to inde-
pendently cool and readout the motion of the breathing mechani-
cal mode of the OMC cavity. The 1500 nm (readout) and
1400 nm (cooling) laser beams are passed through variable
optical attenuators (VOAs) to set the laser power, and combined
at a wavelength multiplexer ($-MUX) before being sent into the
cryostat through an optical fiber. Transmission of the 1500 nm
readout beam through the OMC cavity, collected at the output
end of the optical fiber, is filtered from the 1400 nm cooling
beam light via a bandpass filter, preamplified by an Erbium-
doped fiber amplifier (EDFA), and detected on a high-speed
photodetector (PD2) connected to a real-time spectrum analyzer
(RSA). An optical wave meter ($-meter) is used to monitor both
the cooling and readout laser frequencies. The optical reflection
from the cavity is used to perform EIT-like spectroscopy [22] on
both the readout and cooling cavity modes. Other components
are: amplitude-modulation (a-m) and phase-modulation (%-m)
electro-optic modulators, fiber polarization controller (FPC),
swept frequency radio-frequency signal generator (rf-sg), lock-
in amplifier (lock-in), and optical switches (SW).

FIG. 1 (color online). (a) A scanning electron micrograph of
the silicon nanobeam optomechanical cavity. Finite-element
method (FEM) numerical simulations of the electric field am-
plitude of the (b) first- and (c) second-order optical modes of the
cavity which are used for cooling and probing the mechanical
motion, respectively. (d) FEM numerical simulation showing the
displacement amplitude of the coupled breathing mechanical
mode.
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An illustration of the experimental apparatus used to cool
and measure the OMC nanomechanical oscillator is shown
in Fig. 2. In order to precool the oscillator, the silicon sample
is mounted inside a Helium flow cryostat. For a sample
mount temperature of 6.3K, the thermal bath temperature of
the mechanical mode is measured to be 18 K (thermal
phonon occupation of nb ¼ 94 phonons) through optical
measurements described below. At this temperature the
breathing mode damping rate to the thermal bath is found
to be!i=2" ¼ 43 kHz. The optical resonances of the OMC
cavity aremeasured to have total damping rates of#c=2" ¼
390 MHz and #r=2" ¼ 1:0 GHz for the cooling and read-
out modes, respectively. An optical fiber taper is used to
evanescently couple light to and from the OMC cavity.
Utilizing piezoelectric stages, the taper is positioned to
the side of the nanobeam cavity and placed in contact
with the surface of the silicon microchip surrounding the
suspended nanobeam. In this scheme, the fiber taper runs
approximately parallel to the nanobeam, and can be rigidly
mounted at a prescribed nanoscale gap from the nanobeam.
For the taper-to-nanobeam gap used here (& 200 nm), the
coupling rate to the fiber taper waveguide is approximately
#e;c=2" ¼ 46 MHz for the cooling mode and #e;r=2" ¼
300 MHz for the readout mode.

A Hamiltonian describing the coupled OMC cavity sys-
tem is given by Ĥ ¼ @ð!r þ grx̂=xzpfÞâyâþ @ð!c þ
gcx̂=xzpfÞĉyĉþ @!mb̂

yb̂, where ĉ (ĉy) and â (ây) are the
annihilation (creation) operators for photons in the cooling
and readout modes, respectively, and x̂ % xzpfðb̂y þ b̂Þ is
the displacement operator of the breathing mode with b̂y

(b̂) the phonon creation (annihilation) operator. xzpf , the

mode’s zero-point fluctuation amplitude, is estimated to be
2.7 fm from FEM simulations. The zero-point optome-
chanical coupling rates are determined from measurements
of the optically-induced damping of the mechanical mode
[13] to be gc=2" ¼ 960 kHz and gr=2" ¼ 430 kHz for
the cooling and readout modes, respectively.
As alluded to above, resolved sideband cooling in opto-

mechanical cavities follows physics which is formally
similar to the Raman processes used to cool ions to their
motional ground state [1]. A cooling laser, with frequency
!l ¼ !c &!m, is tuned a mechanical frequency below
that of the cooling cavity resonance of the OMC, giving
rise to an intracavity photon population nc. Motion of the
mechanical oscillator causes scattering of the intracavity
cooling beam laser light into Stokes and anti-Stokes side-
bands at !c & 2!m and !c, respectively. Since the anti-
Stokes sideband is resonant with the cavity at !c, and
#c < !m, the anti-Stokes optical up-conversion
process is greatly enhanced relative to the Stokes
down-conversion process, leading to cooling of the me-
chanical mode. Assuming a deeply resolved sideband
system (#c=!m ' 1), the backaction cooled mechanical
mode occupancy is approximately given by hnic ¼
!inb=ð!i þ !cÞ [16,17].
Optical scattering of the intracavity light field can also

be used to read out the motion of the coupled mechanical

FIG. 2 (color online). Schematic of the experimental set-up.
Two narrowband lasers (linewidth (300 kHz) are used to inde-
pendently cool and readout the motion of the breathing mechani-
cal mode of the OMC cavity. The 1500 nm (readout) and
1400 nm (cooling) laser beams are passed through variable
optical attenuators (VOAs) to set the laser power, and combined
at a wavelength multiplexer ($-MUX) before being sent into the
cryostat through an optical fiber. Transmission of the 1500 nm
readout beam through the OMC cavity, collected at the output
end of the optical fiber, is filtered from the 1400 nm cooling
beam light via a bandpass filter, preamplified by an Erbium-
doped fiber amplifier (EDFA), and detected on a high-speed
photodetector (PD2) connected to a real-time spectrum analyzer
(RSA). An optical wave meter ($-meter) is used to monitor both
the cooling and readout laser frequencies. The optical reflection
from the cavity is used to perform EIT-like spectroscopy [22] on
both the readout and cooling cavity modes. Other components
are: amplitude-modulation (a-m) and phase-modulation (%-m)
electro-optic modulators, fiber polarization controller (FPC),
swept frequency radio-frequency signal generator (rf-sg), lock-
in amplifier (lock-in), and optical switches (SW).

FIG. 1 (color online). (a) A scanning electron micrograph of
the silicon nanobeam optomechanical cavity. Finite-element
method (FEM) numerical simulations of the electric field am-
plitude of the (b) first- and (c) second-order optical modes of the
cavity which are used for cooling and probing the mechanical
motion, respectively. (d) FEM numerical simulation showing the
displacement amplitude of the coupled breathing mechanical
mode.
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